Widespread Contamination by Anticoagulant Rodenticides in Insectivorous Wildlife from the Canary Islands: Exploring Alternative Routes of Exposure
Abstract
1. Introduction
- (i)
- Assess the integration of ARs into lower trophic levels of the Canary Islands’ terrestrial ecosystem by analyzing liver samples from six insectivorous non-raptor bird species and one invasive insectivorous reptile (Chamaeleo calyptratus);
- (ii)
- Evaluate the potential role of invertebrates as vectors of ARs for these lower-level predators.
2. Materials and Methods
2.1. Study Area, Sampling, and Ethical Statements
2.2. Analysis of Anticoagulant Rodenticides in Liver Tissue and Sample Preparation
2.3. Statistical Analyses
3. Results and Discussion
3.1. SGARs Exposure in Reptiles: Veiled Chamaeleon as a Case Study
3.2. SGARs Exposure in Non-Raptor Birds: Insectivorous Birds
Bird Exposure to Anticoagulant Rodenticides: Foraging and Habitat Considerations
3.3. Role of Invertebrates as a Potential Vector of Anticoagulant Rodenticides
4. Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SGAR | Second-Generation Anticoagulant Rodenticide |
FGAR | First-Generation Anticoagulant Rodenticide |
AR | Anticoagulant Rodenticide |
LOD | Limit of Detection |
LOQ | Limit of Quantification |
QCs | Quality Control |
SERTOX | Toxicology Service |
VKORC | Vitamin K Epoxide Reductase |
SVL | Snout-vent length |
SCIs | Sites of Community Importance |
SPAs | Special Protection Areas for Birds |
RSD | Relative Standard Deviation |
P-IS | Internal Standard Procedural |
ACN | Acetonitrile |
FA | Formic Acid |
References
- Meyer, A.N.; Kaukeinen, D.E. Rodent Control in Practice: Protection of Humans and Animal Health. In Rodent Pests and Their Control, 2nd ed.; Buckle, A.P., Smith, R.H., Eds.; CABI: Oxfordshire, UK, 2015; pp. 231–246. [Google Scholar] [CrossRef]
- Jacob, J.; Buckle, A. Use of Anticoagulant Rodenticides in Different Applications Around the World. In Anticoagulant Rodenticides and Wildlife. Emerging Topics in Ecotoxicology; van den Brink, N., Elliott, J., Shore, R., Rattner, B., Eds.; Springer: Cham, Switzerland, 2018; Volume 5, pp. 11–43. ISBN 978-3-319-64377-9. [Google Scholar] [CrossRef]
- Frankova, M.; Stejskal, V.; Aulicky, R. Efficacy of Rodenticide Baits with Decreased Concentrations of Brodifacoum: Validation of the Impact of the New EU Anticoagulant Regulation. Sci. Rep. 2019, 9, 16779. [Google Scholar] [CrossRef] [PubMed]
- Decisión de Ejecución—UE—2024/734—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=OJ:L_202400734 (accessed on 1 May 2025).
- Ishizuka, M.; Tanikawa, T.; Tanaka, K.D.; Heewon, M.; Okajima, F.; Sakamoto, K.Q.; Fujita, S. Pesticide Resistance in Wild Mammals--Mechanisms of Anticoagulant Resistance in Wild Rodents. J. Toxicol. Sci. 2008, 33, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Stafford, D.W. The Vitamin K Cycle. J. Thromb. Haemost. 2005, 3, 1873–1878. [Google Scholar] [CrossRef]
- Martínez-Padilla, J.; López-Idiáquez, D.; López-Perea, J.J.; Mateo, R.; Paz, A.; Viñuela, J. A Negative Association between Bromadiolone Exposure and Nestling Body Condition in Common Kestrels: Management Implications for Vole Outbreaks. Pest Manag. Sci. 2016, 73, 364–370. [Google Scholar] [CrossRef]
- Serieys, L.E.K.; Lea, A.J.; Epeldegui, M.; Armenta, T.C.; Moriarty, J.; Vandewoude, S.; Carver, S.; Foley, J.; Wayne, R.K.; Riley, S.P.D.; et al. Urbanization and Anticoagulant Poisons Promote Immune Dysfunction in Bobcats. Proc. Biol. Sci. 2018, 285, 20172533. [Google Scholar] [CrossRef]
- Murray, M. Ante-Mortem and Post-Mortem Signs of Anticoagulant Rodenticide Toxicosis in Birds of Prey. In Anticoagulant Rodenticides and Wildlife. Emerging Topics in Ecotoxicology; van den Brink, N., Elliott, J., Shore, R., Rattner, B., Eds.; Springer: Cham, Switzerland, 2018; Volume 5, pp. 109–134. ISBN 978-3-319-64377-9. [Google Scholar] [CrossRef]
- Rattner, B.A.; Lazarus, R.S.; Elliott, J.E.; Shore, R.F.; Van Den Brink, N. Adverse Outcome Pathway and Risks of Anticoagulant Rodenticides to Predatory Wildlife. Environ. Sci. Technol. 2014, 48, 8433–8445. [Google Scholar] [CrossRef]
- Carrillo-Hidalgo, J.; Martín-Cruz, B.; Henríquez-Hernández, L.A.; Rial-Berriel, C.; Acosta-Dacal, A.; Zumbado-Peña, M.; Luzardo, O.P. Intraspecific and Geographical Variation in Rodenticide Exposure among Common Kestrels in Tenerife (Canary Islands). Sci. Total Environ. 2024, 910, 168551. [Google Scholar] [CrossRef] [PubMed]
- George, S.; Sharp, E.; Campbell, S.; Giela, A.; Senior, C.; Melton, L.M.; Vyas, D.; Mocogni, L.; Galloway, M. Anticoagulant Rodenticide Exposure in Common Buzzards: Impact of New Rules for Rodenticide Use. Sci. Total Environ. 2024, 944, 173832. [Google Scholar] [CrossRef]
- Moriceau, M.-A.; Lefebvre, S.; Fourel, I.; Benoit, E.; Buronfosse-Roque, F.; Orabi, P.; Rattner, B.A.; Lattard, V. Exposure of Predatory and Scavenging Birds to Anticoagulant Rodenticides in France: Exploration of Data from French Surveillance Programs. Sci. Total Environ. 2022, 810, 151291. [Google Scholar] [CrossRef]
- Campbell, S.; George, S.; Sharp, E.A.; Giela, A.; Senior, C.; Melton, L.M.; Casali, F.; Giergiel, M.; Vyas, D.; Mocogni, L.A.; et al. Impact of Changes in Governance for Anticoagulant Rodenticide Use on Non-Target Exposure in Red Foxes (Vulpes vulpes). Environ. Chem. Ecotoxicol. 2024, 6, 65–70. [Google Scholar] [CrossRef]
- Oliva-Vidal, P.; Martínez, J.M.; Sánchez-Barbudo, I.S.; Camarero, P.R.; Colomer, M.À.; Margalida, A.; Mateo, R. Second-Generation Anticoagulant Rodenticides in the Blood of Obligate and Facultative European Avian Scavengers. Environ. Pollut. 2022, 315, 120385. [Google Scholar] [CrossRef]
- Herring, G.; Eagles-Smith, C.A.; Buck, J.A. Anticoagulant Rodenticides Are Associated with Increased Stress and Reduced Body Condition of Avian Scavengers in the Pacific Northwest. Environ. Pollut. 2023, 331, 121899. [Google Scholar] [CrossRef]
- Herring, G.; Eagles-Smith, C.A.; Wolstenholme, R.; Welch, A.; West, C.; Rattner, B.A. Collateral Damage: Anticoagulant Rodenticides Pose Threats to California Condors. Environ. Pollut. 2022, 311, 119925. [Google Scholar] [CrossRef]
- Fourel, I.; Roque, F.; Orabi, P.; Augiron, S.; Couzi, F.-X.; Puech, M.-P.; Chetot, T.; Lattard, V. Stereoselective Bioaccumulation of Chiral Anticoagulant Rodenticides in the Liver of Predatory and Scavenging Raptors. Sci. Total Environ. 2024, 917, 170545. [Google Scholar] [CrossRef] [PubMed]
- Rattner, B.A.; Harvey, J.J. Challenges in the Interpretation of Anticoagulant Rodenticide Residues and Toxicity in Predatory and Scavenging Birds. Pest Manag. Sci. 2021, 77, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Keating, M.P.; Saldo, E.A.; Frair, J.L.; Cunningham, S.A.; Mateo, R.; Jachowski, D.S. Global Review of Anticoagulant Rodenticide Exposure in Wild Mammalian Carnivores. Anim. Conserv. 2024, 27, 585–587. [Google Scholar] [CrossRef]
- Facka, A.; Frair, J.; Keller, T.; Miller, E.; Murphy, L.; Ellis, J.C. Spatial Patterns of Anticoagulant Rodenticides in Three Species of Medium-Sized Carnivorans in Pennsylvania. Can. J. Zool. 2024, 102, 443–454. [Google Scholar] [CrossRef]
- Lohr, M.T.; Lohr, C.A.; Dunlop, J.; Snape, M.; Pulsford, S.; Webb, E.; Davis, R.A. Widespread Detection of Second Generation Anticoagulant Rodenticides in Australian Native Marsupial Carnivores. Sci. Total Environ. 2025, 967, 178832. [Google Scholar] [CrossRef]
- Nakayama, S.M.M.; Morita, A.; Ikenaka, Y.; Mizukawa, H.; Ishizuka, M. A Review: Poisoning by Anticoagulant Rodenticides in Non-Target Animals Globally. Vet. Med. Sci. 2019, 81, 298–313. [Google Scholar] [CrossRef]
- Broughton, R.K.; Searle, K.R.; Walker, L.A.; Potter, E.D.; Pereira, M.G.; Carter, H.; Sleep, D.; Noble, D.G.; Butler, A.; Johnson, A.C. Long-Term Trends of Second Generation Anticoagulant Rodenticides (SGARs) Show Widespread Contamination of a Bird-Eating Predator, the Eurasian Sparrowhawk (Accipiter nisus) in Britain. Environ. Pollut. 2022, 314, 120269. [Google Scholar] [CrossRef]
- Elliott, J.E.; Hindmarch, S.; Albert, C.A.; Emery, J.; Mineau, P.; Maisonneuve, F. Exposure Pathways of Anticoagulant Rodenticides to Nontarget Wildlife. Environ. Monit. Assess. 2014, 186, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Shore, R.F.; Coeurdassier, M. Primary Exposure and Effects in Non-Target Animals. In Anticoagulant Rodenticides and Wildlife; van den Brink, N., Elliot, J., Shore, R., Rattner, B., Eds.; Springer: Cham, Switzerland, 2018; Volume 5, pp. 135–157. ISBN 978-3-319-64377-9. [Google Scholar] [CrossRef]
- Pitt, W.C.; Berentsen, A.R.; Shiels, A.B.; Volker, S.F.; Eisemann, J.D.; Wegmann, A.S.; Howald, G.R. Non-Target Species Mortality and the Measurement of Brodifacoum Rodenticide Residues after a Rat (Rattus rattus) Eradication on Palmyra Atoll, Tropical Pacific. Biol. Conserv. 2015, 185, 36–46. [Google Scholar] [CrossRef]
- Walther, B.; Geduhn, A.; Schenke, D.; Jacob, J. Exposure of Passerine Birds to Brodifacoum during Management of Norway Rats on Farms. Sci. Total Environ. 2021, 762, 144160. [Google Scholar] [CrossRef] [PubMed]
- Kotthoff, M.; Rüdel, H.; Jürling, H.; Severin, K.; Hennecke, S.; Friesen, A.; Koschorreck, J. First Evidence of Anticoagulant Rodenticides in Fish and Suspended Particulate Matter: Spatial and Temporal Distribution in German Freshwater Aquatic Systems. Environ. Sci. Pollut. Res. 2019, 26, 7315–7325. [Google Scholar] [CrossRef]
- Dennis, G.C.; Gartrell, B.D. Nontarget Mortality of New Zealand Lesser Short-Tailed Bats (Mystacina tuberculata) Caused by Diphacinone. J. Wildl. Dis. 2015, 51, 177–186. [Google Scholar] [CrossRef]
- Vyas, N.B. Rodenticide Incidents of Exposure and Adverse Effects on Non-Raptor Birds. Sci. Total Environ. 2017, 609, 68–76. [Google Scholar] [CrossRef]
- Lettoof, D.C.; Lohr, M.T.; Busetti, F.; Bateman, P.W.; Davis, R.A. Toxic Time Bombs: Frequent Detection of Anticoagulant Rodenticides in Urban Reptiles at Multiple Trophic Levels. Sci. Total Environ. 2020, 724, 138218. [Google Scholar] [CrossRef]
- Johnston, J.J.; Pitt, W.C.; Sugihara, R.T.; Eisemann, J.D.; Primus, T.M.; Holmes, M.J.; Crocker, J.; Hart, A. Probabilistic Risk Assessment for Snails, Slugs, and Endangered Honeycreepers in Diphacinone Rodenticide Baited Areas on Hawaii, USA. Environ. Toxicol. Chem. 2005, 24, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- Alomar, H.; Chabert, A.; Coeurdassier, M.; Vey, D.; Berny, P. Accumulation of Anticoagulant Rodenticides (Chlorophacinone, Bromadiolone and Brodifacoum) in a Non-Target Invertebrate, the Slug, Deroceras Reticulatum. Sci. Total Environ. 2018, 610–611, 576–582. [Google Scholar] [CrossRef]
- Williams, E.J.; Cotter, S.C.; Soulsbury, C.D. Consumption of Rodenticide Baits by Invertebrates as a Potential Route into the Diet of Insectivores. Animals 2023, 13, 3873. [Google Scholar] [CrossRef]
- Loof, T.G.; Schmidt, O.; Herwald, H.; Theopold, U. Coagulation Systems of Invertebrates and Vertebrates and Their Roles in Innate Immunity: The Same Side of Two Coins? J. Innate Immun. 2010, 3, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Parli, A.; Besson, A.; Wehi, P.; Johnson, S. Sub-Lethal Exposure to a Mammalian Pesticide Bait Alters Behaviour in an Orthopteran. J. Insect Conserv. 2020, 24, 535–546. [Google Scholar] [CrossRef]
- Liu, J.; Xiong, K.; Ye, X.; Zhang, J.; Yang, Y.; Ji, L. Toxicity and Bioaccumulation of Bromadiolone to Earthworm Eisenia fetida. Chemosphere 2015, 135, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Barkman, A.L.; Richmond, R.H. The Effects of Brodifacoum Cereal Bait Pellets on Early Life Stages of the Rice Coral Montipora capitata. PeerJ 2022, 10, e13877. [Google Scholar] [CrossRef]
- Spurr, E.B.; Drew, K.W. Invertebrates Feeding on Baits Used for Vertebrate Pest Control in New Zealand. N. Z. J. Ecol. 1999, 23, 167–173. [Google Scholar]
- Bowie, M.H.; Ross, J.G. Identification of Weta Foraging on Brodifacoum Bait and the Risk of Secondary Poisoning for Birds on Quail Island, Canterbury, New Zealand on JSTOR. N. Z. J. Ecol. 2006, 30, 219–228. [Google Scholar]
- Hoare, J.M.; Hare, K.M. The Impact of Brodifacoum on Non-Target Wildlife: Gaps in Knowledge. N. Z. J. Ecol. 2006, 30, 157–167. [Google Scholar]
- Dowding, C.V.; Shore, R.F.; Worgan, A.; Baker, P.J.; Harris, S. Accumulation of Anticoagulant Rodenticides in a Non-Target Insectivore, the European Hedgehog (Erinaceus europaeus). Environ. Pollut. 2010, 158, 161–166. [Google Scholar] [CrossRef]
- Elmeros, M.; Bossi, R.; Christensen, T.K.; Kjær, L.J.; Lassen, P.; Topping, C.J. Exposure of Non-Target Small Mammals to Anticoagulant Rodenticide during Chemical Rodent Control Operations. Environ. Sci. Pollut. Res. Int. 2019, 26, 6133–6140. [Google Scholar] [CrossRef]
- Lohr, M.T.; Davis, R.A. Anticoagulant Rodenticide Use, Non-Target Impacts and Regulation: A Case Study from Australia. Sci. Total Environ. 2018, 634, 1372–1384. [Google Scholar] [CrossRef]
- Masuda, B.M.; Fisher, P.; Jamieson, I.G. Anticoagulant Rodenticide Brodifacoum Detected in Dead Nestlings of an Insectivorous Passerine. N. Z. J. Ecol. 2014, 38, 110–115. [Google Scholar]
- Rial-Berriel, C.; Acosta-Dacal, A.; Cabrera Pérez, M.Á.; Suárez-Pérez, A.; Melián Melián, A.; Zumbado, M.; Henríquez Hernández, L.A.; Ruiz-Suárez, N.; Rodriguez Hernández, Á.; Boada, L.D.; et al. Intensive Livestock Farming as a Major Determinant of the Exposure to Anticoagulant Rodenticides in Raptors of the Canary Islands (Spain). Sci. Total Environ. 2021, 768, 144386. [Google Scholar] [CrossRef] [PubMed]
- Martín-Cruz, B.; Cecchetti, M.; Simbaña-Rivera, K.; Rial-Berriel, C.; Acosta-Dacal, A.; Zumbado-Peña, M.; Henríquez-Hernández, L.A.; Gallo-Barneto, R.; Cabrera-Pérez, M.Á.; Melián-Melián, A.; et al. Potential Exposure of Native Wildlife to Anticoagulant Rodenticides in Gran Canaria (Canary Islands, Spain): Evidence from Residue Analysis of the Invasive California Kingsnake (Lampropeltis californiae). Sci. Total Environ. 2024, 911, 168761. [Google Scholar] [CrossRef]
- Rial-Berriel, C.; Acosta-Dacal, A.; Zumbado, M.; Henríquez-Hernández, L.A.; Rodríguez-Hernández, Á.; Macías-Montes, A.; Boada, L.D.; Travieso-Aja, M.D.M.; Martin-Cruz, B.; Suárez-Pérez, A.; et al. Epidemiology of Animal Poisonings in the Canary Islands (Spain) during the Period 2014–2021. Toxics 2021, 9, 267. [Google Scholar] [CrossRef]
- Ruiz-Suárez, N.; Henríquez-Hernández, L.A.; Valerón, P.F.; Boada, L.D.; Zumbado, M.; Camacho, M.; Almeida-González, M.; Luzardo, O.P. Assessment of Anticoagulant Rodenticide Exposure in Six Raptor Species from the Canary Islands (Spain). Sci. Total Environ. 2014, 485–486, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Martín Cruz, B.; Rial Berriel, C.; Acosta Dacal, A.; Carromeu-Santos, A.; Simbaña-Rivera, K.; Gabriel, S.I.; Pastor Tiburón, N.; González González, F.; Fernández Valeriano, R.; Henríquez-Hernández, L.A.; et al. Differential Exposure to Second-Generation Anticoagulant Rodenticides in Raptors from Continental and Insular Regions of the Iberian Peninsula. Environ. Pollut. 2024, 362, 125034. [Google Scholar] [CrossRef]
- Dalaba, J.R.; Rochford, M.R.; Metzger, E.F.; Gillette, C.R.; Schwartz, N.P.; Gati, E.V.; Godfrey, S.T.; Altieri, D.; Mazzotti, F.J. New County Records for Introduced Reptiles in St. Lucie County, Florida, with Some Observations on Diets. Reptiles Amphib. 2019, 26, 155–158. [Google Scholar] [CrossRef]
- Hódar, J.A.; Pleguezuelos, J.M.; Poveda, J.C. Habitat Selection of the Common Chameleon (Chamaeleo chamaeleon) (L.) in an Area under Development in Southern Spain: Implications for Conservation. Biol. Conserv. 2000, 94, 63–68. [Google Scholar] [CrossRef]
- Valido, A.; Nogales, M.; Medina, F.M. Fleshy Fruits in the Diet of Canarian Lizards Gallotia Galloti (Lacertidae) in a Xeric Habitat of the Island of Tenerife. J. Herpetol. 2003, 37, 741–747. [Google Scholar] [CrossRef]
- Carretero, M.A.; Jorge, F.; Llorente, G.A.; Roca, V. Relationships between Helminth Communities and Diet in Canarian Lizards: The Evidence from Gallotia Atlantica (Squamata: Lacertidae). J. Nat. Hist. 2014, 48, 1199–1216. [Google Scholar] [CrossRef]
- Salvador, A.; Brown, R.P. Lisa Grancanaria—Chalcides sexlineatus. In Enciclopedia Virtual de los Vertebrados Españoles; López, P., Martín, J., Eds.; Museo Nacional de Ciencias Naturales: Madrid, Spain, 2018. [Google Scholar]
- Salvador, A.; Brown, R.P. Perenquén de Boettger—Tarentola boettgeri. In Enciclopedia Virtual de los Vertebrados Españoles; López, P., Martín, J., Eds.; Museo Nacional de Ciencias Naturales: Madrid, Spain, 2018. [Google Scholar]
- Annessi, M.; De Biase, A.; Montemaggiori, A. Diet and Foraging Ecology of the Hoopoe Upupa epops in a Mediterranean Area of Central Italy. Avocetta 2022, 46, 77–85. [Google Scholar] [CrossRef]
- Tahir, R.; Zafar, W.; Aslam, M.W.; Waheed, A.; Umar, A.; Fatima, S.; Javed, T.; Liaqat, T.; Ditta, A.; Ashfaq, M.; et al. Morphometric Parameters and Food Preference in Relation to Sex and Reference Hematological Values for Upupa epops from Pakistan. J. Adv. Vet. Anim. Res. 2022, 9, 290–294. [Google Scholar] [CrossRef]
- Romanowski, H.; Jowett, K.; Garrett, D.; Shortall, C. Swift Sampling of Farmland Aerial Invertebrates Offers Insights into Foraging Behaviour in an Aerial Insectivore. Wildl. Biol. 2024, 5, e01294. [Google Scholar] [CrossRef]
- Costanzo, A.; Ambrosini, R.; Manica, M.; Casola, D.; Polidori, C.; Gianotti, V.; Conterosito, E.; Roncoli, M.; Parolini, M.; De Felice, B. Microfibers in the Diet of a Highly Aerial Bird, the Common Swift Apus apus. Toxics 2024, 12, 408. [Google Scholar] [CrossRef]
- Carrascal, L.M.; Seoane, J.; Palomino, D.; Alonso, C.L. Preferencias de Hábitat, Estima y Tendencias Poblacionales de la Avutarda Hubara Chlamydotis undulata en Lanzarote y La Graciosa (Islas Canarias). Ardeola 2006, 53, 251–269. [Google Scholar]
- Traba, J.; Acebes, P.; Malo, J.E.; García, J.T.; Carriles, E.; Radi, M.; Znari, M. Habitat Selection and Partitioning of the Black-Bellied Sandgrouse (Pterocles orientalis), the Stone Curlew (Burhinus oedicnemus) and the Cream-Coloured Courser (Cursorius cursor) in Arid Areas of North Africa. J. Arid. Environ. 2013, 94, 10–17. [Google Scholar] [CrossRef]
- Green, R.E.; Tyler, G.A.; Bowden, C.G.R. Habitat Selection, Ranging Behaviour and Diet of the Stone Curlew (Burhinus oedicnemus) in Southern England. J. Zool. 2000, 250, 161–183. [Google Scholar] [CrossRef]
- Fritsch, C.; Coeurdassier, M.; Faivre, B.; Baurand, P.E.; Giraudoux, P.; van den Brink, N.W.; Scheifler, R. Influence of Landscape Composition and Diversity on Contaminant Flux in Terrestrial Food Webs: A Case Study of Trace Metal Transfer to European Blackbirds Turdus merula. Sci. Total Environ. 2012, 432, 275–287. [Google Scholar] [CrossRef]
- Garcia-del-Rey, E.; Fernández-Palacios, J.M.; Muñoz, P.G. Intra-Annual Variation in Habitat Choice by an Endemic Woodpecker: Implications for Forest Management and Conservation. Acta Oecologica 2009, 35, 685–690. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, J.; Sung, H.C. The Impact of Forest Characteristics, and Bird and Insect Diversity on the Occurrence of the Great Spotted Woodpecker Dendrocopos major and Grey-Headed Woodpecker Picus canus in South Korea. Bird Study 2023, 70, 161–171. [Google Scholar] [CrossRef]
- Sundseth, K.; Capitao, J.; Houston, J. Natura 2000 en la Región Macaronésica; Unión Europea: Brussels, Belgium, 2010; ISBN 9789279131769. [Google Scholar]
- Instituto Nacional de Estadística (INE). Censo Anual de Población 2021–2024. Población Según Comunidad Autónoma y Provincia y Sexo. Available online: https://www.ine.es/jaxiT3/Tabla.htm?t=67988 (accessed on 2 May 2025).
- Ministerio para la Transición Ecológica y el Reto Demográfico (MITECO). Tabla Resumen de La Red Natura 2000. Available online: https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/rn_resumen.html (accessed on 2 May 2025).
- Ministerio para la Transición Ecológica y el Reto Demográfico (MITECO). Lista de Especies Exóticas Invasoras Preocupantes Para la Región Ultraperiférica de las Islas Canarias. Available online: https://www.miteco.gob.es/es/biodiversidad/temas/conservacion-de-especies/especies-exoticas-invasoras/ce-eei-lista-canarias.html (accessed on 2 May 2025).
- Ministerio para la Transición Ecológica. «BOE» Real Decreto 216/2019, de 29 de Marzo, por el que se Aprueba la Lista de Especies Exóticas Invasoras Preocupantes Para la Región Ultraperiférica de las Islas Canarias y por el que se Modifica el Real Decreto 630/2013, de 2 de Agosto, Por el que se Regula el Catálogo Español de Especies Exóticas Invasoras; Ministerio para la Transición Ecológica: Madrid, Spain, 2019; pp. 38305–38315.
- RED VIGIA Red Canaria de Vigilancia Sanitaria de la Fauna Silvestre. Available online: https://www3.gobiernodecanarias.org/aplicaciones/redvigiacanarias/ (accessed on 2 May 2025).
- Rial-Berriel, C.; Acosta-Dacal, A.; Zumbado, M.; Luzardo, O.P. Micro QuEChERS-Based Method for the Simultaneous Biomonitoring in Whole Blood of 360 Toxicologically Relevant Pollutants for Wildlife. Sci. Total Environ. 2020, 736, 139444. [Google Scholar] [CrossRef] [PubMed]
- Rial-Berriel, C.; Acosta-Dacal, A.; Zumbado, M.; Alberto Henríquez-Hernández, L.; Rodríguez-Hernández, Á.; Macías-Montes, A.; Boada, L.D.; Del Mar Travieso-Aja, M.; Cruz, B.M.; Luzardo, O.P. A Method Scope Extension for the Simultaneous Analysis of POPs, Current-Use and Banned Pesticides, Rodenticides, and Pharmaceuticals in Liver. Application to Food Safety and Biomonitoring. Toxics 2021, 9, 238. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Dacal, A.; Rial-Berriel, C.; Díaz-Díaz, R.; Bernal-Suárez, M.M.; Luzardo, O.P. Optimization and Validation of a QuEChERS-Based Method for the Simultaneous Environmental Monitoring of 218 Pesticide Residues in Clay Loam Soil. Sci. Total Environ. 2021, 753, 142015. [Google Scholar] [CrossRef]
- Wiseman, K.; Greene, H.; Koo, M.; Long, D. Feeding Ecology of a Generalist Predator, the California Kingsnake (Lampropeltis californiae): Why Rare Prey Matter. Herpetol. Conserv. Biol. 2019, 14, 1–30. [Google Scholar]
- Piquet, J.C.; López-Darias, M. Invasive Snake Causes Massive Reduction of All Endemic Herpetofauna on Gran Canaria. Proc. Biol. Sci. 2021, 288, 20211939. [Google Scholar] [CrossRef]
- Yamamura, Y.; Nakagawa, S.; Kondo, M.; Shinya, S.; Doya, R.; Koide, M.; Yohannes, Y.B.; Ikenaka, Y.; Ishizuka, M.; Nakayama, S.M.M. Anticoagulant Rodenticides Exposure Status among Wild Pit Vipers (Protobothrops flavoviridis) and Green Anoles (Anolis carolinensis) in Two Japanese Islands. Eur. J. Wildl. Res. 2024, 70, 57. [Google Scholar] [CrossRef]
- Sánchez-Barbudo, I.S.; Camarero, P.R.; Mateo, R. Primary and Secondary Poisoning by Anticoagulant Rodenticides of Non-Target Animals in Spain. Sci. Total Environ. 2012, 420, 280–288. [Google Scholar] [CrossRef]
- López-Perea, J.J.; Camarero, P.R.; Sánchez-Barbudo, I.S.; Mateo, R. Urbanization and Cattle Density Are Determinants in the Exposure to Anticoagulant Rodenticides of Non-Target Wildlife. Environ. Pollut. 2019, 244, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, S.; Noor, H.M.; Salim, H. Anticoagulant Rodenticide Use in Oil Palm Plantations in Southeast Asia and Hazard Assessment to Non-Target Animals. Ecotoxicology 2022, 31, 976–997. [Google Scholar] [CrossRef]
- Pay, J.M.; Katzner, T.E.; Hawkins, C.E.; Barmuta, L.A.; Brown, W.E.; Wiersma, J.M.; Koch, A.J.; Mooney, N.J.; Cameron, E.Z. Endangered Australian Top Predator Is Frequently Exposed to Anticoagulant Rodenticides. Sci. Total Environ. 2021, 788, 147673. [Google Scholar] [CrossRef]
- Rueda, D.; Campbell, K.J.; Fisher, P.; Cunninghame, F.; Ponder, J.B. Biologically Significant Residual Persistence of Brodifacoum in Reptiles Following Invasive Rodent Eradication, Galapagos Islands, Ecuador. Conserv. Evid. 2016, 13, 38. [Google Scholar]
- Burbidge, A.A. Montebello Renewal: Western Shield Review—February 2003. Conserv. Sci. West. Aust. 2004, 5, 194–201. [Google Scholar]
- Mauldin, R.E.; Witmer, G.W.; Shriner, S.A.; Moulton, R.S.; Horak, K.E. Effects of Brodifacoum and Diphacinone Exposure on Four Species of Reptiles: Tissue Residue Levels and Survivorship. Pest Manag. Sci. 2020, 76, 1958–1966. [Google Scholar] [CrossRef]
- Yamamura, Y.; Takeda, K.; Kawai, Y.K.; Ikenaka, Y.; Kitayama, C.; Kondo, S.; Kezuka, C.; Taniguchi, M.; Ishizuka, M.; Nakayama, S.M.M. Sensitivity of Turtles to Anticoagulant Rodenticides: Risk Assessment for Green Sea Turtles (Chelonia mydas) in the Ogasawara Islands and Comparison of Warfarin Sensitivity among Turtle Species. Aquat. Toxicol. 2021, 233, 105792. [Google Scholar] [CrossRef] [PubMed]
- Pryde, M.A.; Pickerell, G.; Coats, G.; Hill, G.S.; Greene, T.C.; Murphy, E.C. Observations of South Island Robins Eating Racumin®, a Toxic Paste Used for Rodent Control. N. Z. J. Zool. 2013, 40, 255–259. [Google Scholar] [CrossRef]
- Shore, R.F. Rodenticides: The Good, the Bad, and the Ugly. Encycl. Anthr. 2017, 1–5, 155–160. [Google Scholar] [CrossRef]
- Thomas, P.J.; Mineau, P.; Shore, R.F.; Champoux, L.; Martin, P.A.; Wilson, L.K.; Fitzgerald, G.; Elliott, J.E. Second Generation Anticoagulant Rodenticides in Predatory Birds: Probabilistic Characterisation of Toxic Liver Concentrations and Implications for Predatory Bird Populations in Canada. Environ. Int. 2011, 37, 914–920. [Google Scholar] [CrossRef]
- Elliott, J.E.; Silverthorn, V.; English, S.G.; Mineau, P.; Hindmarch, S.; Thomas, P.J.; Lee, S.; Bowes, V.; Redford, T.; Maisonneuve, F.; et al. Anticoagulant Rodenticide Toxicity in Terrestrial Raptors: Tools to Estimate the Impact on Populations in North America and Globally. Environ. Toxicol. Chem. 2024, 43, 988–998. [Google Scholar] [CrossRef]
- Serieys, L.E.K.; Armenta, T.C.; Moriarty, J.G.; Boydston, E.E.; Lyren, L.M.; Poppenga, R.H.; Crooks, K.R.; Wayne, R.K.; Riley, S.P.D. Anticoagulant Rodenticides in Urban Bobcats: Exposure, Risk Factors and Potential Effects Based on a 16-Year Study. Ecotoxicology 2015, 24, 844–862. [Google Scholar] [CrossRef]
- Carrascal, L.M.; Palomino, D.; Seoane, J.; Alonso, C.L. Habitat Use and Population Density of the Houbara Bustard Chlamydotis undulata in Fuerteventura (Canary Islands). Afr. J. Ecol. 2008, 46, 291–302. [Google Scholar] [CrossRef]
- Tagmann-Ioset, A.; Schaub, M.; Reichlin, T.S.; Weisshaupt, N.; Arlettaz, R. Bare Ground as a Crucial Habitat Feature for a Rare Terrestrially Foraging Farmland Bird of Central Europe. Acta Oecologica 2012, 39, 25–32. [Google Scholar] [CrossRef]
- Giannangeli, L.; De Sanctis, A.; Manginelli, R.; Medina, F. Seasonal Variation of the diet of the Stone Curlew Burhinus oedicnemus distinctus at the Island of La Palma, Canary Islands. Ardea 2004, 92, 175–184. [Google Scholar]
- Vicedo, T.; Navas, I.; María-Mojica, P.; García-Fernández, A.J. Widespread Use of Anticoagulant Rodenticides in Agricultural and Urban Environments. A Menace to the Viability of the Endangered Bonelli’s Eagle (Aquila fasciata) Populations. Environ. Pollut. 2024, 358, 124530. [Google Scholar] [CrossRef] [PubMed]
- Figuerola, J.; la Puente, J.M.d.; Díez-Fernández, A.; Thomson, R.L.; Aguirre, J.I.; Faivre, B.; Ibañez-Alamo, J.D. Urbanization Correlates with the Prevalence and Richness of Blood Parasites in Eurasian Blackbirds (Turdus merula). Sci. Total Environ. 2024, 922, 171303. [Google Scholar] [CrossRef]
- Tiyawattanaroj, W.; Witte, S.; Fehr, M.; Legler, M. Monitoring of Organochlorine Pesticide and Polychlorinated Biphenyl Residues in Common Swifts (Apus apus) in the Region of Hannover, Lower Saxony, Germany. Vet. Sci. 2021, 8, 87. [Google Scholar] [CrossRef]
- Masuda, B.M.; Fisher, P.; Beaven, B. Residue Profiles of Brodifacoum in Coastal Marine Species Following an Island Rodent Eradication. Ecotoxicol. Environ. Saf. 2015, 113, 1–8. [Google Scholar] [CrossRef]
- Brooke, M.d.L.; Cuthbert, R.J.; Harrison, G.; Gordon, C.; Taggart, M.A. Persistence of Brodifacoum in Cockroach and Woodlice: Implications for Secondary Poisoning during Rodent Eradications. Ecotoxicol. Environ. Saf. 2013, 97, 183–188. [Google Scholar] [CrossRef]
Brodifacoum (ng/g ww.) | ||||||||
---|---|---|---|---|---|---|---|---|
n+ (%) | Mean Total | Mean Detected | Median Total | Median Detected | SD | Max | P25 | P75 |
28 (77.8) | 6.82 | 8.73 | 3.13 | 4.36 | 8.94 | 33.11 | 0.55 | 8.57 |
Sum of ARs (ng/g ww.) | Brodifacoum (ng/g ww.) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Species | n+ (%) | Mean (+) ± SD | Median (+) | Mean Total ± SD | Median Total | n+ (%) | Mean (+) ± SD | Median (+) | Mean Total ± SD | Median Total |
Hoopoe (n = 5) | 5 (100) | 102.65 ± 195.18 | 26.24 | 102.65 ± 195.18 | 26.24 | 5 (100) | 102.65 ± 195.18 | 26.24 | 102.65 ± 195.18 | 26.24 |
Stone-curlew (n = 44) | 22 (50) | 19.30 ± 49.85 | 4.79 | 9.65 ± 36.18 | 0.17 | 21 (47.8) | 19.87 ± 50.97 | 4.86 | 9.48 ± 36.18 | 0 |
Houbara bustard (n = 22) | 2 (9.1) | 0.72 ± 0.09 | 0.72 | 0.07 ± 0.21 | 0 | 2 (9.1) | 0.72 ± 0.09 | 0.72 | 0.07 ± 0.21 | 0 |
Blackbird (n = 18) | 6 (33.3) | 3.24 ± 4.64 | 1.65 | 1.08 ± 2.97 | 0 | 6 (33.3) | 3.24 ± 4.64 | 1.65 | 1.08 ± 2.97 | 0 |
Woodpecker (n = 5) | 1 (20) | 3.16 | 3.16 | 0.63 ± 1.41 | 0 | 0 | - | - | - | - |
Common swift (n = 4) | 3 (75) | 5.89 ± 7.19 | 2.68 | 4.42 ± 6.57 | 1.78 | 2 (50) | 1.73 ± 1.35 | 1.73 | 0.86 ± 1.26 | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín Cruz, B.; Acosta Dacal, A.; Macías-Montes, A.; Rial-Berriel, C.; Zumbado, M.; Henríquez-Hernández, L.A.; Gallo-Barneto, R.; Cabrera-Pérez, M.Á.; Luzardo, O.P. Widespread Contamination by Anticoagulant Rodenticides in Insectivorous Wildlife from the Canary Islands: Exploring Alternative Routes of Exposure. Toxics 2025, 13, 505. https://doi.org/10.3390/toxics13060505
Martín Cruz B, Acosta Dacal A, Macías-Montes A, Rial-Berriel C, Zumbado M, Henríquez-Hernández LA, Gallo-Barneto R, Cabrera-Pérez MÁ, Luzardo OP. Widespread Contamination by Anticoagulant Rodenticides in Insectivorous Wildlife from the Canary Islands: Exploring Alternative Routes of Exposure. Toxics. 2025; 13(6):505. https://doi.org/10.3390/toxics13060505
Chicago/Turabian StyleMartín Cruz, Beatriz, Andrea Acosta Dacal, Ana Macías-Montes, Cristian Rial-Berriel, Manuel Zumbado, Luis Alberto Henríquez-Hernández, Ramón Gallo-Barneto, Miguel Ángel Cabrera-Pérez, and Octavio P. Luzardo. 2025. "Widespread Contamination by Anticoagulant Rodenticides in Insectivorous Wildlife from the Canary Islands: Exploring Alternative Routes of Exposure" Toxics 13, no. 6: 505. https://doi.org/10.3390/toxics13060505
APA StyleMartín Cruz, B., Acosta Dacal, A., Macías-Montes, A., Rial-Berriel, C., Zumbado, M., Henríquez-Hernández, L. A., Gallo-Barneto, R., Cabrera-Pérez, M. Á., & Luzardo, O. P. (2025). Widespread Contamination by Anticoagulant Rodenticides in Insectivorous Wildlife from the Canary Islands: Exploring Alternative Routes of Exposure. Toxics, 13(6), 505. https://doi.org/10.3390/toxics13060505