Health Risk Assessment of Potentially Toxic Element Uptake by Lotus (Nelumbo nucifera) in Floating Lake Gardens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design and Sample Collection
2.3. Analytical Methods
2.4. Data Analysis
3. Results and Discussion
3.1. Water and Sediment Quality of Dal Lake
3.2. PTE Concentrations in N. nucifera Tissues
3.3. Bioaccumulation and Translocation Factors
3.4. Health Risk Assessment of PTEs
Element | HRI | DIM | THQ | |||
---|---|---|---|---|---|---|
Rhizome | Seeds | Rhizome | Seeds | Rhizome | Seeds | |
Cd | 0.6429 | 0.3429 | 0.0006 | 0.0003 | 0.0006 | 0.0003 |
Cu | 0.6696 | 0.1929 | 0.0268 | 0.0077 | 0.0007 | 0.0002 |
Cr | 1.8000 | 0.5571 | 0.0090 | 0.0028 | 0.0018 | 0.0006 |
Co | 0.3750 | 0.1071 | 0.0075 | 0.0021 | 0.0004 | 0.0001 |
Fe | 0.7347 | 0.6429 | 0.5143 | 0.4500 | 0.0007 | 0.0006 |
Mn | 0.2602 | 0.0643 | 0.0364 | 0.0090 | 0.0003 | 0.0001 |
Ni | 0.5571 | 0.1607 | 0.0111 | 0.0032 | 0.0006 | 0.0002 |
Zn | 0.3643 | 0.1071 | 0.1093 | 0.0321 | 0.0004 | 0.0001 |
∑THQ | - | - | - | - | 0.0054 | 0.0021 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, H.; He, S.; Feng, Q.; Liu, Z.; Xia, S.; Zhou, Q.; Wu, Z.; Zhang, Y. Lotus (Nelumbo nucifera): A Multidisciplinary Review of Its Cultural, Ecological, and Nutraceutical Significance. Bioresour. Bioprocess. 2024, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Jia, H.; Li, Q.; Meng, X.; Ferguson, D.K.; Liu, P.; Han, Z.; Wang, J.; Quan, C. Middle Miocene Lotus (Nelumbonaceae, Nelumbo) from the Qaidam Basin, Northern Tibet Plateau. Biology 2022, 11, 1261. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhu, G.; Lin, X.; Li, R.; Lu, S.; Jiao, Y.; Wang, Q. The Complexity of Moisture Sources Affects the Altitude Effect of Stable Isotopes of Precipitation in Inland Mountainous Regions. Water Resour. Res. 2024, 60, e2023WR036084. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Zhu, G.; Lu, S.; Chen, L.; Jiao, Y.; Li, W.; Li, W.; Wang, Y. Regional differences in the effects of atmospheric moisture residence time on precipitation isotopes over Eurasia. Atmos. Res. 2025, 314, 107813. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, C.; Cao, D.; Damaris, R.N.; Yang, P. The Latest Studies on Lotus (Nelumbo nucifera)—An Emerging Horticultural Model Plant. Int. J. Mol. Sci. 2019, 20, 3680. [Google Scholar] [CrossRef]
- Jafari, N.; Trivedy, R.K. Ecological Integrity of Wetlands, Their Functions and Sustainable Use with a Case Study of Anjali Wetland, Iran. Ecol. Environ. Conserv. 2009, 15, 191–199. [Google Scholar]
- Sharip, Z.; Zaki, A.T.A.; Zakaria, S. Flooding Effects on the Population Dynamics of Cabomba Furcata and Nelumbo nucifera in a Shallow Floodplain Wetland. Wetlands 2014, 34, 713–723. [Google Scholar] [CrossRef]
- Gupta, P.; Sharma, V.K.; Sharma, S. Healing Traditions of the Northwestern Himalayas; Springer: Mumbai, India, 2014; ISBN 978-81-322-1924-8. [Google Scholar]
- Paudel, K.R.; Panth, N. Phytochemical Profile and Biological Activity of Nelumbo nucifera. Evid. Based Complement. Altern. Med. 2015, 2015, 789124. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, M.; Guo, M. Research Advances in Traditional and Modern Use of Nelumbo nucifera: Phytochemicals, Health Promoting Activities and Beyond. Crit. Rev. Food Sci. Nutr. 2019, 59, S189–S209. [Google Scholar] [CrossRef]
- McDonald, A. A Botanical Perspective on the Identity of Soma (Nelumbo nucifera Gaertn.) Based on Scriptural and Iconographic Records. Econ. Bot. 2004, 58, S147–S173. [Google Scholar] [CrossRef]
- Lan, T.; Hu, Y.; Cheng, L.; Chen, L.; Guan, X.; Yang, Y.; Pan, J. Floods and diarrheal morbidity: Evidence on the relationship, effect modifiers, and attributable risk from Sichuan Province, China. J. Glob. Health 2022, 12, 11007. [Google Scholar] [CrossRef] [PubMed]
- Gowthami, R.; Sharma, N.; Pandey, R.; Agrawal, A. A Model for Integrated Approach to Germplasm Conservation of Asian Lotus (Nelumbo nucifera Gaertn.). Genet. Resour. Crops Evol. 2021, 68, 1269–1282. [Google Scholar] [CrossRef]
- Chen, C.; Wang, R.; Chen, M.; Zhao, J.; Li, H.; Ignatieva, M.; Zhou, W. The post-effects of landscape practices on spontaneous plants in urban parks. Urban For. Urban Green. 2025, 107, 128744. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Zhang, Y.; Yang, M.; Chen, J.; Guo, M. Potential Hypoglycemic, Hypolipidemic, and Anti-Inflammatory Bioactive Components in Nelumbo nucifera Leaves Explored by Bioaffinity Ultrafiltration with Multiple Targets. Food Chem. 2022, 375, 131856. [Google Scholar] [CrossRef]
- Goel, A.; Sharma, S.C.; Sharga, A.N. The Conservation of the Diversity of Nelumbo (Lotus) at the National Botanical Research Institute, Lucknow, India. Bot. Gard. Conserv. News 2001, 3, 52–54. [Google Scholar]
- Sen, C.T.; Bhattacharyya, S.; Saberi, H. The Bloomsbury Handbook of Indian Cuisine; Bloomsbury: London, UK, 2023. [Google Scholar]
- Chaudhuri, A.; Aqil, M.; Qadir, A. Herbal Cosmeceuticals: New Opportunities in Cosmetology. Trends Phytochem. Res. 2020, 4, 117–142. [Google Scholar]
- Chen, W.J.; Jan, J.F.; Chung, C.H.; Liaw, S.C. Evaluating the Economic Viability of Agro-Ecotourism as a Nature-Based Solution for a Climate Adaptation Strategy: A Case Study of Yuanshan Township, Taiwan. Sustainability 2024, 16, 8267. [Google Scholar] [CrossRef]
- Casimir, M.J. Floating Economies; Berghahn Books: New York, NY, USA, 2022. [Google Scholar]
- Oo, M.T.; Aung, Z.W.; Puzzo, C. The Floating Garden Agricultural System of the Inle Lake (Myanmar) as an Example of Equilibrium between Food Production and Biodiversity Maintenance. Biodivers. Conserv. 2022, 31, 2435–2452. [Google Scholar] [CrossRef]
- Irfanullah, H.M.; Adrika, A.; Ghani, A.; Khan, Z.A.; Rashid, M.A. Introduction of Floating Gardening in the North-Eastern Wetlands of Bangladesh for Nutritional Security and Sustainable Livelihood. Renew. Agric. Food Syst. 2008, 23, 89–96. [Google Scholar] [CrossRef]
- Sheergojri, I.A.; Rashid, I.; Aneaus, S.; Rashid, I.; Qureshi, A.A.; Rehman, I.U. Enhancing the Social-Ecological Resilience of an Urban Lake for Sustainable Management. Environ. Dev. Sustain. 2023, 27, 8085–8110. [Google Scholar] [CrossRef]
- Kumar, R.; Parvaze, S.; Huda, M.B.; Allaie, S.P. The Changing Water Quality of Lakes—A Case Study of Dal Lake, Kashmir Valley. Environ. Monit. Assess. 2022, 194, 228. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.; Fazal, S.; Mujtaba, A.; Singh, S.K. Effects of Land Transformation on Water Quality of Dal Lake, Srinagar, India. J. Indian. Soc. Remote Sens. 2014, 42, 119–128. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Z.; Wu, X.; Huang, S.; Li, J.; Lai, C.; Zeng, Z.; Lin, G. Tracking 3D Drought Events Across Global River Basins: Climatology, Spatial Footprint, and Temporal Changes. Geophys. Res. Lett. 2025, 52, e2024GL111442. [Google Scholar] [CrossRef]
- Ahamad, F.; Sharma, A.K.; Tyagi, S.K. A Study on Comparative Assessment of Water Quality of Dal and Nigeen Lakes of Jammu and Kashmir, India. AgroEnvironmental Sustain. 2023, 1, 48–56. [Google Scholar] [CrossRef]
- Jeelani, G.; Shah, A.Q. Geochemical Characteristics of Water and Sediment from the Dal Lake, Kashmir Himalaya: Constraints on Weathering and Anthropogenic Activity. Environ. Geol. 2006, 50, 12–23. [Google Scholar] [CrossRef]
- Wen, J.; Zhang, J.; Zhang, H.; Zhang, N.; Lei, R.; Deng, Y.; Cheng, Q.; Li, H.; Luo, P. Large-scale genome-wide association studies reveal the genetic causal etiology between air pollutants and autoimmune diseases. J. Transl. Med. 2024, 22, 392. [Google Scholar] [CrossRef]
- Taher, M.A.; Zouidi, F.; Kumar, P.; Abou Fayssal, S.; Adelodun, B.; Goala, M.; Kumar, V.; Andabaka, Ž.; Širić, I.; Eid, E.M. Impact of Irrigation with Contaminated Water on Heavy Metal Bioaccumulation in Water Chestnut (Trapa natans L.). Horticulturae 2023, 9, 190. [Google Scholar] [CrossRef]
- Rawat, V.; Singh, A.K. Environmental and Ecological Importance of Indian Aquatic Macrophytes. In Aquatic Macrophytes: Ecology, Functions and Services; Springer: Singapore, 2023; pp. 71–83. ISBN 9789819938223. [Google Scholar]
- AL-Huqail, A.A.; Kumar, P.; Eid, E.M.; Taher, M.A.; Kumar, P.; Adelodun, B.; Andabaka, Ž.; Mioč, B.; Držaić, V.; Bachheti, A.; et al. Phytoremediation of Composite Industrial Effluent Using Sacred Lotus (Nelumbo nucifera Gaertn): A Lab-Scale Experimental Investigation. Sustainability 2022, 14, 9500. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ok, Y.S.; Adrees, M.; Ibrahim, M.; Zia-ur-Rehman, M.; Farid, M.; Abbas, F. Effect of Metal and Metal Oxide Nanoparticles on Growth and Physiology of Globally Important Food Crops: A Critical Review. J. Hazard. Mater. 2017, 322, 2–16. [Google Scholar] [CrossRef]
- Ciobanu, C.; Slencu, B.G.; Cuciureanu, R. Estimation of Dietary Intake of Cadmium and Lead through Food Consumption. Rev. Med. Chir. Soc. Med. Nat. Iasi 2012, 116, 617–623. [Google Scholar]
- Abou Fayssal, S.; Kumar, P.; Popescu, S.M.; ud din Khanday, M.; Sardar, H.; Ahmad, R.; Gupta, D.; Kumar Gaur, S.; Alharby, H.F.; Al-Ghamdi, A.G. Health Risk Assessment of Heavy Metals in Saffron (Crocus sativus L.) Cultivated in Domestic Wastewater and Lake Water Irrigated Soils. Heliyon 2024, 10, e27138. [Google Scholar] [CrossRef]
- Ain, S.N.U.; Abbasi, A.M.; Ajab, H.; Faridullah; Khan, S.; Yaqub, A. Assessment of Arsenic in Mangifera indica (Mango) Contaminated by Artificial Ripening Agent: Target Hazard Quotient (THQ), Health Risk Index (HRI) and Estimated Daily Intake (EDI). Food Chem. Adv. 2023, 3, 100468. [Google Scholar] [CrossRef]
- Wei, S.; Liu, X.; Tao, Y.; Wang, X.; Lin, Z.; Zhang, Y.; Hu, Q.; Wang, L.; Qu, J.; Zhang, Y. Strategy for Enhanced Soil Lead Passivation and Mitigating Lead Toxicity to Plants by Biochar-Based Microbial Agents. J. Hazard. Mater. 2025, 489, 137512. [Google Scholar] [CrossRef] [PubMed]
- Mehraj, S.; Parihar, T.J.; Murtaza, D.; Hurrah, A.A.; Wani, I.A.; Lone, F.A.; Mufti, S.; Zargar, S.M.; Khan, I.; Sheikh, P.A.; et al. Macrophytes in Northern Himalayan Dal Lake of Kashmir Valley Identified through DNA Barcoding Shows High Antioxidant Potential. Ecol. Genet. Genom. 2023, 27, 100162. [Google Scholar] [CrossRef]
- Van Hoey, G.; Birchenough, S.N.R.; Hostens, K. Estimating the Biological Value of Soft-Bottom Sediments with Sediment Profile Imaging and Grab Sampling. J. Sea Res. 2014, 86, 1–12. [Google Scholar] [CrossRef]
- Li, P.; Hur, J. Utilization of UV-Vis Spectroscopy and Related Data Analyses for Dissolved Organic Matter (DOM) Studies: A Review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 131–154. [Google Scholar] [CrossRef]
- Bremner, J.M. Determination of Nitrogen in Soil by the Kjeldahl Method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, V.; Eid, E.M.; AL-Huqail, A.A.; Adelodun, B.; Abou Fayssal, S.; Goala, M.; Arya, A.K.; Bachheti, A.; Andabaka, Ž.; et al. Spatial Assessment of Potentially Toxic Elements (PTE) Concentration in Agaricus bisporus Mushroom Collected from Local Vegetable Markets of Uttarakhand State, India. J. Fungi 2022, 8, 452. [Google Scholar] [CrossRef]
- Mahabadi, M. Assessment of Heavy Metals Contamination and the Risk of Target Hazard Quotient in Some Vegetables in Isfahan. Pollution 2020, 6, 69–78. [Google Scholar]
- U.S. Environmental Protection Agency. A Review of the Reference Dose and Reference Concentration Processes; EPA/630/P-02/002F; U.S. Environmental Protection Agency: Washington, DC, USA, 2002. Available online: https://www.epa.gov/scientific-leadership/review-reference-dose-and-reference-concentration-processes (accessed on 10 January 2025).
- Parzych, A.E.; Cymer, M.; Jonczak, J.; Szymczyk, S. The Ability of Leaves and Rhizomes of Aquatic Plants to Accumulate Macro- and Micronutrients. J. Ecol. Eng. 2015, 16, 198–205. [Google Scholar] [CrossRef]
- Brosset, C. Factors Influencing PH in Lake Water. Water Air Soil Pollut. 1979, 11, 57–61. [Google Scholar] [CrossRef]
- Herlihy, A.T.; Mills, A.L. The PH Regime of Sediments Underlying Acidified Waters. Biogeochemistry 1986, 2, 95–99. [Google Scholar] [CrossRef]
- Canadian Sediment Quality Guidelines. Chemical-Specific Sediment Quality Guidelines: Canada. National Guidelines and Standards Office, Issuing Body; 2003. Available online: https://publications.gc.ca/site/archivee-archived.html?url=https://publications.gc.ca/collections/collection_2024/eccc/En13-11-2-2003-eng.pdf (accessed on 10 January 2025).
- Bramha, S.N.; Mohanty, A.K.; Satpathy, K.K.; Kanagasabapathy, K.V.; Panigrahi, S.; Samantara, M.K.; Prasad, M.V.R. Heavy Metal Content in the Beach Sediment with Respect to Contamination Levels and Sediment Quality Guidelines: A Study at Kalpakkam Coast, Southeast Coast of India. Environ. Earth Sci. 2014, 72, 4463–4472. [Google Scholar] [CrossRef]
- Parray, S.Y.; Koul, B.; Shah, M.P. Comparative Assessment of Dominant Macrophytes and Limnological Parameters of Dal Lake and Chatlam Wetlands in the Union Territory of Jammu & Kashmir, India. Environ. Technol. Innov. 2021, 24, 101978. [Google Scholar] [CrossRef]
- Qu, J.; Wang, S.; Li, Z.; Wei, S.; Bi, F.; Yan, S.; Yu, H.; Wang, L.; Zhang, Y. Highly Efficient Recovery of Phosphate from Water Using Cerium Carbonate Hydroxide-Decorated Magnetic Biochar: A Slow-Release Phosphate Fertilizer for Agricultural Reuse. ACS EST Engg. 2024, 12, 3045–3056. [Google Scholar] [CrossRef]
- Zaffar, R.; Nazir, R.; Rather, M.A.; Dar, R. Biofilm Formation and EPS Production Enhances the Bioremediation Potential of Pseudomonas Species: A Novel Study from Eutrophic Waters of Dal Lake, Kashmir, India. Arch. Microbiol. 2024, 206, 89. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.A.; Achyuthan, H.; Krishnan, H.; Lone, A.M.; Saju, S.; Ali, A.; Lone, S.A.; Malik, M.S.; Dash, C. Heavy Metal Concentration and Ecological Risk Assessment in Surface Sediments of Dal Lake, Kashmir Valley, Western Himalaya. Arab. J. Geosci. 2021, 14, 187. [Google Scholar] [CrossRef]
- Paller, M.H.; Knox, A.S. Metal Bioavailability in Sediments and Its Role in Risk Assessment. In Trace Elements in Waterlogged Soils and Sediments; CRC Press: Boca Raton, FL, USA, 2024; pp. 267–285. [Google Scholar]
- Perfus-Barbeoch, L.; Leonhardt, N.; Vavasseur, A.; Forestier, C. Heavy Metal Toxicity: Cadmium Permeates through Calcium Channels and Disturbs the Plant Water Status. Plant J. 2002, 32, 539–548. [Google Scholar] [CrossRef]
- Mir, A.R.; Pichtel, J.; Hayat, S. Copper: Uptake, Toxicity and Tolerance in Plants and Management of Cu-Contaminated Soil. BioMetals 2021, 34, 737–759. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Haider, F.U.; Ahmad, M.; Hussain, S.; Maqsood, M.F.; Ishfaq, M.; Shahzad, B.; Waqas, M.M.; Ali, B.; Tayyab, M.N.; et al. Chromium Toxicity, Speciation, and Remediation Strategies in Soil-Plant Interface: A Critical Review. Front. Plant Sci. 2023, 13, 1081624. [Google Scholar] [CrossRef]
- Hu, X.; Wei, X.; Ling, J.; Chen, J. Cobalt: An Essential Micronutrient for Plant Growth? Front. Plant Sci. 2021, 12, 768523. [Google Scholar] [CrossRef]
- Pushnik, J.C.; Miller, G.W.; Manwaring, J.H. The Role of Iron in Higher Plant Chlorophyll Biosynthesis, Maintenance and Chloroplast Biogenesis. J. Plant Nutr. 1984, 7, 733–758. [Google Scholar] [CrossRef]
- Kaur, H.; Kaur, H.; Kaur, H.; Srivastava, S. The Beneficial Roles of Trace and Ultratrace Elements in Plants. Plant Growth Regul. 2023, 100, 219–236. [Google Scholar] [CrossRef]
- Abd Rasid, N.S.; Naim, M.N.; Che Man, H.; Abu Bakar, N.F.; Mokhtar, M.N. Evaluation of Surface Water Treated with Lotus Plant; Nelumbo Nucifera. J. Environ. Chem. Eng. 2019, 7, 103048. [Google Scholar] [CrossRef]
- Liu, A.; Tian, D.; Xiang, Y.; Mo, H. Effects of Biochar on Growth of Asian Lotus (Nelumbo nucifera Gaertn.) and Cadmium Uptake in Artificially Cadmium-Polluted Water. Sci. Hortic. 2016, 198, 311–317. [Google Scholar] [CrossRef]
- Painuly, A.S.; Gupta, R.; Vats, S. Bio-Accumulation of Arsenic (III) Using Nelumbo nucifera Gaertn. J. Health Pollut. 2019, 9, 190902. [Google Scholar] [CrossRef]
- Wickramaratne, M.N.; Maduranga, T.M.; Chamara, L.S. Contamination of heavy metals in aquatic vegetables collected from cultivation sites in Sri Lanka. J. Environ. Sci. Toxicol. Food Technol. 2016, 10, 76–82. [Google Scholar]
- Galal, T.M.; Farahat, E.A. The Invasive Macrophyte Pistia stratiotes L. as a Bioindicator for Water Pollution in Lake Mariut, Egypt. Environ. Monit. Assess. 2015, 187, 701. [Google Scholar] [CrossRef]
- Bai, L.; Liu, X.L.; Hu, J.; Li, J.; Wang, Z.L.; Han, G.; Li, S.L.; Liu, C.Q. Heavy Metal Accumulation in Common Aquatic Plants in Rivers and Lakes in the Taihu Basin. Int. J. Environ. Res. Public. Health 2018, 15, 2857. [Google Scholar] [CrossRef]
- Skorbiłowicz, E.; Skorbiłowicz, M.; Sidoruk, M. The Bioaccumulation of Potentially Toxic Elements in the Organs of Phragmites australis and Their Application as Indicators of Pollution (Bug River, Poland). Water 2024, 16, 3294. [Google Scholar] [CrossRef]
- Yao, H.; Guo, L.; Jiang, B.H.; Luo, J.; Shi, X. Oxidative Stress and Chromium(VI) Carcinogenesis. J. Environ. Pathol. Toxicol. Oncol. 2008, 27, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zheng, Q.; Liu, Y.; Ze, Y.; Wang, Y.; Wu, Y.; Qi, J.; Qu, J.; Zhang, Y. Co-Incorporation of Nitrogen and Boron into Microscale Zero-Valent Iron via Mechanochemical Ball-Milling Method Improved Cr(Ⅵ) Elimination: Performance and Mechanism Investigation. Chem. Eng. J. 2025, 506, 160050. [Google Scholar] [CrossRef]
- Megremi, I. Distribution and Bioavailability of Cr in Central Euboea, Greece. Cent. Eur. J. Geosci. 2010, 2, 103–123. [Google Scholar] [CrossRef]
- Johri, N.; Jacquillet, G.; Unwin, R. Heavy Metal Poisoning: The Effects of Cadmium on the Kidney. BioMetals 2010, 23, 783–792. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow, C.K. Copper Toxicity, Oxidative Stress, and Antioxidant Nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Puntarulo, S. Iron, Oxidative Stress and Human Health. Mol. Asp. Med. 2005, 26, 299–312. [Google Scholar] [CrossRef]
- Horning, K.J.; Caito, S.W.; Tipps, K.G.; Bowman, A.B.; Aschner, M. Manganese Is Essential for Neuronal Health. Annu. Rev. Nutr. 2015, 35, 71–108. [Google Scholar] [CrossRef]
- Lippmann, M.; Ito, K.; Hwang, J.S.; Maciejczyk, P.; Chen, L.C. Cardiovascular Effects of Nickel in Ambient Air. Environ. Health Perspect. 2006, 114, 1662–1669. [Google Scholar] [CrossRef] [PubMed]
- Dolomatov, S.I.; Sataeva, T.P.; Zukow, W. Modern Aspects of Regulatory, Pathophysiological and Toxic Effects of Cobalt Ions during Oral Intake in the Human Body. Health Risk Anal. 2019, 2019, 161–174. [Google Scholar] [CrossRef]
- Osredkar, J. Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. J. Clin. Toxicol. 2011, s3, 495. [Google Scholar] [CrossRef]
- WHO/USEPA. Tolerable Daily Intake (TDI) Values Developed by International Organizations; 2016. Available online: https://semspub.epa.gov/work/HQ/190106.pdf (accessed on 10 January 2025).
- Ologundudu, F.; Tobi, A.; Fopeyemi, O. Bioaccumulation Potential and Health Risk Assessment of Heavy Metals in Corchorus olitorius L. (Malvaceae) and Amaranthus hybridus L. (Amaranthaceae) Obtained from a Selected Dump Site in Akure, Nigeria. Braz. J. Biol. Sci. 2019, 6, 149–160. [Google Scholar] [CrossRef]
- Obasi, P.N.; Chibuike, A.; Immaculate, N. Contamination Levels and Health Risk Assessment of Heavy Metals in Food Crops in Ishiagu Area, Lower Benue Trough South-Eastern Nigeria. Int. J. Environ. Sci. Technol. 2023, 20, 12069–12088. [Google Scholar] [CrossRef]
Parameter | Water | Bottom Sediment | ||||
---|---|---|---|---|---|---|
Value | CPCB Standard | BIS Standard | Value | CSQG Standard | USEPA Standard | |
pH | 8.12 ± 0.05 | 6.50–9.00 | 6.50–8.50 | 6.30 ± 0.04 | - | 6.00−8.50 |
EC (dS/m) | 0.36 ± 0.02 | 0.75 | 0.75 | 2.26 ± 0.51 | - | 4.00 |
TDS | 242.85 ± 6.95 mg/L | 500.00 | 500.00 | - | - | - |
DOM | 22.95 ± 6.20 mg/L | - | - | 455.37 ± 79.05 mg/kg | - | 0.10−5.00% |
BOD | 15.72 ± 0.42 mg/L | 3.00 | 3.00 | - | - | - |
COD | 135.15 ± 12.85 mg/L | 250.00 | 250.00 | - | - | - |
TN | 9.89 ± 1.28 mg/L | - | - | 581.04 ± 45.09 mg/kg | - | 0.02−0.50% |
TP | 5.60 ± 0.46 mg/L | - | - | 94.20 ± 8.71 mg/kg | - | 200−1000 |
Cd | 0.06 ± 0.03 mg/L | 0.01 | 0.01 | 0.94 ± 0.12 mg/kg | 0.68 | 4.98 |
Cu | 3.40 ± 0.29 mg/L | 1.50 | 1.50 | 13.24 ± 1.87 mg/kg | 18.70 | 149.00 |
Cr | 0.30 ± 0.07 mg/L | 0.05 | 0.05 | 29.72 ± 3.90 mg/kg | 52.30 | 111.00 |
Co | 0.52 ± 0.10 mg/L | - | - | 11.63 ± 0.42 mg/kg | - | - |
Fe | 2.95 ± 0.16 mg/L | 0.30 | 0.30 | 1610.51 ± 249.03 mg/kg | 2.00–5.00% | - |
Mn | 0.50 ± 0.07 mg/L | 0.10 | 0.10 | 31.48 ± 3.72 mg/kg | - | 460.00 |
Ni | 0.45 ± 0.09 mg/L | 0.02 | 0.02 | 4.10 ± 0.21 mg/kg | 15.90 | 48.60 |
Zn | 1.15 ± 0.03 mg/L | 5.00 | 5.00 | 66.86 ± 8.32 mg/kg | 124.00 | 459.00 |
PTE | N. nucifera Tissues | ||||
---|---|---|---|---|---|
Rhizome | Roots | Petiole | Leaves | Seeds | |
Cd | 0.15 ± 0.03 b | 0.45 ± 0.05 a | 0.13 ± 0.02 b | 0.04 ± 0.01 c | 0.08 ± 0.01 c |
Cu | 6.25 ± 0.15 b | 9.50 ± 0.22 a | 4.80 ± 0.10 c | 3.20 ± 0.08 d | 1.80 ± 0.05 e |
Cr | 2.10 ± 0.07 b | 3.60 ± 0.10 a | 1.75 ± 0.05 c | 1.10 ± 0.03 d | 0.65 ± 0.02 e |
Co | 1.75 ± 0.06 b | 2.85 ± 0.08 a | 1.30 ± 0.04 c | 0.90 ± 0.02 d | 0.50 ± 0.01 e |
Fe | 120.06 ± 12 c | 280.57 ± 18 a | 150.76 ± 10 b | 173.96 ± 8 b | 105.40 ± 5 c |
Mn | 8.50 ± 0.20 b | 12.75 ± 0.35 a | 6.40 ± 0.15 c | 4.25 ± 0.10 d | 2.10 ± 0.05 e |
Ni | 2.60 ± 0.08 b | 4.30 ± 0.12 a | 2.00 ± 0.06 c | 1.40 ± 0.04 d | 0.75 ± 0.02 e |
Zn | 25.50 ± 0.80 b | 40.30 ± 1.20 a | 18.40 ± 0.55 c | 12.60 ± 0.40 d | 7.50 ± 0.25 e |
BCF | N. nucifera Tissues | ||||
---|---|---|---|---|---|
Rhizome | Roots | Petiole | Leaves | Seeds | |
Cd | 2.50 | 7.50 | 2.17 | 0.67 | 1.33 |
Cu | 1.84 | 2.79 | 1.41 | 0.94 | 0.53 |
Cr | 7.00 | 12.00 | 5.83 | 3.67 | 2.17 |
Co | 3.37 | 5.48 | 2.50 | 1.73 | 0.96 |
Fe | 40.70 | 95.11 | 51.11 | 58.97 | 35.73 |
Mn | 17.00 | 25.50 | 12.80 | 8.50 | 4.20 |
Ni | 5.78 | 9.56 | 4.44 | 3.11 | 1.67 |
Zn | 22.17 | 35.04 | 16.00 | 10.96 | 6.52 |
TF | N. nucifera Tissues | |||
---|---|---|---|---|
Root → Rhizome | Root → Petiole | Root → Leaves | Root → Seed | |
Cd | 0.33 | 0.29 | 0.09 | 0.18 |
Cu | 0.66 | 0.51 | 0.34 | 0.19 |
Cr | 0.58 | 0.49 | 0.31 | 0.18 |
Co | 0.61 | 0.46 | 0.32 | 0.18 |
Fe | 0.43 | 0.54 | 0.62 | 0.38 |
Mn | 0.67 | 0.50 | 0.33 | 0.16 |
Ni | 0.60 | 0.47 | 0.33 | 0.17 |
Zn | 0.63 | 0.46 | 0.31 | 0.19 |
Element | N. nucifera Tissues | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rhizome | Roots | Petiole | Leaves | Seeds | ||||||
X | P (%) | X | P (%) | X | P (%) | X | P (%) | X | P (%) | |
∑PTE (mmolc/Kg) | 796.73 | 100.00 | 1745.79 | 100.00 | 922.77 | 100.00 | 1010.73 | 100.00 | 609.36 | 100.00 |
Cd | 0.27 | 0.03 | 0.80 | 0.05 | 0.23 | 0.03 | 0.07 | 0.01 | 0.14 | 0.02 |
Cu | 19.67 | 2.47 | 29.90 | 1.71 | 15.11 | 1.64 | 10.07 | 1.00 | 5.67 | 0.93 |
Cr | 8.08 | 1.01 | 13.85 | 0.79 | 6.73 | 0.73 | 4.23 | 0.42 | 2.50 | 0.41 |
Co | 5.94 | 0.75 | 9.67 | 0.55 | 4.41 | 0.48 | 3.05 | 0.30 | 1.70 | 0.28 |
Fe | 644.96 | 80.95 | 1507.23 | 86.33 | 809.88 | 87.77 | 934.52 | 92.46 | 566.21 | 92.92 |
Mn | 30.94 | 3.88 | 46.42 | 2.66 | 23.30 | 2.52 | 15.47 | 1.53 | 7.64 | 1.25 |
Ni | 8.86 | 1.11 | 14.65 | 0.84 | 6.82 | 0.74 | 4.77 | 0.47 | 2.56 | 0.42 |
Zn | 78.01 | 9.79 | 123.28 | 7.06 | 56.29 | 6.10 | 38.54 | 3.81 | 22.94 | 3.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbagory, M.; Moghanm, F.S.; Mohamed, I.; El-Nahrawy, S.; Omara, A.E.-D.; Goala, M.; Kumar, P.; Mioč, B.; Andabaka, Ž.; Širić, I. Health Risk Assessment of Potentially Toxic Element Uptake by Lotus (Nelumbo nucifera) in Floating Lake Gardens. Toxics 2025, 13, 306. https://doi.org/10.3390/toxics13040306
Elbagory M, Moghanm FS, Mohamed I, El-Nahrawy S, Omara AE-D, Goala M, Kumar P, Mioč B, Andabaka Ž, Širić I. Health Risk Assessment of Potentially Toxic Element Uptake by Lotus (Nelumbo nucifera) in Floating Lake Gardens. Toxics. 2025; 13(4):306. https://doi.org/10.3390/toxics13040306
Chicago/Turabian StyleElbagory, Mohssen, Farahat S. Moghanm, Ibrahim Mohamed, Sahar El-Nahrawy, Alaa El-Dein Omara, Madhumita Goala, Pankaj Kumar, Boro Mioč, Željko Andabaka, and Ivan Širić. 2025. "Health Risk Assessment of Potentially Toxic Element Uptake by Lotus (Nelumbo nucifera) in Floating Lake Gardens" Toxics 13, no. 4: 306. https://doi.org/10.3390/toxics13040306
APA StyleElbagory, M., Moghanm, F. S., Mohamed, I., El-Nahrawy, S., Omara, A. E.-D., Goala, M., Kumar, P., Mioč, B., Andabaka, Ž., & Širić, I. (2025). Health Risk Assessment of Potentially Toxic Element Uptake by Lotus (Nelumbo nucifera) in Floating Lake Gardens. Toxics, 13(4), 306. https://doi.org/10.3390/toxics13040306