Water-Column Zone Impacts Non-Essential Heavy Metal Accumulation in Fish Occupying Different Zones
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Heavy Metals
3.1.1. Total Measured Organ Load
3.1.2. Organ Specific (Liver vs. Muscle)
3.1.3. LWR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BOF | Bay of Fundy |
GOM | Gulf of Maine |
LOQ | Limit of Quantification |
LWR | Weight for length relationship |
MDL | Method Detection Limit |
SD | Standard Deviation |
References
- Jamil Emon, F.; Rohani, M.F.; Sumaiya, N.; Tuj Jannat, M.F.; Akter, Y.; Shajahan, M.; Kari, Z.A.; Tahiluddin, A.B.; Goh, K.W. Bioaccumulation and bioremediation of heavy metals in fishes—A review. Toxics 2023, 11, 510–537. [Google Scholar] [CrossRef]
- Oros, A. Bioaccumulation and trophic transfer of heavy metals in marine fish: Ecological and ecosystem-level impacts. J. Xenobiotics 2025, 15, 59. [Google Scholar] [CrossRef] [PubMed]
- Conkling, P. From Cape Cod to the Bay of Fundy: An Environmental Atlas of the Gulf of Maine; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Fader, G. Physiography, Geography and Bathymetry of the Digby Neck Area, Bay of Fundy; Atlantic Marine Geological Consulting Ltd.: Halifax, NS, Canada, 2005. [Google Scholar]
- Percy, J. Working Together Within an Ecosystem: The Bay of Fundy Ecosystem Project; Environment Canada: Granville Ferry, NS, Canada, 1999. [Google Scholar]
- Harding, G. Toxic Chemical Contaminants: Review. State of the Gulf of Maine Report. Gulf of Maine Council on the Marine Environment. 2013. Available online: http://www.gulfofmaine.org/2/wp-content/uploads/2014/03/toxic-chemical-contaminants-review.pdf (accessed on 20 May 2021).
- WWF. Watershed Report: Maritime Coastal Watershed. 2016. Available online: http://awsassets.wwf.ca/downloads/maritime_coastal_watershed_report_28032016.pdf (accessed on 12 June 2021).
- Bothner, M.H.; Gilbert, T.R.; Bankston, D.C. Trace Metals in Georges Bank; Backus, R.H., Bourne, D.W., Eds.; MIT Press: Cambridge, MA, USA, 1987; pp. 177–207. [Google Scholar]
- JWEL. Environmental Assessment of Exploratory Drilling Mariner Block, 2002; Report to Canadian Superior Energy Inc., Project NSD 16741; Jaques Witford Environment Limited: Elmira, ON, Canada, 2002. [Google Scholar]
- Loring, D.H. Baseline levels of transition and heavy metals in bottom sediments of the Bay of Fundy. Proc. N. S. Inst. Sci. 1979, 24, 335–346. [Google Scholar]
- Stewart, P.; Kendall, V.; Breeze, H. Marine environmental contaminants in the Scotian Shelf bioregion: Scotian Shelf, Bay of Fundy and adjacent coastal and offshore waters 1995-present. Can. Tech. Rep. Fish. Aquat. Sci. 2019, 3291. Available online: https://publications.gc.ca/collections/collection_2019/mpo-dfo/Fs97-6-3291-eng.pdf (accessed on 12 June 2021).
- Canadian Environmental Protection Act. 1999. Available online: https://laws-lois.justice.gc.ca/PDF/C-15.31.pdf (accessed on 20 February 2021).
- US EPA Clean Water Act. 1972. Available online: https://www.epa.gov/cwa-401 (accessed on 20 February 2021).
- Masindi, V.; Muedi, K. Environmental contamination by heavy metals. Intechopen 2018, 10, 115–133. [Google Scholar] [CrossRef]
- Hung, G.; Chmura, G. Metal accumulation in surface salt marsh sediments of the Bay of Fundy, Canada. Mar. Pollut. Bull. 2007, 30, 725–734. [Google Scholar] [CrossRef]
- Gabrielyan, A.; Shahnazaryan, G.; Minasyan, S. Distribution and identification of sources of heavy metals in the Voghji river basin impacted by mining activities (Armenia). J. Chem. 2018, 2018, 7172426. [Google Scholar] [CrossRef]
- Smith, J.; Yeats, P.; Knowlton, S.; Moran, S. Comparison of 234Th/238U and mass balance models for estimating metal removal fluxes in the Gulf of Maine and Scotian Shelf. Cont. Shelf Res. 2014, 77, 107–117. [Google Scholar] [CrossRef]
- Bruland, K. Trace elements in seawater. In Chem Oceanography; Riley, J.P., Chester, R., Eds.; Academic: London, UK, 1983; Volume 2, pp. 147–220. [Google Scholar]
- Pierce, R.; Whittle, D.; Bramwell, J. Chemical Contaminants in Canadian Aquatic Ecosystems; Fisheries and Oceans Canada: Ottawa, ON, Canada, 1999. [Google Scholar]
- U.S. EPA. “Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry,” Revision 2. Washington, DC, USA. 2014. Available online: https://www.epa.gov/esam/epa-method-6020b-sw-846-inductively-coupled-plasma-mass-spectrometry (accessed on 20 February 2021).
- Carbonara, P.; Follesa, M.C. (Eds.) Handbook on Fish Age Determination: A Mediterranean Experience; Studies and Reviews. No. 98; FAO: Rome, Italy, 2019; p. 192. [Google Scholar]
- European Union. Commission Regulation (EC) Setting Maximum Levels for Certain Contaminants in Foodstuffs. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32006R1881 (accessed on 20 February 2021).
- Health Canada. Health Canada’s Maximum Levels for Chemical Contaminants in Food. 2018. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/chemical-contaminants/maximum-levels-chemical-contaminants-foods.html#a3 (accessed on 2 March 2021).
- Food and Agriculture Organization of the United Nations. Compilation of Legal Limits for Hazardous Substances in Fish and Fishery Products. 1983. Available online: http://www.fao.org/fi/oldsite/eims_search/1_dett.asp%3Fcalling%3Dsimple_s_result%26lang%3Dfr%26pub_id%3D65155 (accessed on 24 February 2021).
- Ayotte, J.; Montgomery, D.; Flanagan, S.; Robinson, K. Arsenic in groundwater in eastern New England: Occurrence, controls, and human health implications. Environ. Sci. Technol. 2003, 37, 2075–2083. [Google Scholar] [CrossRef]
- Clark, A.; Labaj, A.; Smol, J.; Campbell, L.; Kurek, J. Arsenic and mercury contamination and complex aquatic bioindicator responses to historical gold mining and modern watershed stressors in urban Nova Scotia, Canada. Sci. Total Environ. 2021, 787, 147374. [Google Scholar] [CrossRef]
- Parsons, M.; LeBlanc, K.; Hall, G.; Sangster, A.; Vaive, J.E.; Pelchat, P. Environmental geochemistry of tailings, sediments and surface waters collected from 14 historical gold mining districts in Nova Scotia. Geol. Surv. Can. Open File 2012, 7150, 326. [Google Scholar]
- Wang, S.; Mulligan, C. Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. Sci. Total Environ. 2006, 366, 701–721. [Google Scholar] [CrossRef]
- Foley, M.; Askin, N.; Belanger, M.P.; Wittnich, C. Essential and non-essential heavy metal levels in key organs of winter flounder (Pseudopleuronectes americanus) and their potential impact on body condition. Mar. Pollut. Bull. 2021, 168, 112378. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, B.; Ernst, W.; Comeau, F. Trace metal concentrations in sediments and fish in the vicinity of ash lagoon discharges from coal-combustion plants in New Brunswick and Nova Scotia, Canada. Arch. Environ. Toxicol. 2011, 61, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, E.; Dalziel, J.; Hayes, A.; Branfireun, B.; Krabbenhoft, D.P.; Gobas, F.A. Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000. Environ. Sci. Tech. 2010, 44, 1698–1704. [Google Scholar] [CrossRef]
- Bridgestock, L.; van de Flierdt, T.; Rehkämper, M.; Paul, M.; Middag, R.; Milne, A.; Lohan, M.C.; Baker, A.R.; Chance, R.; Khondoker, R.; et al. Return of naturally sourced Pb to Atlantic surface waters. Nat. Commun. 2016, 7, 1292. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Zhang, Z.; Liu, C.; Sun, C.; Zhang, W.; Marhaba, T. pH effect on heavy metal release from a polluted sediment. J. Chem. 2018, 229, 1510–1513. [Google Scholar] [CrossRef]
- Cargnelli, L.; Griesbach, S.; Berrien, P.; Morse, W.; Johnson, D.L. Haddock, Melanogrammus aeglefinus, life history and habitat characteristics. In NOAA Technical Memorandum NMFS-NE-128; U.S. Department of Commerce: Washington, DC, USA, 1999. [Google Scholar]
- Kulka, D. Community structure and biomass of euphasiids in the Bay of Fundy. Can. J. Fish. Aquat. Sci. 2011, 39, 326–334. [Google Scholar] [CrossRef]
- Le Croizier, G.; Schaal, G.; Gallon, R.; Fall, M.; Le Grand, F.; Munaron, J.-M.; Rouget, M.-L.; Machu, E.; Le Loc’H, F.; Laë, R.; et al. Trophic ecology influence on metal bioaccumulation in marine fish: Inference from stable isotope and fatty acid analyses. Sci. Total Environ. 2016, 573, 83–95. [Google Scholar] [CrossRef]
- Naccari, C.; Cicero, N.; Ferrantelli, V.; Glangrosso, G.; Vella, A.; Marcaluso, A.; Naccari, F.; Dugo, G. Toxic metals in pelagic, benthic, and demersal fish species from Mediterranean FAO Zone 37. Bull. Environ. Contam. Toxicol. 2015, 95, 567–573. [Google Scholar] [CrossRef]
- Wu, D.; Feng, H.; Xiao, J.; Zhang, P.; Ji, Y.; Lek, S.; Guo, Z. Feeding habit-specific heavy metal bioaccumulation and health risk assessment of fish in a tropical reservoir in southern China. Fishes 2023, 8, 211–225. [Google Scholar] [CrossRef]
- McQuinn, I. Pelagic fish outburst or suprabenthic habitat occupation: Legacy of the Atlantic cod (Gadus morhua) collapse in eastern Canada. Can. J. Fish. Aquat. Sci. 2009, 66, 2256–2262. [Google Scholar] [CrossRef]
- NOAA. Fish Assessment Report; FY 2019 Report. Science and Technology. 2019. Available online: https://media.fisheries.noaa.gov/dam-migration/annual_summary_pdf.pdf (accessed on 20 June 2021).
Species | Diet * | Trophic Level * | Sample Size | Collection Location |
---|---|---|---|---|
Atlantic Mackerel | Zooplankton, small fish | 3.6 ± 0.2 se | n = 25 | 44°13′43.7″ N 66°15′51.7″ W |
Atlantic Herring | Zooplankton, copepods, Small fish | 3.4 ± 0.1 se | n = 5 | 44°6′37.5″ N 66°23′54″ W |
Atlantic Pollock | Zooplankton, copepods | 4.3 ± 0.4 se | n = 5 | 44°44′22.6″ N 66°21′47.6″ W |
Small fish | n = 10 | 43°47′56.9″ N 67°21′46.4″ W | ||
Atlantic Cod | Invertebrates, zooplankton | 4.1 ± 0.2 se | n = 3 | 44°34′7.0″ N 66°40′41.3″ W |
Small fish | n = 13 | 45°12′52.3″ N 65°48′9.1″ W | ||
Atlantic Haddock | Invertebrates, zooplankton, small fish | 4.0 ± 0.1 se | n = 16 | 44°44′59.8″ N 66°30′49.4″ W |
Acadian Redfish | Zooplankton, small fish | 3.2 ± 0.2 se | n = 16 | 44°39′26.9″ N 66°30′16.1″ W |
Total Measured Organ Load µg/g Wet Weight | Epipelagic | Mesopelagic | Demersal | |
---|---|---|---|---|
Arsenic (ML = 35) | Mean | 2.45 | 4.29 a | 8.18 a |
S.D | 1.2 | 0.93 | 7.12 | |
Min-Max | 1.42–6.80 | 3.22–7.20 | 1.16–27.2 | |
Cadmium (ML = 0.05) | Mean | 0.82 | 0.29 a | 1.03 b |
S.D | 0.41 | 0.19 | 1.23 | |
Min-Max | 0.29–2.10 | 0.07–0.80 | 0.02–5.20 | |
Lead (ML = 0.30) | Mean | 0.02 | 0.006 a | 0.01 |
S.D | 0.007 | 0.007 | 0.02 | |
Min-Max | 0.006–0.03 | <MD–0.02 | <MDL–0.09 | |
Mercury (ML = 0.08) | Mean | 0.11 | 0.08 | 0.28 ab |
S.D | 0.06 | 0.03 | 0.28 | |
Min-Max | 0.06–0.27 | 0.04–0.13 | 0.05–1.42 | |
Nickel | Mean | <MDL | <MDL | 0.13 ab |
S.D | <MDL | <MDL | 0.29 | |
Min-Max | <MDL | <MDL | <MDL–1.50 | |
Thallium | Mean | 0.0008 | <MDL | 0.0005 |
S.D | 0.001 | <MDL | 0.001 | |
Min-Max | <MDL–0.004 | <MDL | <MDL–0.006 |
(a) | |||||||
---|---|---|---|---|---|---|---|
Muscle (µg/g Wet Weight) | |||||||
Epipelagic | Mesopelagic | Demersal | |||||
Mackerel | Herring | Pollock | Cod | Haddock | Redfish | ||
Arsenic (ML = 35) | Mean | 0.57 | 1.16 | 1.13 | 5.83 | 4.07 | 1.26 |
SD | 0.18 | 0.58 | 0.60 | 5.37 | 2.15 | 1.08 | |
Min–Max | 0.37–0.95 | 0.70–2.00 | 0.44–2.9 | 1.9–18.0 | 1.4–6.9 | 0.35–4.30 | |
Cadmium (ML = 0.05) | Mean | 0.003 | <MDL | 0.001 | <MDL | 0.0004 | 0.0003 |
SD | 0.005 | <MDL | 0.005 | <MDL | 0.001 | 0.001 | |
Min–Max | <MDL–0.01 | <MDL | <MDL–0.02 | <MDL | <MDL–0.004 | <MDL–0.005 | |
Mercury (ML = 0.08) | Mean | 0.03 | 0.08 | 0.07 | 0.06 | 0.08 | 0.27 |
SD | 0.02 | 0.04 | 0.03 | 0.02 | 0.01 | 0.16 | |
Min–Max | 0.02–0.08 | 0.04–0.13 | 0.04–0.12 | 0.03–0.10 | 0.06–0.12 | 0.08–0.74 | |
Thallium | Mean | <MDL | 0.003 | <MDL | <MDL | <MDL | <MDL |
SD | <MDL | 0.001 | <MDL | <MDL | <MDL | <MDL | |
Min–Max | <MDL | 0.002–0.004 | <MDL | <MDL | <MDL | <MDL | |
(b) | |||||||
Liver (µg/g Wet Weight) | |||||||
Epipelagic | Mesopelagic | Demersal | |||||
Mackerel | Herring | Pollock | Cod | Haddock | Redfish | ||
Arsenic (ML = 35) | Mean | 1.5 * | 2.35 | 3.16 * | 4.85 | 10.6 * | 1.2 |
SD | 0.36 | 1.64 | 0.6 | 2.20 | 4.92 | 0.28 | |
Min–Max | 0.56–2.0 | 1.40–4.80 | 2.0–4.30 | 2.3–9.20 | 7.3–23.0 | 0.88–1.70 | |
Cadmium (ML = 0.05) | Mean | 0.89 * | 0.59 | 0.29 * | 0.21 * | 0.48 * | 2.01 * |
SD | 0.43 | 0.22 | 0.19 | 0.33 | 0.31 | 1.35 | |
Min–Max | 0.37–2.1 | 0.29–0.83 | 0.07–0.78 | 0.02–1.00 | 0.20–1.10 | 0.31–5.2 | |
Lead (ML = 0.3) | Mean | 0.02 * | 0.008 | 0.003 | 0.001 | 0.03 * | 0.01 * |
SD | 0.006 | 0.002 | 0.004 | 0.003 | 0.02 | 0.005 | |
Min–Max | 0.01–0.03 | 0.006–0.01 | <MDL–0.01 | <MDL–0.006 | 0.01–0.09 | <MDL–0.02 | |
Mercury (ML = 0.08) | Mean | 0.07 * | 0.07 | 0.01 * | 0.04 * | 0.05 * | 0.25 |
SD | 0.04 | 0.03 | 0.007 | 0.007 | 0.02 | 0.17 | |
Min–Max | 0.03–0.19 | 0.04–0.11 | 0.004–0.03 | 0.03–0.05 | 0.03–0.08 | 0.06–0.68 | |
Nickel | Mean | <MDL | <MDL | <MDL | <MDL | 0.54 * | 0.02 |
SD | <MDL | <MDL | <MDL | <MDL | 0.37 | 0.03 | |
Min–Max | <MDL | <MDL | <MDL | <MDL | 0.30–1.50 | <MDL–0.11 | |
Thallium | Mean | <MDL | 0.003 | <MDL | <MDL | 0.002 | <MDL |
SD | <MDL | 0.001 | <MDL | <MDL | 0.002 | <MDL | |
Min–Max | <MDL | 0.002–0.004 | <MDL | <MDL | <MDL–0.006 | <MDL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foley, M.; Askin, N.; Belanger, M.; Wittnich, C. Water-Column Zone Impacts Non-Essential Heavy Metal Accumulation in Fish Occupying Different Zones. Toxics 2025, 13, 419. https://doi.org/10.3390/toxics13060419
Foley M, Askin N, Belanger M, Wittnich C. Water-Column Zone Impacts Non-Essential Heavy Metal Accumulation in Fish Occupying Different Zones. Toxics. 2025; 13(6):419. https://doi.org/10.3390/toxics13060419
Chicago/Turabian StyleFoley, Meredith, Nesime Askin, Michael Belanger, and Carin Wittnich. 2025. "Water-Column Zone Impacts Non-Essential Heavy Metal Accumulation in Fish Occupying Different Zones" Toxics 13, no. 6: 419. https://doi.org/10.3390/toxics13060419
APA StyleFoley, M., Askin, N., Belanger, M., & Wittnich, C. (2025). Water-Column Zone Impacts Non-Essential Heavy Metal Accumulation in Fish Occupying Different Zones. Toxics, 13(6), 419. https://doi.org/10.3390/toxics13060419