The Effect of [Glu][H2PO4] via Foliar Spraying on Cadmium and Arsenic Absorption and Translocation in Rice Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Preparation of [Glu][H2PO4]
2.2. Plant Materials and Pot Experiment
2.3. Determination of Cd, As, K, Ca, Mg, Fe, Mn, and Zn Content
2.4. Determination of Amino Acids
2.5. Determination of Transporter Gene Expression
2.6. Statistical Analysis
3. Results
3.1. Effects of [Glu][H2PO4] Foliar Application on Cd and As Content in Rice
3.2. Effects of [Glu][H2PO4] Foliar Application on Cd and As Transfer Factors
3.3. Effects of [Glu][H2PO4] Foliar Application on Essential Elements Content in Rice
3.4. Effects of [Glu][H2PO4] Foliar Application on the Relative Expression Level of Transporter Genes
3.5. Effects of [Glu][H2PO4] Foliar Application on the Amino Acid Content in Rice Grains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Y.; Yi, X.T.; Liu, B.B.; Zhou, H.; Zeng, P.; Liao, B.H.; Gu, J.F. Dynamic responses of soil enzymes at key growth stages in rice after the in situ remediation of paddy soil contaminated with cadmium and arsenic. Sci. Total Environ. 2022, 830, 151633–154633. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, H.; Kopittke, P.M.; Kopittke, P.; Zhan, F.J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ. Pollut. 2019, 249, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xie, Z.Y.; Li, F.B. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale. Environ. Pollut. 2015, 206, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Senila, M.; Levei, E.; Cadar, Q.; Senila, L.R.; Roman, M.; Puskas, F.; Sima, F. Assessment of availability and human health risk posed by arsenic contaminated well waters from timis-bega area, Romania. J. Anal. Methods Chem. 2017, 2017, 3037651. [Google Scholar] [CrossRef] [PubMed]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Ali, W.; Mao, K.; Zhang, H.; Junaid, M.; Xu, N.; Rasool, A.; Feng, X.B.; Yang, Z.G. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. J. Hazard. Mater. 2020, 397, 122720. [Google Scholar] [CrossRef]
- Zhao, F.J.; Wang, P. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil 2020, 1, 1–21. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, J.F.; Meharg, A.A.; McGrath, S.P. Arsenic uptake and metabolism in plants. New Phytol. 2009, 181, 777–794. [Google Scholar] [CrossRef]
- Yang, X.F.; Wu, X.; Wang, Z.Q.; Wu, Y.J.; Zhang, Y.S.; Wang, X.H.; Ao, H.J. Effects of water management on the absorption and accumulation of cadmium and arsenic in rice. Ecol. Environ. Sci. 2021, 29, 2091–2101. [Google Scholar]
- Chen, R.; Zhang, C.B.; Zhao, Y.L.; Huang, Y.C.; Liu, Z.Q. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants. Environ. Sci. Pollut. Res. Int. 2018, 25, 2361–2368. [Google Scholar] [CrossRef]
- Xia, W.W.; Ghouri, F.; Zhong, M.H.; Bukhari, S.A.H.; Ali, S.; Shahid, M.Q. Rice and heavy metals: A review of cadmium impact and potential remediation techniques. Sci. Total Environ. 2024, 957, 177403. [Google Scholar] [CrossRef] [PubMed]
- Shimpei, U.; Toru, F. Cadmium transport and tolerance in rice: Perspectives for reducing grain cadmium accumulation. Rice 2012, 5, 5. [Google Scholar]
- Tang, L.B.; Huang, Y.L.; Zhou, Z.H.; Wu, C.R.; Song, B. Effect of field test-based leaf barrier on cadmium uptake and transport in rice. Environ. Sci. China 2024, 44, 1534–1541. [Google Scholar]
- Khanam, R.; Hazra, G.C.; Bag, A.G.; Kulsum, P.G.P.S.; Chatterjee, N.; Shukla, A.K. Risk assessment of arsenic toxicity through groundwater-soil-rice system in maldah district, bengal delta basin, India. Arch. Environ. Contam. Toxicol. 2021, 81, 438–448. [Google Scholar] [CrossRef]
- Fatima, R.N.; Javed, F.; Wahid, A. Salicylic Acid Modifies Growth Performance and Nutrient Status of Rice (Oryza sativa) under Cadmium Stress. Int. J. Agric. Biol. 2014, 16, 1083–1090. [Google Scholar]
- Zhang, X.; Xue, W.J.; Zhang, C.B.; Wang, C.R.; Huang, Y.C.; Wang, Y.T.; Peng, L.C.; Liu, Z.Q. Cadmium pollution leads to selectivity loss of glutamate receptor channels for permeation of Ca2+/Mn2+/Fe2+/Zn2+ over Cd2+ in rice plant. J. Hazard. Mater. 2023, 452, 131342. [Google Scholar] [CrossRef]
- Mishra, S.; Mattusch, J.; Wennrich, R. Accumulation and transformation of inorganic and organic arsenic in rice and role of thiol-complexation to restrict their translocation to shoot. Sci. Rep. 2017, 7, 40522. [Google Scholar] [CrossRef]
- Pommerrenig, B.; Diehn, T.A.; Bienert, G.P. Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport. Plant Sci. 2015, 238, 212–227. [Google Scholar] [CrossRef]
- Liu, C.P.; Wei, L.; Zhang, S.R.; Xu, X.H.; Li, F.B. Effects of nanoscale silica sol foliar application on arsenic uptake, distribution and oxidative damage defense in rice (Oryza sativa L.) under arsenic stress. RSC Adv. 2014, 4, 57227–57234. [Google Scholar] [CrossRef]
- Deng, X.; Chen, Y.X.; Yang, Y.; Lu, L.; Yuan, X.Q.; Zeng, H.Y.; Zeng, Q.R. Cadmium accumulation in rice (Oryza sativa L.) alleviated by basal alkaline fertilizers followed by topdressing of manganese fertilizer. Environ. Pollut. 2020, 262, 114289. [Google Scholar] [CrossRef]
- Ryuichi, T.; Yasuhiro, I.; Hogo, S.; Yuko, O.; Takeshi, S.; Naoko, K.N.; Hiromi, N. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ. 2012, 35, 1948–1957. [Google Scholar]
- Li, H.Y.; Liu, Y.G.; Zeng, G.M.; Zhou, L.; Wang, X.; Wang, Y.Q.; Wang, C.L.; Hu, X.J.; Xu, W.H. Enhanced efficiency of cadmium removal by Boehmeria nivea (L.) Gaud. In the presence of exogenous citric and oxalic acids. J. Environ. Sci. 2014, 26, 2508–2516. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.L.; Zhang, C.B.; Wang, C.R.; Huang, Y.C.; Liu, Z.Q. Increasing phosphate inhibits cadmium uptake in plants and promotes synthesis of amino acids in grains of rice. Environ. Pollut. 2020, 257, 113496. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Yadav, P.; Sharma, A.; Thukral, A.K.; Kumar, V.; Kohli, S.K.; Bhardwaj, R. Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L. under Cd(II) toxicity. Ecotoxicol. Environ. Saf. 2017, 145, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.N.; Yu, H.; Zhou, J.M.; Smith, S.M.; Li, J.Y. Malate Circulation: Linking Chloroplast Metabolism to Mitochondrial ROS. Trends Plant Sci. 2020, 25, 446–454. [Google Scholar] [CrossRef]
- Galili, G.; Amir, R.; Fernie, A.R. The regulation of essential amino acid synthesis and accumulation in plants. Annu. Rev. Plant Biol. 2016, 67, 153–178. [Google Scholar] [CrossRef]
- Zamani-Nour, S.; Lin, H.C.; Walker, B.J.; Mettler-Altmann, T.; Khoshravesh, R.; Karki, S.; Bagunu, E.; Sage, T.L.; Quick, W.P.; Weber, A.P.M. Overexpression of the chloroplastic 2-oxoglutarate/malate transporter in rice disturbs carbon and nitrogen homeostasis. J. Exp. Bot. 2020, 72, 137–152. [Google Scholar] [CrossRef]
- Yuan, K.; Wang, C.R.; Zhang, C.B.; Huang, Y.C.; Wang, P.P.; Liu, Z.Q. Rice grains alleviate cadmium toxicity by expending glutamate and increasing manganese in the cadmium contaminated farmland. Environ. Pollut. 2020, 262, 114236. [Google Scholar] [CrossRef]
- Jiang, M.; Jiang, J.; Li, S.; Li, M.; Tan, Y.Y.; Song, S.Y.; Shu, Q.Y.; Huang, J.Z. Glutamate alleviates cadmium toxicity in rice via suppressing cadmium uptake and translocation. J. Hazard. Mater. 2020, 384, 121319. [Google Scholar] [CrossRef]
- Asgher, M.; Sehar, Z.; Rehaman, A.; Rashid, S.; Ahmed, S.; Per, T.S.; Alyemeni, M.N.; Khan, N.A. Exogenously-applied L-glutamic acid protects photosynthetic functions and enhances arsenic tolerance through increased nitrogen assimilation and antioxidant capacity in rice (Oryza sativa L.). Environ. Pollut. 2022, 301, 119008. [Google Scholar] [CrossRef]
- Ren, H.X.; Li, B.J.; Neckenig, M.; Wu, D.J.; Li, Y.Q.; Ma, Y.S.; Li, X.M.; Zhang, N. Efficient lead ion removal from water by a novel chitosan gel-based sorbent modified with glutamic acid ionic liquid. Carbohydr. Polym. 2018, 207, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Tsao, G.T.; Zheng, Y.Z.; Lu, J.; Gong, S.S. Adsorption of heavy metal ions by immobilized phytic acid. Appl. Biochem. Biotechnol. 1997, 63–65, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Tao, G.H.; He, L.; Sun, N.; Kou, Y. New generation ionic liquids: Cations derived from amino acids. Chem. Commun. 2005, 36, 3562–3564. [Google Scholar] [CrossRef] [PubMed]
- GB 15618-2018; Ministry of Ecology and Environment of the People’s Republic of China. Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land (Trial). China Environment Publishing Group: Beijing, China, 2018.
- Xue, W.J.; Zhang, C.B.; Wang, P.P.; Wang, C.R.; Huang, Y.C.; Zhang, X.; Liu, Z.Q. Rice vegetative organs alleviate cadmium toxicity by altering the chemical forms of cadmium and increasing the ratio of calcium to manganese. Ecotoxicol. Environ. Saf. 2019, 184, 109640. [Google Scholar] [CrossRef]
- GB 5009.124-2016; National Health Commission of the People’s Republic of China. Food Safety National Standard—Determination of Amino Acids in Foods. China Standard Press: Beijing, China, 2016.
- Ni, J.; Yu, Z.M.; Du, G.K.; Zhang, Y.Y.; Taylor, J.L.; Shen, C.J.; Xu, J.; Liu, X.Y.; Wang, Y.F.; Wu, Y.R. Heterologous expression and functional analysis of rice GLUTAMATE RECEPTOR-LIKE family indicates its role in glutamate triggered calcium flux in rice roots. Rice 2016, 9, 9. [Google Scholar] [CrossRef]
- Xue, W.J.; Wang, P.P.; Tang, L.; Zhang, C.B.; Wang, C.R.; Huang, Y.C.; Zhang, X.; Li, Y.K.; Zhao, B.R.; Liu, Z.Q. Citric acid inhibits Cd uptake by improving the preferential transport of Mn and triggering the defense response of amino acids in grains. Ecotoxicol. Environ. Saf. 2021, 211, 111921. [Google Scholar] [CrossRef]
- Pan, D.D.; Yi, J.C.; Li, F.B.; Li, X.M.; Liu, C.P.; Wu, W.J.; Tao, T.T. Dynamics of gene expression associated with arsenic uptake and transport in rice during the whole growth period. BMC Plant Biol. 2020, 20, 133. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Chen, K.X.; Yu, B.Z.; Xue, W.J.; Sun, Y.B.; Zhang, C.B.; Gao, X.S.; Zhou, X.J.; Deng, Y.; Yang, J.R.; Zhang, B.Q. Citric acid inhibits cd absorption and transportation by improving the antagonism of essential elements in rice organs. Toxics 2024, 12, 431. [Google Scholar] [CrossRef]
- Liu, S.Y.; Fu, L.; Zhang, C.B.; Deng, J.W.; Xue, W.J.; Liu, Z.Q.; Wang, C.R.; Deng, Y. Effects of foliar application of chlorinated amino acetic acid on cadmium transport and accumulation characteristics in rice. J. Agro Environ. Sci. 2023, 42, 500–510. [Google Scholar]
- Singh, S.B.; Naseem, M.; Raghuvanshi, R.; Srivastava, P.K. Application of selected nutrient amendments to regulate soil properties for reducing arsenic accumulation in rice. Soil Sediment Contam. 2022, 32, 147–163. [Google Scholar] [CrossRef]
- Li, T.Q.; Yang, X.E.; Lu, L.L.; Islam, E.; He, Z.L. Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. J. Hazard. Mater. 2009, 169, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Satoru, I.; Yasuhiro, I.; Masato, I.; Masato, K.; Tadashi, A.; Takeshi, S.; Yoshihiro, H.; Tomohito, A.; Nishizawa, N.K.; Hiromi, N. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc. Natl. Acad. Sci. USA 2012, 109, 19166–19177. [Google Scholar]
- Rodda, M.S.; Li, G.; Reid, R.J. The timing of grain Cd accumulation in rice plants: The relative importance of remobilisation within the plant and root Cd uptake post-flowering. Plant Soil 2011, 347, 105–114. [Google Scholar] [CrossRef]
- Hassan, F.Z.; Seyyede, Z.H.; Rooholla, M. Synergistic effects of humic acid and foliar application of micronutrients (Fe, Zn, Mn, Cu) on saffron (Crocus sativus L.) growth and biochemical compounds. J. Agric. Food Res. 2025, 19, 101601. [Google Scholar]
- Demidchik, V.; Maathuis, F.J. Physiological roles of nonselective cation channels in plants: From salt stress to signalling and development. New Phytol. 2010, 175, 387–404. [Google Scholar] [CrossRef]
- Han, X.; Zhang, C.; Wang, C.; Huang, Y.; Liu, Z. Gadolinium inhibits cadmium transport by blocking non-selective cation channels in rice seedlings. Ecotoxicol. Environ. Saf. 2019, 179, 160–166. [Google Scholar] [CrossRef]
- Millaleo, R.; Reyes-Díaz, M.; Alberdi, M.; Ivanov, A.G.; Krol, M.; Hüner, N.P.A. Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana. J. Exp. Bot. 2013, 64, 343–354. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, D.; Ai, H.; Mei, H.Y.; Liu, X.; Sun, S.B.; Xu, G.H.; Liu, Y.G.; Chen, Y.S.; Ma, L.N.Q. Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environ. Sci. Technol. 2017, 51, 12131–12138. [Google Scholar] [CrossRef]
- Kumar, A.; Basu, S.; Rishu, A.K.; Kumar, G. Revisiting the mechanisms of arsenic uptake, transport and detoxification in plants. Environ. Exp. Bot. 2022, 194, 104730. [Google Scholar] [CrossRef]
- Zou, M.M.; Zhou, S.L.; Zhou, Y.J.; Jia, Z.Y.; Guo, T.W.; Wang, J.X. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review. Environ. Pollut. 2021, 280, 116965. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.M.; Han, L.; Chao, D.Y.; Liu, Y.; Zhang, Y.J.; Wang, R.G.; Guo, J.K.; Feng, R.W.; Xu, Y.M.; Ding, Y.Z.; et al. Ionomic and transcriptomic analysis provides new insight into the distribution and transport of cadmium and arsenic in rice. J. Hazard. Mater. 2017, 331, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Hu, H.C.; Okuma, E.; Lee, Y.; Lee, H.S.; Munemasa, S.; Cho, D.; Ju, C.; Pedoeim, L.; Rodriguez, B. L-Met Activates Arabidopsis GLR Ca2+ Channels Upstream of ROS Production and Regulates Stomatal Movement. Cell Rep. 2016, 17, 2553–2561. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, Y.; Paglia, K.; Vaniya, A.; Wancewicz, B.; Keller, A.A. Metabolomics reveals the molecular mechanisms of copper induced cucumber leaf (Cucumis sativus) senescence. Environ. Sci. Technol. 2018, 52, 7092–7100. [Google Scholar] [CrossRef]
- Zhang, Y.L.; He, S.R.; Zhang, Z.; Xu, H.J.; Wang, J.J.; Chen, H.Y.; Liu, Y.L.; Wang, X.L.; Li, Y.T. Glycine transformation induces repartition of cadmium and lead in soil constituents. Environ. Pollut. 2019, 251, 930–937. [Google Scholar] [CrossRef]
- Guo, J.K.; Zhou, R.; Ren, X.H.; Jia, H.L.; Hua, L.; Xu, H.H.; Lv, X.; Zhao, J.; Wei, T. Effects of salicylic acid, Epi-brassinolide and calcium on stress alleviation and Cd accumulation in tomato plants. Ecotoxicol. Environ. Saf. 2018, 157, 491–496. [Google Scholar] [CrossRef]
- Vatsa, P.; Chiltz, A.; Bourque, S.; Wendehenne, D.; Garcia-Brugger, A.; Pugin, A. Involvement of putative glutamate receptors in plant defence signaling and NO production. Biochimie 2011, 93, 2095–2101. [Google Scholar] [CrossRef]
- Qi, Z.; Stephens, N.R.; Spalding, E.P. Calcium entry mediated by GLR3. 3, an arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol. 2006, 142, 963–971. [Google Scholar] [CrossRef]
Primer | Sequence (5′→3′) |
---|---|
Actin1-F | TCCATCTTGGCATCTCTCAG |
Actin1-R | GTACCCTCATCAGGCATCTG |
OsGLR3.1-F | AGAACCCTAAGTTCGCCGTC |
OsGLR3.1-R | AGAGGTTGCAGGCGTGTATG |
OsGLR3.2-F | AGCATGGCCCTAAGAGAGGA |
OsGLR3.2-R | CTCCGACAGTGACAGGATCG |
OsGLR3.3-F | TGGACCCAAAGATGGTGGTG |
OsGLR3.3-R | GCGAGAACCACTCGTCATGT |
OsGLR3.4-F | AGCAGCTTCTGGGGACTCT |
OsGLR3.4-R | GGTATCTGAAGTACTGGCGCA |
OsGLR3.5-F | ATTCTGCCACTGTTGACCCA |
OsGLR3.5-R | CATGCCCAGCTGTGACTGAT |
Lsi1-F | CGGTGGATGTGATCGGAACCA |
Lsi1-R | CGTCGAACTTGTTGCTCGCCA |
Lsi2-F | ATCTGGGACTTCATGGCCC |
Lsi2-R | ACGTTTGATGCGAGGTTGG |
Lsi3-F | CTGTATCCCTGTTGCCAGCTG |
Lsi3-R | TAATCCGGCATGCGTACTTG |
Rice Variety | Element | Treatment | TFGrains/Roots | TFSpike/Roots | TFFlag leaf/Roots | TFNode/Roots | TFStem base/Roots |
---|---|---|---|---|---|---|---|
X24 | TF(Cd) | T0 | 0.0661 ± 0.0041 a | 0.1312 ± 0.0030 a | 0.2543 ± 0.0140 a | 0.5606 ± 0.0237 a | 0.6909 ± 0.016 a |
T1 | 0.0653 ± 0.0024 a | 0.1317 ± 0.0141 a | 0.2193 ± 0.0187 b | 0.5513 ± 0.0395 a | 0.6708 ± 0.0477 a | ||
T2 | 0.0583 ± 0.0046 b | 0.1141 ± 0.0151 b | 0.2048 ± 0.0339 b | 0.5194 ± 0.0915 bc | 0.6397 ± 0.0994 ab | ||
T3 | 0.0552 ± 0.0056 b | 0.1182 ± 0.0040 b | 0.1959 ± 0.0182 bc | 0.4218 ± 0.0508 bc | 0.6258 ± 0.0265 ab | ||
T4 | 0.0517 ± 0.0029 c | 0.1168 ± 0.0027 c | 0.1487 ± 0.0083 c | 0.3699 ± 0.0291 c | 0.5360 ± 0.0342 b | ||
T5 | 0.0329 ± 0.0036 d | 0.1006 ± 0.0110 c | 0.1460 ± 0.0033 c | 0.3329 ± 0.0229 c | 0.4703 ± 0.0391 b | ||
TF(As) | T0 | 0.0021 ± 0.0001 a | 0.0094 ± 0.0004 a | 0.0389 ± 0.0005 a | 0.0958 ± 0.0029 a | 0.4788 ± 0.0157 a | |
T1 | 0.0019 ± 0.0002 a | 0.0078 ± 0.0005 b | 0.0383 ± 0.0020 a | 0.0889 ± 0.0036 b | 0.4682 ± 0.0119 a | ||
T2 | 0.0019 ± 0.0001 a | 0.0070 ± 0.0004 b | 0.0358 ± 0.0025 b | 0.0729 ± 0.0060 c | 0.4583 ± 0.0134 a | ||
T3 | 0.0019 ± 0.0001 a | 0.0069 ± 0.0003 bc | 0.0359 ± 0.0019 b | 0.0694 ± 0.0045 c | 0.4779 ± 0.0165 a | ||
T4 | 0.0017 ± 0.0002 ab | 0.0066 ± 0.0003 bc | 0.0295 ± 0.0004 c | 0.0643 ± 0.0043 d | 0.4790 ± 0.0117 a | ||
T5 | 0.0013 ± 0.0002 b | 0.0055 ± 0.0007 c | 0.0273 ± 0.0020 c | 0.0576 ± 0.0023 e | 0.4726 ± 0.0248 a | ||
Z35 | TF(Cd) | T0 | 0.0619 ± 0.0021 a | 0.1131 ± 0.0102 a | 0.2226 ± 0.0078 a | 0.3982 ± 0.0133 a | 0.4703 ± 0.0122 a |
T1 | 0.0573 ± 0.0010 ab | 0.1018 ± 0.0034 ab | 0.2006 ± 0.0105 ab | 0.4030 ± 0.0221 a | 0.4675 ± 0.0247 a | ||
T2 | 0.0446 ± 0.0044 b | 0.0976 ± 0.0059 ab | 0.1849 ± 0.0054 ab | 0.3542 ± 0.0184 ab | 0.4804 ± 0.0180 a | ||
T3 | 0.0430 ± 0.0033 b | 0.0864 ± 0.0023 b | 0.1553 ± 0.0053 b | 0.3380 ± 0.0292 ab | 0.4834 ± 0.0402 a | ||
T4 | 0.0404 ± 0.0018 bc | 0.0821 ± 0.0048 b | 0.1220 ± 0.0054 c | 0.3211 ± 0.0217 ab | 0.4545 ± 0.0379 a | ||
T5 | 0.0300 ± 0.0012 c | 0.0730 ± 0.0013 c | 0.1014 ± 0.0043 c | 0.2574 ± 0.0048 b | 0.4614 ± 0.0497 a | ||
TF(As) | T0 | 0.0022 ± 0.0001 a | 0.0094 ± 0.0004 a | 0.0389 ± 0.0005 a | 0.0958 ± 0.0029 a | 0.4718 ± 0.0157 a | |
T1 | 0.0022 ± 0.0004 a | 0.0078 ± 0.0005 b | 0.0383 ± 0.0020 a | 0.0889 ± 0.0036 a | 0.4682 ± 0.0119 a | ||
T2 | 0.0018 ± 0.0001 ab | 0.0070 ± 0.0004 b | 0.0358 ± 0.0025 ab | 0.0729 ± 0.0060 b | 0.4583 ± 0.0134 a | ||
T3 | 0.0018 ± 0.0002 ab | 0.0069 ± 0.0003 b | 0.0359 ± 0.0019 ab | 0.0694 ± 0.0045 b | 0.4779 ± 0.0165 a | ||
T4 | 0.0016 ± 0.0001 b | 0.0066 ± 0.0003 b | 0.0295 ± 0.0004 b | 0.0643 ± 0.0043 b | 0.4790 ± 0.0117 a | ||
T5 | 0.0014 ± 0.0001 b | 0.0055 ± 0.0007 c | 0.0273 ± 0.0020 b | 0.0576 ± 0.0023 b | 0.4726 ± 0.0248 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Fu, L.; Wang, Y.; Zhang, C.; Deng, Y.; Luo, X.; Mailhot, G. The Effect of [Glu][H2PO4] via Foliar Spraying on Cadmium and Arsenic Absorption and Translocation in Rice Plants. Toxics 2025, 13, 133. https://doi.org/10.3390/toxics13020133
Deng J, Fu L, Wang Y, Zhang C, Deng Y, Luo X, Mailhot G. The Effect of [Glu][H2PO4] via Foliar Spraying on Cadmium and Arsenic Absorption and Translocation in Rice Plants. Toxics. 2025; 13(2):133. https://doi.org/10.3390/toxics13020133
Chicago/Turabian StyleDeng, Jiawei, Lin Fu, Yanan Wang, Changbo Zhang, Yun Deng, Xin Luo, and Gilles Mailhot. 2025. "The Effect of [Glu][H2PO4] via Foliar Spraying on Cadmium and Arsenic Absorption and Translocation in Rice Plants" Toxics 13, no. 2: 133. https://doi.org/10.3390/toxics13020133
APA StyleDeng, J., Fu, L., Wang, Y., Zhang, C., Deng, Y., Luo, X., & Mailhot, G. (2025). The Effect of [Glu][H2PO4] via Foliar Spraying on Cadmium and Arsenic Absorption and Translocation in Rice Plants. Toxics, 13(2), 133. https://doi.org/10.3390/toxics13020133