PM2.5 Induced Nasal Mucosal Barrier Dysfunction and Epithelial–Mesenchymal Transition to Promote Chronic Rhinosinusitis Through IL4I1-AhR Signaling Pathway
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection Criteria
- (1)
- Patients with no prior history of sinus surgery.
- (2)
- Patients without a history of lower respiratory tract diseases, including but not limited to asthma and chronic bronchitis.
- (3)
- Patients who had not received any relevant medications, such as nonsteroidal anti-inflammatory drugs (NSAIDs) or anticoagulants, within a specified timeframe prior to the study.
2.2. Tissue Distribution and Preparation
2.3. Murine Model of CRS
2.4. Immunohistochemistry
2.5. Immunofluorescence Staining
2.6. Hematoxylin and Eosin (HE) Staining
2.7. Masson Trichrome Staining
2.8. RNA Extraction and Real-Time Polymerase Chain Reaction
2.9. Western Blotting
2.10. Primary Culture of Human Nasal Mucosal Epithelial Cells (HNEpCs)
2.11. Scratch Assay
2.12. CCK-8 Assay
2.13. Protein–Protein Interaction (PPI) Network Construction
2.14. Statistical Analysis
3. Results
3.1. Activation of the AhR in CRS
3.2. The Elevated AhR Induces Morphological Alterations in the Nasal Mucosal Epithelium
3.3. AhR Activation in Association with IL4I1
3.4. PM2.5 Triggers the Activation of the IL4I1-AhR Signaling Pathway, Inducing EMT in CRS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CRS | chronic rhinosinusitis |
CRSwNP | chronic rhinosinusitis with nasal polyps |
CRSsNP | chronic rhinosinusitis without nasal polyps |
EPOS | European Position Paper on Rhinosinusitis and Nasal Polyps |
AhR | aryl hydrocarbon receptor |
EMT | epithelial–mesenchymal transition |
PAHs | Polycyclic Aromatic Hydrocarbons |
KYN | kynurenine |
IL4I1 | Interleukin 4 Induced 1 |
LAAO | amino acid oxidase |
BAP | Benzo[a]pyrene |
NSAIDs | nonsteroidal anti-inflammatory drugs |
IHC | immunohistochemistry |
qRT-PCR | qualitative real-time polymerase chain reaction |
WB | Western blot |
HE | hematoxylin and eosin |
HNEpCs | Human Nasal Mucosal Epithelial Cells |
OD | Optical density |
PPI | Protein–Protein Interaction |
SD | standard deviation |
ANOVA | one-way analysis of variance |
LSD | least significant difference |
DEHP | di(2-ethylhexyl) phthalate |
References
- Fokkens, W.J.; De Corso, E.; Backer, V.; Bernal-Sprekelsen, M.; Bjermer, L.; von Buchwald, C.; Chaker, A.; Diamant, Z.; Gevaert, P.; Han, J.; et al. EPOS2020/EUFOREA expert opinion on defining disease states and therapeutic goals in CRSwNP. Rhinology 2024, 62, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.; Schleimer, R.; Kern, R.C. The Etiology and Pathogenesis of Chronic Rhinosinusitis: A Review of Current Hypotheses. Curr. Allergy Asthma Rep. 2015, 15, 41. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Hou, T.; Zhou, H.; Zhu, L.; Zhu, W.; Wang, Y. Ferroptosis is involved in PM2.5-induced acute nasal epithelial injury via AMPK-mediated autophagy. Int. Immunopharmacol. 2023, 115, 109658. [Google Scholar] [CrossRef]
- Burte, E.; Leynaert, B.; Marcon, A.; Bousquet, J.; Benmerad, M.; Bono, R.; Carsin, A.; Hoogh, K.; Forsberg, B.; Gormand, F.; et al. Long-term air pollution exposure is associated with increased severity of rhinitis in 2 European cohorts. J. Allergy Clin. Immunol. 2020, 145, 834–842.e6. [Google Scholar] [CrossRef]
- To, T.; Zhu, J.; Stieb, D.; Gray, N.; Fong, I.; Pinault, L.; Jerrett, M.; Robichaud, A.; Menard, R.; Donkelaar, A.; et al. Early life exposure to air pollution and incidence of childhood asthma, allergic rhinitis and eczema. Eur. Respir. J. 2020, 55, 1900913. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Yuan, F.; Pang, P.; Yang, B.; Jiang, X.; Yan, A. Early childhood traffic-related air pollution and risk of allergic rhinitis at 2–4 years of age modification by family stress and male gender: A case-control study in Shenyang, China. Environ. Health Prev. Med. 2021, 26, 48. [Google Scholar] [CrossRef]
- Poland, A.; Glover, E.; Kende, A.S. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J. Biol. Chem. 1976, 251, 4936–4946. [Google Scholar] [CrossRef]
- Jia, Y.; Tao, Y.; Lv, C.; Xia, Y.; Wei, Z.; Dai, Y. Tetrandrine enhances the ubiquitination and degradation of Syk through an AhR-c-src-c-Cbl pathway and consequently inhibits osteoclastogenesis and bone destruction in arthritis. Cell Death Dis. 2019, 10, 38. [Google Scholar] [CrossRef]
- Manni, G.; Mondanelli, G.; Scalisi, G.; Pallotta, M.T.; Nardi, D.; Padiglioni, E.; Romani, R.; Talesa, V.N.; Puccetti, P.; Fallarino, F.; et al. Pharmacologic Induction of Endotoxin Tolerance in Dendritic Cells by L-Kynurenine. Front. Immunol. 2020, 11, 292. [Google Scholar] [CrossRef]
- Paris, A.; Tardif, N.; Baietti, F.M.; Berra, C.; Leclair, H.M.; Leucci, E.; Galiber, M.D.; Corre, S. The AhR-SRC axis as a therapeutic vulnerability in BRAFi-resistant melanoma. EMBO Mol. Med. 2022, 14, e15677. [Google Scholar] [CrossRef]
- Rothhammer, V.; Quintana, F.J. The aryl hydrocarbon receptor: An environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 2019, 19, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Vogel, C.; Van Winkle, L.S.; Esser, C.; Haarmann-Stemmann, T. The aryl hydrocarbon receptor as a target of environmental stressors—Implications for pollution mediated stress and inflammatory responses. Redox Biol. 2020, 34, 101530. [Google Scholar] [CrossRef]
- Avilla, M.N.; Malecki, K.; Hahn, M.E.; Wilson, R.H.; Bradfield, C.A. The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chem. Res. Toxicol. 2020, 33, 860–879. [Google Scholar] [CrossRef] [PubMed]
- Wolk, K.; Witte, E.; Wallace, E.; Docke, W.D.; Kunz, S.; Asadullah, K.; Volk, H.; Sterry, W.; Sabat, R. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: A potential role in psoriasis. Eur. J. Immunol. 2006, 36, 1309–1323. [Google Scholar] [CrossRef]
- Murray, I.A.; Patterson, A.D.; Perdew, G.H. Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat. Rev. Cancer 2014, 14, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Cope, E.K.; Goldberg, A.N.; Pletcher, S.D.; Lynch, S.V. Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences. Microbiome 2017, 5, 53. [Google Scholar] [CrossRef]
- Wang, H.; Do, D.C.; Liu, J.; Wang, B.; Qu, J.; Ke, X.; Luo, X.; Tang, H.M.; Tang, H.L.; Hu, C.; et al. Functional role of kynurenine and aryl hydrocarbon receptor axis in chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2018, 141, 586–600.e6. [Google Scholar] [CrossRef]
- Sadik, A.; Somarribas, P.L.; Ozturk, S.; Mohapatra, S.R.; Panitz, V.; Secker, P.F.; Pfander, P.; Loth, S.; Salem, H.; Prentzell, M.T.; et al. IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression. Cell 2020, 182, 1252–1270.e34. [Google Scholar] [CrossRef]
- Kumaresan, A.; Yadav, P.; Sinha, M.K.; Nag, P.; Peter, E.S.K.J.; Mishra, J.S.; Kumar, S. Male infertility and perfluoroalkyl and poly-fluoroalkyl substances: Evidence for alterations in phosphorylation of proteins and fertility-related functional attributes in bull spermatozoadagger. Biol. Reprod. 2024, 111, 723–739. [Google Scholar] [CrossRef]
- Liu, Q.; Deng, G.; Jiang, X.; Fu, Y.; Zhang, J.; Wu, X.; Li, X.; Ai, J.; Liu, H.; Tan, G. Macrophage-mediated activation of the IL4I1/AhR axis is a key player in allergic rhinitis. Int. Immunopharmacol. 2025, 152, 114439. [Google Scholar] [CrossRef]
- Dumoutier, L.; Van Roost, E.; Ameye, G.; Michaux, L.; Renauld, J.C. IL-TIF/IL-22: Genomic organization and mapping of the human and mouse genes. Genes Immun. 2000, 1, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, Y.; Zhang, X.; Tu, W.; Wan, R.; Shen, Y.; Zhang, Y.; Zhang, Y.; Trivedi, R.; Gao, P. Type II alveolar epithelial cell aryl hydrocarbon receptor protects against allergic airway inflammation through controlling cell autophagy. Front. Immunol. 2022, 13, 964575. [Google Scholar] [CrossRef] [PubMed]
- Ono, Y.; Torii, K.; Fritsche, E.; Shintani, Y.; Nishida, E.; Nakamura, M.; Shirakata, Y.; Haarmann-Stemmann, T.; Abel, J.; Krutmann, J.; et al. Role of the aryl hydrocarbon receptor in tobacco smoke extract-induced matrix metalloproteinase-1 expression. Exp. Dermatol. 2013, 22, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Beamer, C.A.; Seaver, B.P.; Shepherd, D.M. Aryl hydrocarbon receptor (AhR) regulates silica-induced inflammation but not fibrosis. Toxicol. Sci. 2012, 126, 554–568. [Google Scholar] [CrossRef]
- Celebi, S.Z.; Ozdel, O.B.; Cerci, P.; Turk, M.; Akin, B.G.; Akdis, M. Altiner S.; Ozdey U.; Ogulur I.; Mitamura Y.; et al. Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy 2022, 77, 1418–1449. [Google Scholar] [CrossRef]
- Akdis, C.A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat. Rev. Immunol. 2021, 21, 739–751. [Google Scholar] [CrossRef]
- Xian, M.; Ma, S.; Wang, K.; Lou, H.; Wang, Y.; Zhang, L.; Wang, C.; Akdis, C.A. Particulate Matter 2.5 Causes Deficiency in Barrier Integrity in Human Nasal Epithelial Cells. Allergy Asthma Immunol. Res. 2020, 12, 56–71. [Google Scholar] [CrossRef]
- Zou, Q.Y.; Hong, S.L.; Kang, H.Y.; Ke, X.; Wang, X.; Li, J.; Shen, Y. Effect of di-(2-ethylhexyl) phthalate (DEHP) on allergic rhinitis. Sci. Rep. 2020, 10, 14625. [Google Scholar] [CrossRef]
- Aujla, S.J.; Chan, Y.R.; Zheng, M.; Fei, M.; Askew, D.J.; Pociask, D.A.; Reinbart, T.A.; McAllister, F.; Edeal, J.; Gaus, K.; et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med. 2008, 14, 275–281. [Google Scholar] [CrossRef]
- Kim, H.K.; Kook, J.H.; Kang, K.R.; Oh, D.J.; Kim, T.H.; Lee, S.H. Increased expression of the aryl hydrocarbon receptor in allergic nasal mucosa, contributing to chemokine secretion in nasal epithelium. Am. J. Rhinol. Allergy 2016, 30, 107–112. [Google Scholar] [CrossRef]
- Bachert, C.; Marple, B.; Schlosser, R.J.; Hopkins, C.; Schleimer, R.P.; Lambrecht, B.N.; Broker, B.M.; Laidlaw, T.; Song, W.J. Adult chronic rhinosinusitis. Nat. Rev. Dis. Primers. 2020, 6, 86. [Google Scholar] [CrossRef] [PubMed]
- Zhong, B.; Seah, J.J.; Liu, F.; Ba, L.; Du, J.; Wang, D.Y. The role of hypoxia in the pathophysiology of chronic rhinosinusitis. Allergy 2022, 77, 3217–3232. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, Z.H.; Hu, D.; Ke, X.; Gu, Z.; Zou, Q.Y.; Hu, G.H.; Song, S.H.; Kang, H.Y.; Hong, S.L. The airway inflammation induced by nasal inoculation of PM2.5 and the treatment of bacterial lysates in rats. Sci. Rep. 2018, 8, 9816. [Google Scholar] [CrossRef]
- Chen, L.; Xiao, L.; Liu, J.; Shen, Y.; Ke, X.; Huang, J.; Hu, G.; Yang, Y. Differential Expression of the Aryl Hydrocarbon Receptor and Transforming Growth Factor Beta 1 in Chronic Rhinosinusitis with Nasal Polyps with Allergic Rhinitis. ORL J. Otorhinolaryngol. Relat. Spec. 2017, 79, 295–305. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, N.; Zhou, L.; Wang, J.; Zhou, Y.; Zhang, T.; Fang, Y.; Deng, J.; Gao, Y.; Liang, X.; et al. IL-2 regulates tumor-reactive CD8(+) T cell exhaustion by activating the aryl hydrocarbon receptor. Nat. Immunol. 2021, 22, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, J.; Li, Y.; Zhou, X.; Zhai, W.; Wu, Y.; Chen, G.; Gou, S.; Sui, X.; Zhao, W.; et al. Tryptophan 2,3-dioxygenase 2 controls M2 macrophages polarization to promote esophageal squamous cell carcinoma progression via AKT/GSK3beta/IL-8 signaling pathway. Acta Pharm. Sin. B 2021, 11, 2835–2849. [Google Scholar] [CrossRef]
- Dos, S.I.; Mitchell, M.; Nogueira, P.; Lafita-Navarro, M.C.; Perez-Castro, L.; Eriom, J.; Kilgore, J.A.; Williams, N.S.; Guo, L.; Xu, L.; et al. Targeting of neuroblastoma cells through Kynurenine-AHR pathway inhibition. FEBS J. 2024, 291, 2172–2190. [Google Scholar]
- Kado, S.Y.; Bein, K.; Castaneda, A.R.; Pouraryan, A.A.; Garrity, N.; Ishihara, Y.; Rossi, A.; Haarmann-Stemmann, T.; Sweeney, C.A.; Vogel, F.A. Regulation of IDO2 by the Aryl Hydrocarbon Receptor (AhR) in Breast Cancer. Cells 2023, 12, 1433. [Google Scholar] [CrossRef]
- Kunisawa, K.; Hara, M.; Yoshidomi, K.; Kon, Y.; Yamamoto, Y.; Fujigaki, S.; Wulaer, B.; Kosuge, A.; Tanabe, M.; Saitoh, S.; et al. Ido2 Deficiency Exacerbates Motor Impairment and Reduces Aryl Hydrocarbon Receptor Activity through Decreased Kynurenine in a Chronic Demyelinating Mouse Model. Mol. Neurobiol. 2025, 62, 109–122. [Google Scholar] [CrossRef]
- Badawy, A.A. The kynurenine pathway of tryptophan metabolism: A neglected therapeutic target of COVID-19 pathophysiology and immunotherapy. Biosci. Rep. 2023, 43, BSR20230595. [Google Scholar] [CrossRef]
- Salazar, F.; Hall, L.; Negm, O.H.; Awuah, D.; Tighe, P.J.; Shakib, F.; Ghaemmaghami, A.M. The mannose receptor negatively modulates the Toll-like receptor 4-aryl hydrocarbon receptor-indoleamine 2,3-dioxygenase axis in dendritic cells affecting T helper cell polarization. J. Allergy Clin. Immunol. 2016, 137, 1841–1851.e2. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lin, B.; Zhang, Y.; Hu, X.; Liu, T.; Liu, E.H.; Liu, S. Baitouweng decoction alleviates ulcerative colitis by regulating tryptophan metabolism through DOPA decarboxylase promotion. Front. Pharmacol. 2024, 15, 1423307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gan, M.; Li, J.; Li, H.; Su, M.; Tan, D.; Wang, S.; Jia, M.; Zhang, L.; Chen, G. Endogenous Indole Pyruvate Pathway for Tryptophan Metabolism Mediated by IL4I1. J. Agric. Food Chem. 2020, 68, 10678–10684. [Google Scholar] [CrossRef]
- Luo, J.M.; Zhang, T.T.; He, Y.Y.; Luo, H.N.; Hong, Y.Q.; Yang, Z.M. Human Chorionic Gonadotropin-Stimulated Interleukin-4-Induced-1 (IL4I1) Promotes Human Decidualization via Aryl Hydrocarbon Receptor. Int. J. Mol. Sci. 2023, 24, 3163. [Google Scholar] [CrossRef]
- Li, T.; Shi, J.; Wang, L.; Qin, X.; Zhou, R.; Dong, M.; Ren, F.; Li, X.; Zhang, Z.; Chen, Y.; et al. Thymol targeting interleukin 4 induced 1 expression reshapes the immune microenvironment to sensitize the immunotherapy in lung adenocarcinoma. MedComm 2023, 4, e355. [Google Scholar] [CrossRef]
- Zhang, G.P.; Xie, Z.L.; Jiang, J.; Zhao, Y.T.; Lei, K.; Lin, Z.L.; Chen, S.L.; Su, T.H.; Tan, L.; Peng, S.; et al. Mechanical confinement promotes heat resistance of hepatocellular carcinoma via SP1/IL4I1/AHR axis. Cell Rep. Med. 2023, 4, 101128. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Jiang, B.; Fu, B.; Shang, C.; Feng, H.; Chen, T.; Jiang, Y. PM2.5 Induces Cardiomyoblast Senescence via AhR-Mediated Oxidative Stress. Antioxidants 2024, 13, 786. [Google Scholar] [CrossRef]
- Kim, B.E.; Kim, J.; Goleva, E.; Berdyshev, E.; Lee, J.; Vang, K.A.; Lee, U.H.; Han, S.Y.; Leung, S.; Hall, C.F.; et al. Particulate matter causes skin barrier dysfunction. JCI Insight 2021, 6, e145185. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.Y.; Gao, Y.; Xiao, W.; Fu, J.; Huang, S.; Han, X.; Hsu, S.H.; Xiao, X.; Huang, S.K.; Zhou, Y. Multidimensional Analysis of Lung Lymph Nodes in a Mouse Model of Allergic Lung Inflammation following PM2.5 and Indeno[1,2,3-cd]pyrene Exposure. Environ. Health Perspect. 2023, 131, 37014. [Google Scholar] [CrossRef]
- Sun, L.; Fu, J.; Lin, S.H.; Sun, J.L.; Xia, L.; Lin, C.H.; Liu, L.; Zhang, C.; Yang, L.; Xue, P.; et al. Particulate matter of 2.5 mum or less in diameter disturbs the balance of T(H)17/regulatory T cells by targeting glutamate oxaloacetate transaminase 1 and hypoxia-inducible factor 1alpha in an asthma model. J. Allergy Clin. Immunol. 2020, 145, 402–414. [Google Scholar] [CrossRef]
- Feng, S.; Duan, E.; Shi, X.; Zhang, H.; Li, H.; Zhao, Y.; Chao, L.; Zhong, X.; Zhang, W.; Li, R.; et al. Hydrogen ameliorates lung injury in a rat model of subacute exposure to concentrated ambient PM2.5 via Aryl hydrocarbon receptor. Int. Immunopharmacol. 2019, 77, 105939. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, K.; Liu, W.; Zhang, J.; Fan, Y.; Sun, Y. ALOX15(+) M2 macrophages contribute to epithelial remodeling in eosinophilic chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2024, 154, 592–608. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Zheng, B.; Liu, Y.; Wang, J.; Li, C.; Xiong, P.; Gu, Y.; Shen, Y.; Yang, Y. Piezo1 regulates TGF-beta1 induced epithelial-mesenchymal transition in chronic rhinosinusitis with nasal polyps. Mol. Immunol. 2024, 175, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Li, Y.; Li, L. Promoting epithelial-to-mesenchymal transition by D-kynurenine via activating aryl hydrocarbon receptor. Mol. Cell. Biochem. 2018, 448, 165–173. [Google Scholar] [CrossRef]
- Li, M.D.; Chen, L.H.; Xiang, H.X.; Jiang, Y.L.; Lv, B.B.; Xu, D.X.; Zhao, H.; Fu, L. Benzo[a]pyrene evokes epithelial-mesenchymal transition and pulmonary fibrosis through AhR-mediated Nrf2-p62 signaling. J. Hazard. Mater. 2024, 473, 134560. [Google Scholar] [CrossRef]
- Huang, Q.; Chi, Y.; Deng, J.; Liu, Y.; Lu, Y.; Chen, J.; Dong, S. Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci. Rep. 2017, 7, 9392. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zheng, B.; Xiong, P.; Liu, Y.; Shu, L.; Shen, Y.; Lu, T.; Yang, Y. PM2.5 Induced Nasal Mucosal Barrier Dysfunction and Epithelial–Mesenchymal Transition to Promote Chronic Rhinosinusitis Through IL4I1-AhR Signaling Pathway. Toxics 2025, 13, 488. https://doi.org/10.3390/toxics13060488
Wang Y, Zheng B, Xiong P, Liu Y, Shu L, Shen Y, Lu T, Yang Y. PM2.5 Induced Nasal Mucosal Barrier Dysfunction and Epithelial–Mesenchymal Transition to Promote Chronic Rhinosinusitis Through IL4I1-AhR Signaling Pathway. Toxics. 2025; 13(6):488. https://doi.org/10.3390/toxics13060488
Chicago/Turabian StyleWang, Yue, Bowen Zheng, Panhui Xiong, Yijun Liu, Longlan Shu, Yang Shen, Tao Lu, and Yucheng Yang. 2025. "PM2.5 Induced Nasal Mucosal Barrier Dysfunction and Epithelial–Mesenchymal Transition to Promote Chronic Rhinosinusitis Through IL4I1-AhR Signaling Pathway" Toxics 13, no. 6: 488. https://doi.org/10.3390/toxics13060488
APA StyleWang, Y., Zheng, B., Xiong, P., Liu, Y., Shu, L., Shen, Y., Lu, T., & Yang, Y. (2025). PM2.5 Induced Nasal Mucosal Barrier Dysfunction and Epithelial–Mesenchymal Transition to Promote Chronic Rhinosinusitis Through IL4I1-AhR Signaling Pathway. Toxics, 13(6), 488. https://doi.org/10.3390/toxics13060488