Effects of Ionizing Radiation on Apis mellifera L. Queens †
Abstract
1. Introduction
2. Materials and Methods
2.1. Apis mellifera L. Queens
2.2. Irradiation in Laboratory Conditions
2.3. Reproductive Potential
2.4. Biomarker Analysis
2.5. Statistical Tests
3. Results
3.1. Effect of Ionizing Radiation on Mortality and Fertility
3.2. Physiological Effects of Ionizing Radiation
3.2.1. Univariate Analyses
3.2.2. Multivariate Analyses
4. Discussion
4.1. Effect of Ionizing Radiation on Survival and Fertility
4.2. Effect of Ionizing Radiation on Queen Physiology
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MICADO’Lab | Chronic irradiation method for establishing dose–effect relationships in the laboratory |
References
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Ratnieks, F.L.W.; Carreck, N.L. Clarity on Honey Bee Collapse? Science 2010, 327, 152–153. [Google Scholar] [CrossRef] [PubMed]
- Page, R.E.; Peng, C.Y.-S. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 2001, 36, 695–711. [Google Scholar] [CrossRef]
- Rangel, J.; Keller, J.J.; Tarpy, D.R. The effects of honey bee (Apis mellifera L.) queen reproductive potential on colony growth. Insectes Sociaux 2013, 60, 65–73. [Google Scholar] [CrossRef]
- Tarpy, D.R. Collective decision-making during reproduction in social insects: A conceptual model for queen supersedure in honey bees (Apis mellifera). Curr. Opin. Insect Sci. 2024, 66, 101260. [Google Scholar] [CrossRef]
- Tarpy, D.R.; Hatch, S.; Fletcher, D.J.C. The influence of queen age and quality during queen replacement in honeybee colonies. Anim. Behav. 2000, 59, 97–101. [Google Scholar] [CrossRef]
- Cobey, S.W. Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance. Apidologie 2007, 38, 390–410. [Google Scholar] [CrossRef]
- Dallai, R. Fine structure of the spermatheca of Apis mellifera. J. Insect Physiol. 1975, 21, 89–109. [Google Scholar] [CrossRef]
- Gajger, I.T.; Sakač, M.; Gregorc, A. Impact of Thiamethoxam on Honey Bee Queen (Apis mellifera carnica) Reproductive Morphology and Physiology. Bull. Env. Contam. Toxicol. 2017, 99, 297–302. [Google Scholar] [CrossRef]
- Pineaux, M.; Grateau, S.; Lirand, T.; Aupinel, P.; Richard, F.-J. Honeybee queen exposure to a widely used fungicide disrupts reproduction and colony dynamic. Environ. Pollut. 2023, 322, 121131. [Google Scholar] [CrossRef]
- Pettis, J.S.; Rice, N.; Joselow, K.; vanEngelsdorp, D.; Chaimanee, V. Colony Failure Linked to Low Sperm Viability in Honey Bee (Apis mellifera) Queens and an Exploration of Potential Causative Factors. PLoS ONE 2016, 11, e0147220. [Google Scholar] [CrossRef]
- Hasaballah, A.I. Impact of gamma irradiation on the development and reproduction of Culex pipiens (Diptera; Culicidae). Int. J. Radiat. Biol. 2018, 94, 844–849. [Google Scholar] [CrossRef] [PubMed]
- ICRP ICRP Publication 108: Environmental Protection: The Concept & Use of Reference Animals & Plants (Annals of the ICRP. Volume 38. Issue 4–6). Librairie Lavoisier 2008. Available online: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20108 (accessed on 3 October 2023).
- Raines, K.E.; Whitehorn, P.R.; Copplestone, D.; Tinsley, M.C. Chernobyl-level radiation exposure damages bumblebee reproduction: A laboratory experiment. Proc. R. Soc. B Biol. Sci. 2020, 287, 20201638. [Google Scholar] [CrossRef] [PubMed]
- Garnier-Laplace, J.; Della-Vedova, C.; Andersson, P.; Copplestone, D.; Cailes, C.; Beresford, N.A.; Howard, B.J.; Howe, P.; Whitehouse, P. A multi-criteria weight of evidence approach for deriving ecological benchmarks for radioactive substances. J. Radiol. Prot. 2010, 30, 215. [Google Scholar] [CrossRef]
- Kairo, G.; Provost, B.; Tchamitchian, S.; Ben Abdelkader, F.; Bonnet, M.; Cousin, M.; Sénéchal, J.; Benet, P.; Kretzschmar, A.; Belzunces, L.P.; et al. Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential. Sci. Rep. 2016, 6, 31904. [Google Scholar] [CrossRef]
- Björndahl, L.; Söderlund, I.; Kvist, U. Evaluation of the one-step eosin-nigrosin staining technique for human sperm vitality assessment. Hum. Reprod. 2003, 18, 813–816. [Google Scholar] [CrossRef]
- Belzunces, L.P.; Toutant, J.P.; Bounias, M. Acetylcholinesterase from Apis mellifera head. Evidence for amphiphilic and hydrophilic forms characterized by Triton X-114 phase separation. Biochem. J. 1988, 255, 463–470. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Abdelkader, F.B.; Kairo, G.; Bonnet, M.; Barbouche, N.; Belzunces, L.P.; Brunet, J.L. Effects of clothianidin on antioxidant enzyme activities and malondialdehyde level in honey bee drone semen. J. Apic. Res. 2019, 58, 740–745. [Google Scholar] [CrossRef]
- Aebi, H. [13] Catalase in vitro. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar] [CrossRef]
- Boldyrev, A.A.; Yuneva, M.O.; Sorokina, E.V.; Kramarenko, G.G.; Fedorova, T.N.; Konovalova, G.G.; Lankin, V.Z. Antioxidant Systems in Tissues of Senescence Accelerated Mice. Biochemistry 2001, 66, 1157–1163. [Google Scholar] [CrossRef]
- Williams, J.B.; Roberts, S.P.; Elekonich, M.M. Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms. Exp. Gerontol. 2008, 43, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Renzi, M.T.; Amichot, M.; Pauron, D.; Tchamitchian, S.; Brunet, J.-L.; Kretzschmar, A.; Maini, S.; Belzunces, L.P. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined. Ecotoxicol. Environ. Saf. 2016, 127, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Cree, I.A.; Andreotti, P.E. Measurement of cytotoxicity by ATP-based luminescence assay in primary cell cultures and cell lines. Toxicol. Vitr. 1997, 11, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Al-Lawati, H.; Kamp, G.; Bienefeld, K. Characteristics of the spermathecal contents of old and young honeybee queens. J. Insect Physiol. 2009, 55, 117–122. [Google Scholar] [CrossRef]
- Gomori, G. Human esterases. J. Lab. Clin. Med. 1953, 42, 445–453. [Google Scholar]
- Alaux, C.; Brunet, J.-L.; Dussaubat, C.; Mondet, F.; Tchamitchan, S.; Cousin, M.; Brillard, J.; Baldy, A.; Belzunces, L.P.; Le Conte, Y. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 2010, 12, 774–782. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; SAGE Publications: Los Angeles, CA, USA, 2018. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Kassambara, A. R Graphics Essentials for Great Data Visualization: 200 Practical Examples You Want to Know for Data Science; STHDA: Middletown, DE, USA, 2017. [Google Scholar]
- Piepho, H.-P. An Algorithm for a Letter-Based Representation of All-Pairwise Comparisons. J. Comput. Graph. Stat. 2004, 13, 456–466. [Google Scholar] [CrossRef]
- Wickham, H. Toolbox. In ggplot2: Elegant Graphics for Data Analysis; Wickham, H., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 33–74. [Google Scholar] [CrossRef]
- Pedersen, T.L. Patchwork: The Composer of Plots 2025. Available online: https://CRAN.R-project.org/package=patchwork (accessed on 2 September 2025).
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package 2016; The Comprehensive R Archive Network: Berkeley, CA, USA, 2016. [Google Scholar]
- Gagnaire, B.; Bonnet, M.; Tchamitchian, S.; Cavalié, I.; Della-Vedova, C.; Dubourg, N.; Adam-Guillermin, C.; Brunet, J.-L.; Belzunces, L.P. Physiological effects of gamma irradiation in the honeybee, Apis mellifera. Ecotoxicol. Environ. Saf. 2019, 174, 153–163. [Google Scholar] [CrossRef]
- Adaramoye, O.A.; Adedara, I.A.; Farombi, E.O. Possible ameliorative effects of kolaviron against reproductive toxicity in sub-lethally whole body gamma-irradiated rats. Exp. Toxicol. Pathol. 2012, 64, 379–385. [Google Scholar] [CrossRef]
- Khan, S.; Adhikari, J.S.; Rizvi, M.A.; Chaudhury, N.K. Radioprotective potential of melatonin against 60Co γ-ray-induced testicular injury in male C57BL/6 mice. J. Biomed. Sci. 2015, 22, 61. [Google Scholar] [CrossRef] [PubMed]
- Amiri, E.; Seddon, G.; Zuluaga Smith, W.; Strand, M.K.; Tarpy, D.R.; Rueppell, O. Israeli Acute Paralysis Virus: Honey Bee Queen–Worker Interaction and Potential Virus Transmission Pathways. Insects 2019, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Kairo, G.; Biron, D.G.; Ben Abdelkader, F.; Bonnet, M.; Tchamitchian, S.; Cousin, M.; Dussaubat, C.; Benoit, B.; Kretzschmar, A.; Belzunces, L.P.; et al. Nosema ceranae, Fipronil and their combination compromise honey bee reproduction via changes in male physiology. Sci. Rep. 2017, 7, 8556. [Google Scholar] [CrossRef] [PubMed]
- Baer, B.; Eubel, H.; Taylor, N.L.; O’Toole, N.; Millar, A.H. Insights into female sperm storage from the spermathecal fluid proteome of the honeybee Apis mellifera. Genome Biol. 2009, 10, R67. [Google Scholar] [CrossRef]
- Corona, M.; Velarde, R.A.; Remolina, S.; Moran-Lauter, A.; Wang, Y.; Hughes, K.A.; Robinson, G.E. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc. Natl. Acad. Sci. USA 2007, 104, 7128–7133. [Google Scholar] [CrossRef]
- Wang, H.; Lei, L.; Chen, W.; Chi, X.; Han, K.; Wang, Y.; Ma, L.; Liu, Z.; Xu, B. The Comparison of Antioxidant Performance, Immune Performance, IIS Activity and Gut Microbiota Composition between Queen and Worker Bees Revealed the Mechanism of Different Lifespan of Female Casts in the Honeybee. Insects 2022, 13, 772. [Google Scholar] [CrossRef]
- Park, M.J.; Kim, B.Y.; Park, H.G.; Deng, Y.; Yoon, H.J.; Choi, Y.S.; Lee, K.S.; Jin, B.R. Major royal jelly protein 2 acts as an antimicrobial agent and antioxidant in royal jelly. J. Asia-Pac. Entomol. 2019, 22, 684–689. [Google Scholar] [CrossRef]
- Gu, H.; Song, I.-B.; Han, H.-J.; Lee, N.-Y.; Cha, J.-Y.; Son, Y.-K.; Kwon, J. Antioxidant Activity of Royal Jelly Hydrolysates Obtained by Enzymatic Treatment. Korean J. Food Sci. Anim. Resour. 2018, 38, 135–142. [Google Scholar] [CrossRef]
- Orascanin, M.; Bektasevic, M.; Sertovic, E.; Cvijetic, M.; Flanjak, I.; Alibabic, V. Physicochemical Characterization and Antioxidant Activity of Royal Jelly from Northwestern Bosnia and Herzegovina. J. Biotechnol. Biomed. 2025, 8, 109–117. [Google Scholar] [CrossRef]
- Luengo, A.; Li, Z.; Gui, D.Y.; Sullivan, L.B.; Zagorulya, M.; Do, B.T.; Ferreira, R.; Naamati, A.; Ali, A.; Lewis, C.A.; et al. Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Mol. Cell 2021, 81, 691–707.e6. [Google Scholar] [CrossRef]




| Biomarker | Tissue | Functions |
|---|---|---|
| AChE | Head | Neural activity |
| MDA | Spermatozoa | Oxidative damages/Antioxidant defenses |
| CAT | Head/Thorax | Antioxidant defenses/Detoxification |
| SOD | Head/Abdomen | Antioxidant defenses |
| Total antioxidant | Abdomen | Antioxidant defenses |
| G6PDH | Thorax | Antioxidant defenses/Metabolism |
| GaPDH | Abdomen/Thorax | Metabolism/Antioxidant defenses |
| ATP | Thorax | Metabolism |
| LDH | Thorax | Metabolism |
| TG | Abdomen | Metabolism |
| CaE1 | Head/Abdomen | Detoxification/Metabolism/Immunity |
| POx | Abdomen | Immunity |
| Biomarker and Targeted Tissue (Unit) | Physiological Marker Responses (Mean ± SD) * | Statistical Tests | ||||
|---|---|---|---|---|---|---|
| Control (0.1 µGy/h) | Low Dose Rate (13 µGy/h) | High Dose Rate (3500 µGy/h) | Data | Tests | p-Value | |
| Head AChE (mAU·min−1·mg−1 of tissue) | 85.5 ± 11.8 | 85.6 ± 14.6 | 83.4 ± 21.4 | Raw | Kruskal-Wallis | 0.842 |
| Head CAT (mAU·min−1·mg−1 of tissue) | 16 ± 6.9 | 16.2 ± 8.4 | 19.3 ± 10.3 | Box-Cox | ANOVA | 0.31 |
| Head SOD (mAU·min−1·mg−1 of tissue) | 2.6 ± 0.8 | 2.6 ± 0.7 | 2.8 ± 0.4 | Box-Cox | ANOVA | 0.813 |
| Head CaE1 (mAU·min−1·mg−1 of tissue) | 0.7 ± 0.1 | 0.7 ± 0.09 | 0.7 ± 0.1 | Box-Cox | ANOVA | 0.555 |
| Abdomen SOD (mAU·min−1·mg−1 of tissue) | 4.5 ± 1.1 | 4.6 ± 1.2 | 4.5 ± 1.2 | Raw | ANOVA | 0.869 |
| Abdomen Total Antioxidant (mMol Trolox) | 2.1 ± 0.2 | 2.2 ± 0.2 | 2.2 ± 0.2 | Raw | ANOVA | 0.375 |
| Abdomen GaPDH (mAU·min−1·mg−1 of tissue) | 392 ± 55.4 | 409.4 ± 111.5 | 412.8 ± 69.4 | Raw | Kruskal-Wallis | 0.772 |
| Abdomen CaE1 (mAU·min−1·mg−1 of tissue) | 1493.3 ± 121.6 | 1460.3 ± 136.8 | 1535.8 ± 115.2 | Raw | ANOVA | 0.067 |
| Abdomen POx (mAU·min−1·mg−1 of tissue) | 3.6 ± 2.3 | 4.6 ± 2.8 | 3.8 ± 2.3 | Box-Cox | ANOVA | 0.286 |
| Abdomen TG (mg/µL) | 12.3 ± 4.4 | 13.5 ± 5.9 | 13.4 ± 2.7 | Box-Cox | ANOVA | 0.387 |
| Thorax CAT (mAU·min−1·mg−1 of tissue) | 6.1 ± 2.7 | 6.1 ± 2.9 | 6.1 ± 3.5 | Box-Cox | ANOVA | 0.989 |
| Thorax G6PDH (mAU·min−1·mg−1 of tissue) | 9.6 ± 1.4 | 9.6 ± 2.5 | 9.5 ± 2.1 | Box-Cox | ANOVA | 0.853 |
| Thorax GaPDH (mAU·min−1·mg−1 of tissue) | 566.6 ± 110.5 | 545.1 ± 109.6 | 554.7 ± 142 | Raw | ANOVA | 0.818 |
| Thorax ATP (LI × 106·mg−1 of tissue) | 2.8 ± 0.8 | 3 ± 0.9 | 2.6 ± 0.7 | Box-Cox | ANOVA | 0.225 |
| Thorax LDH (mAU·min−1·mg−1 of tissue) | 9.9 ± 5.2 | 15.3 ± 5.7 | 7.5 ± 3.6 | Raw | ANOVA | <0.0001 |
| Spermatozoa MDA (µMol) | 0.2 ± 0.2 | 0.3 ± 0.2 | 0.3 ± 0.2 | Box-Cox | ANOVA | 0.249 |
| Analysis | p-Values | ||
|---|---|---|---|
| C vs. L | C vs. H | L vs. H | |
| Pairwise PERMANOVA | 0.139 | 0.379 | 0.003 |
| Dispersion (betadisper) | 0.157 | 0.94 | 0.304 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crevet, M.; Gagnaire, B.; Belzunces, L.P.; Dubourg, N.; Kairo, G.; Marcuccini, G.; Pélissier, M.; Brunet, J.-L. Effects of Ionizing Radiation on Apis mellifera L. Queens. Toxics 2025, 13, 1057. https://doi.org/10.3390/toxics13121057
Crevet M, Gagnaire B, Belzunces LP, Dubourg N, Kairo G, Marcuccini G, Pélissier M, Brunet J-L. Effects of Ionizing Radiation on Apis mellifera L. Queens. Toxics. 2025; 13(12):1057. https://doi.org/10.3390/toxics13121057
Chicago/Turabian StyleCrevet, Margot, Béatrice Gagnaire, Luc P. Belzunces, Nicolas Dubourg, Guillaume Kairo, Gianni Marcuccini, Michel Pélissier, and Jean-Luc Brunet. 2025. "Effects of Ionizing Radiation on Apis mellifera L. Queens" Toxics 13, no. 12: 1057. https://doi.org/10.3390/toxics13121057
APA StyleCrevet, M., Gagnaire, B., Belzunces, L. P., Dubourg, N., Kairo, G., Marcuccini, G., Pélissier, M., & Brunet, J.-L. (2025). Effects of Ionizing Radiation on Apis mellifera L. Queens. Toxics, 13(12), 1057. https://doi.org/10.3390/toxics13121057

