Ecological Risk Assessment and Source Identification of Potential Toxic Elements in Farmland Soil of Nanyang Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sample Collection and Testing
2.3. Data Analysis
2.3.1. Assessment of PTE Pollution
2.3.2. Correlation Analysis
2.3.3. Positive Matrix Factorization (PMF) Model
2.4. Statistical Tools
3. Results and Discussion
3.1. Statistics of PTE Contents in Soil
3.2. Spatial Distribution of PTEs in Soil
3.3. Potential Ecological Risk Assessment
3.4. Source Identification of PTEs
3.4.1. Correlation Analysis of PTEs
3.4.2. Source Identification of PTEs Based on PMF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.B.; Wang, M.; Li, S.S.; Zheng, H.; Lei, X.Q.; Sun, X.Y.; Wang, L.F. Current status of and discussion on farmland heavy metal pollution prevention in China. Earth Sci. Front. 2019, 26, 35–41. [Google Scholar] [CrossRef]
- Pourret, O.; Bollinger, J.C. “Heavy metal”-What to do now: To use or not to use? Sci. Total. Environ. 2018, 610–611, 419–420. [Google Scholar] [CrossRef]
- Jiang, Y.L.; Ma, J.H.; Wang, Y.B.; Yang, Y.H. Background values of soil heavy metals in the Huang-Huai-Hai Plain in Henan Province, China. Toxics 2025, 13, 93. [Google Scholar] [CrossRef]
- Lai, S.Y.; Dong, Q.Y.; Song, C.; Yang, Z.J. Distribution characteristics and ecological risk assessment of soil heavy metals in the eastern mountainous area of the Nanyang Basin. Environ. Sci. 2021, 42, 5500–5509. [Google Scholar]
- Ma, Y.D.; Sun, Y.Y.; Wang, J.; Liu, Y.T.; Guo, M.R.; Hu, C.Y.; Shui, B.N. Analysis of heavy metal sources and potential ecological risk assessment of mangroves in Aojiang Estuary. Ecol. Indic. 2025, 173, 113343–113352. [Google Scholar] [CrossRef]
- Luo, J.; Feng, S.Y.; Ning, W.J.; Liu, Q.Y.; Cao, M. Integrated source analysis and network ecological risk assessment of soil heavy metals in Qinghai–Tibet plateau pastoral regions. J. Hazard. Mater. 2025, 490, 137780–137796. [Google Scholar] [CrossRef]
- Jiang, Y.L.; Guo, H.; Chen, K.Y.; Fei, X.W.; Li, M.Z.; Ma, J.H.; He, W.C. Health risk assessment for potential toxic elements in the soil and rice of typical paddy fields in Henan Province. Toxics 2024, 12, 771. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.W.; Zhang, Y.; Yang, J.S.; Wang, H.Y.; Li, Y.L.; Shi, Y.; Li, D.C.; Holm, P.E.; Ou, Q.; Hu, W.Y. Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. Sci. Total. Environ. 2021, 767, 144879–144888. [Google Scholar] [CrossRef]
- Burges, A.; Epelde, L.; Garbisu, C. Impact of repeated single-metal and multi-metal pollution events on soil quality. Chemosphere 2015, 120, 8–15. [Google Scholar] [CrossRef]
- Lu, A.X.; Li, B.R.; Li, J.; Chen, W.; Xu, L. Heavy metals in paddy soil-rice systems of industrial and township areas from subtropical China: Levels, transfer and health risks. J. Geochem. Explor. 2018, 194, 210–217. [Google Scholar] [CrossRef]
- Wang, Y.T.; Guo, G.H.; Zhang, D.G.; Lei, M. An integrated method for source apportionment of heavy metal (loid)s in agricultural soils and model uncertainty analysis. Environ. Pollut. 2021, 276, 116666–116676. [Google Scholar] [CrossRef] [PubMed]
- Hopke, P.K.; Dai, Q.; Li, L.; Feng, Y. Global review of recent source apportionments for airborne particulate matter. Sci. Total. Environ. 2020, 740, 140091–140100. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Z.; Gong, J.J.; Wang, Z.L.; Gao, J.W.; Yang, J.K.; Hu, S.Q.; Tang, S.X. Enrichment factors, health risk, and source identification of heavy metals in agricultural soils in semi-arid region of Hainan Island. Environ. Sci. 2022, 43, 4590–4600. [Google Scholar]
- Hu, B.F.; Zhou, Y.; Jiang, Y.F.; Ji, W.J.; Fu, Z.Y.; Shao, S.; Li, S.; Huang, M.X.; Zhou, L.Q.; Shi, Z. Spatio-temporal variation and source changes of potentially toxic elements in soil on a typical plain of the Yangtze River Delta, China (2002–2012). J. Environ. Manag. 2020, 271, 110943–110957. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.Y. The distribution characteristics and influence factors of soil Fe, Mn, Cu and Zn in mountainous area of eastern Nanyang Basin. Master’s Thesis, Hebei Geo University, Shijiazhuang, China, 2022. [Google Scholar]
- Fei, X.F.; Lou, Z.H.; Xiao, R.; Ren, Z.Q.; Lv, X.N. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Sci. Total. Environ. 2020, 747, 141293–141332. [Google Scholar] [CrossRef]
- Liu, H.; Wei, W.; Huang, J.M.; Zhao, G.H. Heavy metal pollution characteristics and health risk assessment of soil-crops system in Anhui section of the Yangtze River Basin. Environ. Sci. 2023, 44, 1686–1697. [Google Scholar]
- Liu, Z.P.; Wang, L.; Yan, M.J.; Ma, B.; Cao, R.X. Source apportionment of soil heavy metals based on multivariate statistical analysis and the PMF model: A case study of the Nanyang Basin, China. Environ. Technol. Innov. 2024, 33, 103537–103550. [Google Scholar] [CrossRef]
- Du, Y.; Ma, T.; Deng, Y.; Shen, S.; Lu, Z. Sources and fate of high levels of ammonium in surface water and shallow groundwater of the Jianghan Plain, Central China. Environ. Sci. Process. Impacts 2017, 19, 161–172. [Google Scholar] [CrossRef]
- HJ/T 166-2004; The Technical Specification for Soil Environmental Monitoring; National Standards of the People’s Republic of China. Ministry of Ecology and Environment: Beijing, China, 2004.
- HJ 766-2015; Solid Waste-Determination of Metals-Inductively Coupled Plasma Mass Spectrometry (ICP-MS); National Standards of the People’s Republic of China. Ministry of Ecology and Environment: Beijing, China, 2015.
- GB/T 22105.1-2008; Soil Quality-Analysis of Total Mercury, Arsenic and Lead Contents-Atomic Fluorescence Spectrometry-Part 1: Analysis of Total Mercury Contents in Soils; National Standards of the People’s Republic of China. Ministry of Ecology and Environment: Beijing, China, 2008.
- GB/T 22105.2-2008; Soil Quality-Analysis of Total Mercury, Arsenic and Lead Contents-Atomic Fluorescence Spectrometry-Part 2: Analysis of Total Arsenic Contents in Soils; National Standards of the People’s Republic of China. Ministry of Ecology and Environment: Beijing, China, 2008.
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tian, K.; Huang, B.; Xing, Z.; Hu, W.Y. Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecol. Ind. 2017, 72, 510–520. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef]
- Dong, L.P.; Nie, Q.H.; Sun, X.K.; Cao, W.F.; Kou, D.T.; Bai, Z.Q.; Yang, S.N. Analysis of impact of shield tunneling parameters on ground settlement based on Pearson correlation coefficient method. Constr. Technol. 2024, 53, 0116–0123. [Google Scholar]
- Bermudez-Edo, M.; Barnaghi, P.; Moessner, K. Analysing real world data streams with spatio-temporal correlations: Entropy vs. Pearson correlation. Automat. Constr. 2018, 88, 87–100. [Google Scholar] [CrossRef]
- Jiang, Y.X.; Chao, S.H.; Liu, J.W.; Yang, Y.; Chen, Y.J.; Zhang, A.C.; Cao, H.B. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu province, China. Chemosphere 2017, 168, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.G.; Eberly, S.; Paatero, P.; Norris, G.A. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Sci. Total. Environ. 2015, 518–519, 626–635. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. U.S. Environmental Protection Agency, Wash-ington, DC, EPA/600/R-14/108 (NTIS PB2015-105147), 2014. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&direntryid=308292 (accessed on 25 January 2025).
- Chen, X.D.; Lu, X.W. Contamination characteristic and source apportionment of heavy metals in topsoil from an area in Xi’an city, China. Ecotoxicol. Environ. Saf. 2018, 151, 153–160. [Google Scholar] [CrossRef]
- Chai, L.; Wang, Y.H.; Wang, X.; Ma, L.; Cheng, Z.X.; Su, L.M. Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China. Ecol. Indic. 2021, 125, 107507–107519. [Google Scholar] [CrossRef]
- Xu, H.F.; Wang, S.; Li, S.; Chen, H.L.; Huang, L.C.; Fu, W.J.; Xie, S.W.; Liu, S.J.; Zhou, Y.B.; Wu, Z.F. Characteristics and source analysis of heavy metal pollution in farmland soil in typical urban-rural integration zones in Guangdong. Acta Sci. Circumstantiae 2024, 44, 277–287. [Google Scholar]
- Yang, L.; Ren, Q.; Ge, S.J.; Jiao, Z.Q.; Zhan, W.H.; Hou, R.X.; Ruan, X.L.; Pan, Y.F.; Wang, Y.Y. Metal(loid)s spatial distribution, accumulation, and potential health risk assessment in soil-wheat systems near a Pb/Zn smelter in Henan Province, central China. Int. J. Environ. Res. Public Health 2023, 11, 2527. [Google Scholar] [CrossRef]
- GB 15618-2018; Soil Environmental Quality—Standards for Soil Pollution Risk Control of Agricultural Land; National Standards of the People’s Republic of China. Ministry of Ecology and Environment: Beijing, China, 2018.
- Liang, J.H.; Tian, Y.Q.; Fei, Y.; Liu, Z.Y.; Shi, H.D.; Qi, J.X.; Mo, L. Source apportionment and potential ecological risk assessment of soil heavy metalsin typical industrial and mining towns in North China. Environ. Sci. 2023, 44, 5657–5665. [Google Scholar]
- Sun, H.; Bi, R.T.; Guo, Y.; Yuan, Y.Z.; Chai, M.; Guo, Z.X. Source apportionment analysis of trace metal contamination in soils of Guangdong province, China. Acta Sci. Circumstantiae 2018, 38, 704–714. [Google Scholar]
- Shen, Z.J.; Li, J.Q.; Li, C.X.; Liao, Z.Y.; Mei, N.; Luo, C.Z.; Wang, D.Y.; Zhang, C. Pollution source apportionment of heavy metals in cultivated soil around a red mud yard based on APCS-MLR and PMF models. Environ. Sci. 2024, 45, 1058–1068. [Google Scholar]
- Liu, X.Y.; Liu, P.Z.; Du, Q.L.; Shen, Q.J.; Wu, D. Evaluation of heavy metal pollution in soil of lead-zinc mine wasteland with geological high backgound. Nonferrous Met. 2019, 2, 76–82. [Google Scholar]
- Uddin, R.; Hopke, P.K.; Impe, J.V.; Sannigrahi, S.; Salauddin, M.; Cummins, E.; Nag, R. Source identification of heavy metals and metalloids in soil using open-source Tellus database and their impact on ecology and human health. Sci. Total. Environ. 2024, 953, 175987–176004. [Google Scholar] [CrossRef]
- Long, Z.J.; Huang, Y.; Zhang, W.; Shi, Z.L.; Yu, D.M.; Chen, Y.; Liu, C.; Wang, R. Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environ. Monit. Assess. 2021, 193, 20. [Google Scholar] [CrossRef]
- Shi, J.C.; Yang, Y.; Shen, Z.J.; Lin, Y.D.; Mei, N.; Luo, C.Z.; Wang, Y.M.; Zhang, C.; Wang, D.Y. Identifying heavy metal sources and health risks in soil-vegetable systems of fragmented vegetable fields based on machine learning, positive matrix factorization model and Monte Carlo simulation. J. Hazard. Mater. 2024, 478, 135481–135495. [Google Scholar] [CrossRef]
- Nanos, N.; Martín, J.A.R. Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero river basin (Spain). Geoderma 2012, 189, 554–562. [Google Scholar] [CrossRef]
- Duan, H.J.; Shen, H.X.; Peng, C.Y.; Ren, C.; Wang, Y.F.; Liu, D.X.; Wang, Y.L.; Guo, R.C.; Ma, J.H. Source apportionment and health risk assessment of heavy metals in dust around bus stops in Kaifeng City based on APCS-MLR model. Environ. Sci. 2024, 45, 3502–3511. [Google Scholar]
- Liu, D.X.; Meng, F.L.; Duan, H.J.; Li, Y.M.; Ma, J.H. Analysis of heavy metal sources in farmland soil of sewage irrigation and industrial complex area Based on APCS-MLR and PMF. Environ. Sci. 2024, 45, 4812–4824. [Google Scholar]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef]
- Gibb, H.; O’Leary, K.G. Mercury exposure and health impacts among individuals in the artisanal and small–scale gold mining community: A comprehensive review. Environ. Health Perspect. 2014, 122, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Beckers, F.; Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical reviews in environ. Sci. Technol. 2017, 47, 693–794. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Hu, G.R.; Yu, R.L.; Lin, C.Q.; Huang, H.B. Source analysis of heavy metals in farmland soil around a waste incineration plant based on PMF model. Environ. Sci. 2022, 43, 5718–5727. [Google Scholar]
- Huang, C.C.; Cai, L.M.; Xu, Y.H.; Wen, H.H.; Jie, L.; Hu, G.C.; Chen, L.G.; Wang, H.Z.; Xu, X.B.; Mei, J.X. Quantitative analysis of ecological risk and human health risk of potentially toxic elements in farmland soil using the PMF model. Land. Degrad. Dev. 2022, 33, 1954–1967. [Google Scholar] [CrossRef]
- Yang, S.Y.; He, M.J.; Zhi, Y.Y.; Chang, S.X.; Gu, B.J.; Liu, X.M.; Xu, J.M. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities. Environ. Int. 2019, 133, 105239–105247. [Google Scholar] [CrossRef]
- Wang, F.F.; Guan, Q.Y.; Tian, J.; Lin, J.K.; Yang, Y.Y.; Yang, L.Q.; Pan, N.H. Contamination characteristics, source apportionment, and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor. Catena 2020, 191, 104573–104584. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Welch, A.H.; Stollenwerk, K.G.; Mclaughlin, M.J.; Bundschuh, J.; Panaullah, G. Arsenic in the environment: Biology and chemistry. Sci. Total. Environ. 2007, 379, 109–120. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, X.R. Impact of industrial activities on heavy metal contamination in soils in three major urban agglomerations of China. J. Clean. Prod. 2019, 230, 1–10. [Google Scholar] [CrossRef]
- Cortada, U.; Hidalgo, M.C.; Martínez, J.; Rey, J. Impact in soils caused by metal(loid)s in lead metallurgy. The case of La Cruz Smelter (Southern Spain). J. Geochem. Explor. 2018, 190, 302–313. [Google Scholar] [CrossRef]
Project | As | Hg | Cd | Cr | Pb | Zn | Ni | Cu |
---|---|---|---|---|---|---|---|---|
Ti | 10 | 40 | 30 | 2 | 5 | 1 | 5 | 5 |
Ei | Risk Level | RI | Risk Level |
---|---|---|---|
Ei < 40 | Low risk | RI < 150 | Low risk |
40 ≤ Ei < 80 | Moderate risk | 150 ≤ RI < 300 | Moderate risk |
80 ≤ Ei < 160 | Considerable risk | 300 ≤ RI < 600 | Considerable risk |
160 ≤ Ei < 320 | High risk | RI ≥ 600 | High risk |
Ei ≥ 320 | Extremely high risk | - | - |
PTE | Content Range | Median /(mg·kg−1) | Mean /(mg·kg−1) | Standard Deviation /(mg·kg−1) | CV (%) | Background Value [4] /(mg·kg−1) | Screening Value [36] /(mg·kg−1) | Exceeded Screening (%) |
---|---|---|---|---|---|---|---|---|
Cr | 3.00–74.80 | 55.40 | 54.35 | 11.46 | 21.09 | 63.20 | 150 | 0.00 |
Ni | 2.59–48.11 | 25.84 | 26.57 | 7.25 | 27.29 | 27.40 | 70 | 0.00 |
Cu | 2.00–55.91 | 24.70 | 25.20 | 8.14 | 32.32 | 20.00 | 50 | 10.32 |
Zn | 3.00–203.49 | 74.81 | 82.09 | 36.80 | 44.83 | 62.50 | 200 | 4.76 |
Pb | 2.00–37.62 | 21.85 | 22.17 | 4.68 | 21.12 | 22.30 | 90 | 0.00 |
As | 0.71–34.02 | 8.18 | 8.27 | 4.11 | 49.73 | 9.80 | 40 | 0.00 |
Cd | 0.01–0.82 | 0.15 | 0.17 | 0.10 | 56.25 | 0.07 | 0.3 | 4.76 |
Hg | 0.01–0.64 | 0.11 | 0.13 | 0.09 | 65.13 | 0.03 | 1.8 | 0.00 |
Elements | Ei | RI | |||||||
---|---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | Pb | As | Cd | Hg | ||
Range | 0.15–2.71 | 0.47–8.78 | 0.79–33.33 | 0.09–8.87 | 0.53–8.43 | 0.72–34.71 | 5.22–349.69 | 35.84–856.13 | 86.19–944.84 |
Mean | 1.75 | 4.88 | 7.44 | 1.53 | 5.01 | 8.49 | 73.57 | 177.85 | 280.51 |
Standard deviation | 0.38 | 1.32 | 4.78 | 1.23 | 1.05 | 4.20 | 41.15 | 114.96 | 122.45 |
Low risk (%) | 100 | 100 | 100 | 100 | 100 | 100 | 7.14 | 0.79 | 2.38 |
Moderate risk (%) | 0 | 0 | 0 | 0 | 0 | 0 | 69.05 | 5.56 | 74.60 |
Considerable risk (%) | 0 | 0 | 0 | 0 | 0 | 0 | 19.84 | 53.97 | 19.84 |
High risk (%) | 0 | 0 | 0 | 0 | 0 | 0 | 3.17 | 30.95 | 3.17 |
Extremely high risk (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0.79 | 8.73 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Fei, X.; Guo, H.; Zhang, G.; Li, M.; Jiang, Y. Ecological Risk Assessment and Source Identification of Potential Toxic Elements in Farmland Soil of Nanyang Basin, China. Toxics 2025, 13, 342. https://doi.org/10.3390/toxics13050342
He W, Fei X, Guo H, Zhang G, Li M, Jiang Y. Ecological Risk Assessment and Source Identification of Potential Toxic Elements in Farmland Soil of Nanyang Basin, China. Toxics. 2025; 13(5):342. https://doi.org/10.3390/toxics13050342
Chicago/Turabian StyleHe, Weichun, Xiaowei Fei, Hao Guo, Guangyu Zhang, Mengzhen Li, and Yuling Jiang. 2025. "Ecological Risk Assessment and Source Identification of Potential Toxic Elements in Farmland Soil of Nanyang Basin, China" Toxics 13, no. 5: 342. https://doi.org/10.3390/toxics13050342
APA StyleHe, W., Fei, X., Guo, H., Zhang, G., Li, M., & Jiang, Y. (2025). Ecological Risk Assessment and Source Identification of Potential Toxic Elements in Farmland Soil of Nanyang Basin, China. Toxics, 13(5), 342. https://doi.org/10.3390/toxics13050342