Global Mapping of Population Exposure to Upstream Gas Flaring Using Integrated VIIRS Nightfire and GHSL Data, 2016–2023, with Projections to 2030
Abstract
1. Introduction
Scope and Innovation of the Study
2. Materials and Methods
2.1. The Dataset, Data Collection, and Data Preparation
2.1.1. Global Distribution of Gas Flaring Sites (2023)
2.1.2. National-Level Distribution of Gas Flaring Sites (2023)
2.1.3. Analysis of Total Volume per Total Flares (2016–2023)
2.2. Methodology: Urbanization Classification Using SMOD
- 30: Urban Centre Grid Cell
- 23: Dense Urban Cluster Grid Cell
- 22: Semi-Dense Urban Cluster Grid Cell
- 21: Suburban or Peri-Urban Grid Cell
- 13: Rural Cluster Grid Cell
3. Results
3.1. Population Within 1 km of Flares Elements by Country (2016–2023)
3.2. Population Within 3 km of Flares Elements by Country (2016–2023)
3.3. Population near Urban Centre Areas by Country: 2016–2023
3.4. Population near Dense Urban Areas by Country: 2016–2023
3.5. Population near Semi-Dense Urban Areas by Country: 2016–2023
3.6. Population near Suburban Areas by Country: 2016–2023
3.7. Population near Rural Areas by Country: 2016–2023
3.8. Predictive Modeling of Human Exposure to Gas Flaring in 2030
3.8.1. Overall Population Exposure
3.8.2. Projected Distribution by Settlement Type (SMOD Classification)
3.8.3. 1 km Proximity—Immediate Impact Zone
3.8.4. 3 km Proximity—Broader Influence Zone
3.9. Synthesis of Main Exposure Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CATF | Clean Air Task Force |
| GHSL | Global Human Settlement Layer |
| MCSAI | Machine Learning and Computer Vision for Spatial Analysis and Intelligence Lab |
| SMOD | Settlement Model (Level 2) |
| VIIRS | Visible Infrared Imaging Radiometer Suite |
| ZRF | Zero Routine Flaring |
| CO2 | Carbon Dioxide |
| CH4 | Methane |
| NOx | Nitrogen Oxides |
| SO2 | Sulfur Dioxide |
| VOC | Volatile Organic Compounds |
| BCM | Billion Cubic Meters |
References
- Ukhurebor, K.E.; Aigbe, U.O.; Onyancha, R.B.; Athar, H.; Okundaye, B.; Aidonojie, P.A.; Siloko, B.E.; Hossain, I.; Kusuma, H.S.; Darmokoesoemo, H. Environmental Influence of Gas Flaring: Perspective from the Niger Delta Region of Nigeria. Geofluids 2024, 2024, 1321022. [Google Scholar] [CrossRef]
- Allen, D.T.; Smith, D.; Torres, V.M.; Saldaña, F.C. Carbon dioxide, methane and black carbon emissions from upstream oil and gas flaring in the United States. Curr. Opin. Chem. Eng. 2016, 13, 119–123. [Google Scholar] [CrossRef]
- United Nations. The Paris Agreement. 2024. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 4 April 2025).
- World Bank. Global Gas Flaring Tracker Report. Technical Report, World Bank. 2024. Available online: https://www.worldbank.org/en/programs/gasflaringreduction/publication/2024-global-gas-flaring-tracker-report (accessed on 4 April 2025).
- Fawole, O.G.; Cai, X.M.; MacKenzie, A. Gas flaring and resultant air pollution: A review focusing on black carbon. Environ. Pollut. 2016, 216, 182–197. [Google Scholar] [CrossRef]
- Obi, N.; Akuirene, A.; Bwititi, P.; Adjene, J.; Nwose, E. Community health perspective of gas flaring on communities in Delta region of Nigeria: Narrative review. Int. J. Sci. Rep. 2021, 7, 180–185. [Google Scholar] [CrossRef]
- Blundell, W.; Kokoza, A. Natural gas flaring, respiratory health, and distributional effects. J. Public Econ. 2022, 208, 104601. [Google Scholar] [CrossRef]
- Nicole, W. On Wells and Wellness: Oil and Gas Flaring as a Potential Risk Factor for Preterm Birth. Environ. Health Perspect. 2020, 128, 114004. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.; Polka, E.; Buonocore, J.J.; Roy, A.; Trask, B.; Hull, H.; Arunachalam, S. Air Quality and Health Impacts of Onshore Oil and Gas Flaring and Venting Activities Estimated Using Refined Satellite-Based Emissions. GeoHealth 2024, 8, e2023GH000938. [Google Scholar] [CrossRef] [PubMed]
- Ajugwo, A.O. Negative Effects of Gas Flaring: The Nigerian Experience. J. Environ. Pollut. Hum. Health 2013, 1, 6–8. [Google Scholar] [CrossRef]
- Janitz, A.E.; Dao, H.D.; Campbell, J.E.; Stoner, J.A.; Peck, J.D. The association between natural gas well activity and specific congenital anomalies in Oklahoma, 1997–2009. Environ. Int. 2019, 122, 381–388. [Google Scholar] [CrossRef]
- Johnston, J.E.; Lim, E.; Roh, H. Impact of upstream oil extraction and environmental public health: A review of the evidence. Sci. Total Environ. 2019, 657, 187–199. [Google Scholar] [CrossRef]
- McKenzie, L.M.; Crooks, J.; Peel, J.L.; Blair, B.D.; Brindley, S.; Allshouse, W.B.; Malin, S.; Adgate, J.L. Relationships between indicators of cardiovascular disease and intensity of oil and natural gas activity in Northeastern Colorado. Environ. Res. 2019, 170, 56–64. [Google Scholar] [CrossRef]
- Motte, J.; Alvarenga, R.A.; Thybaut, J.W.; Dewulf, J. Quantification of the global and regional impacts of gas flaring on human health via spatial differentiation. Environ. Pollut. 2021, 291, 118213. [Google Scholar] [CrossRef]
- United Nations Office for Disaster Risk Reduction (UNDRR). The Sendai Framework Terminology on Disaster Risk Reduction: “Exposure”. 2017. Available online: https://www.undrr.org/terminology/exposure (accessed on 5 November 2025).
- United Nations Platform for Space-Based Information for Disaster Management and Emergency Response (UN-SPIDER). “Exposure is defined as ‘the number of people or types of assets in an area’”—Disaster Risk Management. Available online: https://www.un-spider.org/risks-and-disasters/disaster-risk-management (accessed on 5 November 2025).
- NASA Earth Observing System Data and Information System (EOSDIS). Visible Infrared Imaging Radiometer Suite (VIIRS). 2024. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/viirs/ (accessed on 3 November 2025).
- Anejionu, O.C.; Whyatt, J.D.; Blackburn, G.A.; Price, C.S. Contributions of gas flaring to a global air pollution hotspot: Spatial and temporal variations, impacts and alleviation. Atmos. Environ. 2015, 118, 184–193. [Google Scholar] [CrossRef]
- Cushing, L.J.; Chau, K.; Franklin, M.; Johnston, J.E. Up in smoke: Characterizing the population exposed to flaring from unconventional oil and gas development in the contiguous US. Environ. Res. Lett. 2021, 16, 034032. [Google Scholar] [CrossRef]
- World Bank. Global Gas Flaring Data 2025. Available online: https://www.worldbank.org/en/programs/gasflaringreduction/global-flaring-data (accessed on 15 September 2025).
- Natural Earth. Natural Earth Data 2025. Available online: https://www.eea.europa.eu/en/datahub/datahubitem-view/9d387a53-a4fa-4f1d-91d6-f33d96614d4d (accessed on 15 September 2025).
- European Commission, Joint Research Centre. Global Human Settlement Layer (GHSL) Population Grid 2025. Available online: https://data.jrc.ec.europa.eu/collection/ghsl (accessed on 15 September 2025).
- Matthaios, V.N.; Holland, I.; Kang, C.M.; Hart, J.E.; Hauptman, M.; Wolfson, J.M.; Gaffin, J.M.; Phipatanakul, W.; Gold, D.R.; Koutrakis, P. The effects of urban green space and road proximity to indoor traffic-related PM2.5, NO2, and BC exposure in inner-city schools. J. Expo. Sci. Environ. Epidemiol. 2024, 34, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Cushing, L.J.; Vavra-Musser, K.; Chau, K.; Franklin, M.; Johnston, J.E. Flaring from Unconventional Oil and Gas Development and Birth Outcomes in the Eagle Ford Shale in South Texas. Environ. Health Perspect. 2020, 128, 077003. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F.C.; Ghosh, T. Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data. Energies 2016, 9, 14. [Google Scholar] [CrossRef]
- Faruolo, M.; Caseiro, A.; Lacava, T.; Kaiser, J.W. Gas Flaring: A Review Focused On Its Analysis From Space. IEEE Geosci. Remote Sens. Mag. 2021, 9, 258–281. [Google Scholar] [CrossRef]
- Schiavina, M.; Melchiorri, M.; Pesaresi, M. GHS-SMOD R2023A—GHS Settlement Layers, Application of the Degree of Urbanisation Methodology (Stage I) to GHS-POP R2023A and GHS-BUILT-S R2023A, Multitemporal (1975–2030). 2023. Available online: http://data.europa.eu/89h/a0df7a6f-49de-46ea-9bde-563437a6e2ba (accessed on 25 May 2025).
- QGIS Project. QGIS—Free and Open Source Geographic Information System. 2025. Available online: https://qgis.org (accessed on 13 November 2025).
- Esri. ArcGIS—Explore and Work with Maps, Data and Layers. 2025. Available online: https://www.arcgis.com/index.html (accessed on 13 November 2025).
- Esri. GIS Software for Mapping and Spatial Analytics—Esri. 2026. Available online: https://www.esri.com/en-us/home (accessed on 13 November 2025).
- Waldner, C.; Ribble, C.; Janzen, E.; Campbell, J. Associations between oil- and gas-well sites, processing facilities, flaring, and beef cattle reproduction and calf mortality in western Canada. Prev. Vet. Med. 2001, 50, 1–17. [Google Scholar] [CrossRef]
- Slizovskiy, I.B.; Conti, L.A.; Trufan, S.J.; Reif, J.S.; Lamers, V.T.; Stowe, M.H.; Dziura, J.; Rabinowitz, P.M. Reported health conditions in animals residing near natural gas wells in southwestern Pennsylvania. J. Environ. Sci. Health Part A 2015, 50, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Bocedi, A.; Lai, O.; Cattani, G.; Roncoroni, C.; Gambardella, G.; Notari, S.; Tancredi, F.; Bitonti, G.; Calabrò, S.; Ricci, G. Animal Biomonitoring for the Surveillance of Environment Affected by the Presence of Slight Contamination by β-HCH. Antioxidants 2022, 11, 527. [Google Scholar] [CrossRef] [PubMed]


















| Name | Type | Units | Description |
|---|---|---|---|
| Country | categorical | — | Country/territory name |
| Latitude, longitude | float | degrees (WGS84) | Site coordinates |
| Year | int | year | Calendar year of estimate |
| bcm | float | billion cubic meters | Annual flared volume at site-year |
| MMscfd | float | million scf per day | Average daily flaring rate equivalent |
| Flaring vol. (million m3) | float | million m3 | Annual flared volume (redundant with bcm × 1000) |
| Field type | categorical | — | Asset type: OIL, GAS, LNG (plus UNKNOWN) |
| Location | categorical | — | ONHORE/OFFSHORE classification |
| Flare level | categorical | — | Magnitude class: Small, Medium, Large |
| Category | Population (People) |
|---|---|
| 1 km Total | 2,700,770.64 |
| 3 km Total | 14,853,912.41 |
| 1 km SMOD 13 (Rural Clusters) | 374,329.23 |
| 1 km SMOD 21 (Suburban/Peri-Urban Areas) | 439,954.46 |
| 1 km SMOD 22 (Semi-Dense Urban Clusters) | 104,086.70 |
| 1 km SMOD 23 (Dense Urban Clusters) | 637,406.32 |
| 1 km SMOD 30 (Urban Centres) | 631,131.47 |
| 3 km SMOD 13 (Rural Clusters) | 963,256.93 |
| 3 km SMOD 21 (Suburban/Peri-Urban Areas) | 2,539,878.61 |
| 3 km SMOD 22 (Semi-Dense Urban Clusters) | 456,676.39 |
| 3 km SMOD 23 (Dense Urban Clusters) | 2,819,635.08 |
| 3 km SMOD 30 (Urban Centres) | 6,323,391.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zikas, S.; Christakis, C.; Misthos, L.-M.; Psomadakis, I.; Katsafadou, A.I.; Tsilikas, I.; Fthenakis, G.C.; Vasiliou, V.; Kiouvrekis, Y. Global Mapping of Population Exposure to Upstream Gas Flaring Using Integrated VIIRS Nightfire and GHSL Data, 2016–2023, with Projections to 2030. Toxics 2025, 13, 1053. https://doi.org/10.3390/toxics13121053
Zikas S, Christakis C, Misthos L-M, Psomadakis I, Katsafadou AI, Tsilikas I, Fthenakis GC, Vasiliou V, Kiouvrekis Y. Global Mapping of Population Exposure to Upstream Gas Flaring Using Integrated VIIRS Nightfire and GHSL Data, 2016–2023, with Projections to 2030. Toxics. 2025; 13(12):1053. https://doi.org/10.3390/toxics13121053
Chicago/Turabian StyleZikas, Sotiris, Christos Christakis, Loukas-Moysis Misthos, Ioannis Psomadakis, Angeliki I. Katsafadou, Ioannis Tsilikas, George C. Fthenakis, Vasilis Vasiliou, and Yiannis Kiouvrekis. 2025. "Global Mapping of Population Exposure to Upstream Gas Flaring Using Integrated VIIRS Nightfire and GHSL Data, 2016–2023, with Projections to 2030" Toxics 13, no. 12: 1053. https://doi.org/10.3390/toxics13121053
APA StyleZikas, S., Christakis, C., Misthos, L.-M., Psomadakis, I., Katsafadou, A. I., Tsilikas, I., Fthenakis, G. C., Vasiliou, V., & Kiouvrekis, Y. (2025). Global Mapping of Population Exposure to Upstream Gas Flaring Using Integrated VIIRS Nightfire and GHSL Data, 2016–2023, with Projections to 2030. Toxics, 13(12), 1053. https://doi.org/10.3390/toxics13121053

