The Microplastic–PFAS Nexus: From Co-Occurrence to Combined Toxicity in Aquatic Environments
Abstract
1. Introduction
2. Mechanisms of Interaction: Beyond Simple Adsorption
2.1. MPs as Vectors and Concentrators
2.2. The Aging Factor: Transforming Microplastic Vector Capacity
2.3. MPs as a Secondary Source: Leaching and Legacy Contamination
2.4. PFAS and MPs Type: A Compound Specific Perspective
2.5. Influence of Water Chemistry: Modulating the MP-PFAS Complex
2.6. The Expanding Universe of PFAS: Beyond PFAAs to Precursors and Alternatives
3. Environmental Fate and Transport: A Coupled Journey
3.1. Pollution Sources and Convergent Transport Pathways to Aquatic Systems
3.2. Altered Mobility: Mixed MPs Impact on PFAS Transport
3.3. Trophic Transfer and Bioaccumulation: The Trojan Horse Effect
3.4. Impact on Remediation and Treatment: Navigating a Complex Nexus
4. Combined Toxicity: Unveiling Synergistic Impacts
4.1. Cellular and Molecular Level Effects
4.2. Impacts on Key Species and Ecosystems: Primary Producers
4.3. Invertebrates: Chronic Toxicity and Developmental Failures
4.4. Microbiome: Disruption of Essential Rhizosphere Communities
4.5. Toxicity in Vertebrates: From Aquatic Organisms to Mammalian Models
5. Emerging Frontiers and Future Perspectives
5.1. The Climate Change Connection: An Amplifying Feedback Loop
5.2. Human Health Implications: From Aquatic Ecosystems to Human Exposure
5.3. Novel Analytical and Modeling Approaches: Deconstructing the Nexus
5.4. Policy and Regulatory Gaps: The Urgent Need for a Holistic Framework
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.; Xu, D.; Yang, X.; Hu, J. Microplastics and PAHs mixed contamination: An in-depth review on the sources, co-occurrence, and fate in marine ecosystems. Water Res. 2024, 257, 121622. [Google Scholar] [CrossRef]
- Ding, X.; Liu, S.; Tang, S.; Qin, S.; Mei, W.; Ali, M.; Wang, J. The role of microplastics as carriers of per- and polyfluoroalkyl substances and their fate in the environment. TrAC Trends Anal. Chem. 2024, 181, 118003. [Google Scholar] [CrossRef]
- Gander, M.J. Climate change and the water quality threats posed by the emerging contaminants per- and polyfluoroalkyl substances (PFAS) and microplastics. Water Int. 2025, 50, 306–328. [Google Scholar] [CrossRef]
- Tang, Z.; Song, X.; Xu, M.; Yao, J.; Ali, M.; Wang, Q.; Zeng, J.; Ding, X.; Wang, C.; Zhang, Z.; et al. Effects of co-occurrence of PFASs and chlorinated aliphatic hydrocarbons on microbial communities in groundwater: A field study. J. Hazard. Mater. 2022, 435, 128969. [Google Scholar] [CrossRef]
- Zhang, Z.; Ali, M.; Tang, Z.; Sun, Q.; Wang, Q.; Liu, X.; Yin, L.; Yan, S.; Xu, M.; Coulon, F.; et al. Unveiling complete natural reductive dechlorination mechanisms of chlorinated ethenes in groundwater: Insights from functional gene analysis. J. Hazard. Mater. 2024, 469, 134034. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Coulon, F.; Tang, Z.; Hu, Z.; Bi, Y.; Huo, M.; Song, X. Unveiling the Truth of Interactions between Microplastics and Per- and Polyfluoroalkyl Substances (PFASs) in Wastewater Treatment Plants: Microplastics as a Carrier of PFASs and Beyond. Environ. Sci. Technol. 2025, 59, 2211–2221. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xie, Y.; Zhou, L.; Lu, G.; Li, Y.; Gao, P.; Hou, J. Co-accumulation characteristics and interaction mechanism of microplastics and PFASs in a large shallow lake. J. Hazard. Mater. 2024, 480, 135780. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Song, X.; Ding, D.; Wang, Q.; Zhang, Z.; Tang, Z. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. Environ. Pollut. 2022, 295, 118686. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Roychand, R.; Monira, S.; Bhuiyan, M.; Jegatheesan, V. Fate of road-dust associated microplastics and per- and polyfluorinated substances in stormwater. Process Saf. Environ. Prot. 2020, 144, 236–241. [Google Scholar] [CrossRef]
- Sühring, R.; Baak, J.E.; Letcher, R.J.; Braune, B.M.; De Silva, A.; Dey, C.; Fernie, K.; Lu, Z.; Mallory, M.L.; Avery-Gomm, S.; et al. Co-contaminants of microplastics in two seabird species from the Canadian Arctic. Environ. Sci. Ecotechnol. 2022, 12, 100189. [Google Scholar] [CrossRef]
- Tanzil, K.; Ealias, A.M.; George, G.; Panigrahi, S. Microplastics: A hidden carrier of per- and polyfluoroalkyl substances and their effect on soil properties. J. Environ. Chem. Eng. 2025, 13, 114974. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, X.; Han, Z.; Yang, S.; Zhang, H.; Lin, T.; Zhou, C. Response mechanisms of Chlorella sorokiniana to microplastics and PFOA stress: Photosynthesis, oxidative stress, extracellular polymeric substances and antioxidant system. Chemosphere 2023, 323, 138256. [Google Scholar] [CrossRef]
- Ning, Z.; Zhou, S.; Yang, Y.; Li, P.; Zhao, Z.; Zhang, W.; Lu, L.; Ren, N. Adsorption behaviors of perfluorooctanoic acid on aged microplastics. Water Environ. Res. 2024, 96, e11080. [Google Scholar] [CrossRef] [PubMed]
- Salawu, O.A.; Olivares, C.I.; Adeleye, A.S. Adsorption of PFAS onto secondary microplastics: A mechanistic study. J. Hazard. Mater. 2024, 470, 134185. [Google Scholar] [CrossRef]
- Soltanighias, T.; Umar, A.; Abdullahi, M.; Abdallah, M.A.E.; Orsini, L. Combined toxicity of perfluoroalkyl substances and microplastics on the sentinel species Daphnia magna: Implications for freshwater ecosystems. Environ. Pollut. 2024, 363, 125133. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, X.; Han, Z.; Li, Y.; He, H.; Lin, T.; Xu, H. Polystyrene microplastics enhanced the effect of PFOA on Chlorella sorokiniana: Perspective from the cellular and molecular levels. J. Hazard. Mater. 2024, 465, 133455. [Google Scholar] [CrossRef]
- Ali, M.; Song, X.; Wang, Q.; Zhang, Z.; Zhang, M.; Chen, X.; Tang, Z.; Liu, X. Thermally enhanced biodegradation of benzo[a]pyrene and benzene co-contaminated soil: Bioavailability and generation of ROS. J. Hazard. Mater. 2023, 455, 131494. [Google Scholar] [CrossRef]
- Meng, L.; Tian, H.; Lv, J.; Wang, Y.; Jiang, G. Influence of microplastics on the photodegradation of perfluorooctane sulfonamide (FOSA). J. Environ. Sci. 2023, 127, 791–798. [Google Scholar] [CrossRef]
- Scott, J.W.; Gunderson, K.G.; Green, L.A.; Rediske, R.R.; Steinman, A.D. Perfluoroalkylated Substances (PFAS) Associated with Microplastics in a Lake Environment. Toxics 2021, 9, 106. [Google Scholar] [CrossRef]
- Brahana, P.J.; Al Harraq, A.; Saab, L.E.; Roberg, R.; Valsaraj, K.T.; Bharti, B. Uptake and release of perfluoroalkyl carboxylic acids (PFCAs) from macro and microplastics. Environ. Sci. Process. Impacts 2023, 25, 1519–1531. [Google Scholar] [CrossRef] [PubMed]
- Granby, K.; Bhattarai, B.; Johannsen, N.; Kotterman, M.J.; Sloth, J.J.; Cederberg, T.L.; Marques, A.; Larsen, B.K. Microplastics in feed affect the toxicokinetics of persistent halogenated pollutants in Atlantic salmon. Environ. Pollut. 2024, 357, 124421. [Google Scholar] [CrossRef]
- Shi, Y.; Almuhtaram, H.; Andrews, R.C. Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) and Microcystins by Virgin and Weathered Microplastics in Freshwater Matrices. Polymers 2023, 15, 3676. [Google Scholar] [CrossRef]
- Ateia, M.; Zheng, T.; Calace, S.; Tharayil, N.; Pilla, S.; Karanfil, T. Sorption behavior of real microplastics (MPs): Insights for organic micropollutants adsorption on a large set of well-characterized MPs. Sci. Total Environ. 2020, 720, 137634. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Song, X.; Wang, Q.; Zhang, Z.; Che, J.; Chen, X.; Tang, Z.; Liu, X. Mechanisms of biostimulant-enhanced biodegradation of PAHs and BTEX mixed contaminants in soil by native microbial consortium. Environ. Pollut. 2023, 318, 120831. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Song, X.; Wang, Q.; Zhang, Z.; Zhang, M.; Ma, M.; Che, J.; Li, R.; Chen, X.; Tang, Z.; et al. Effects of short and long-term thermal exposure on microbial compositions in soils contaminated with mixed benzene and benzo[a]pyrene: A short communication. Sci. Total Environ. 2024, 912, 168862. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Wang, Q.; Zhang, Z.; Chen, X.; Ma, M.; Tang, Z.; Li, R.; Tang, B.; Li, Z.; Huang, X.; et al. Mechanisms of benzene and benzo[a]pyrene biodegradation in the individually and mixed contaminated soils. Environ. Pollut. 2024, 347, 123710. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, S.; Ali, M.; Song, X.; Tang, Z.; Zhang, Z.; Zhang, M.; Luo, Y. Thermally enhanced bioremediation: A review of the fundamentals and applications in soil and groundwater remediation. J. Hazard. Mater. 2022, 433, 128749. [Google Scholar] [CrossRef]
- Chen, Z.-W.; Hua, Z.-L. Eco-environmental responses of Eichhornia crassipes rhizobacteria community to co-stress of per(poly)fluoroalkyl substances and microplastics. Aquat. Toxicol. 2024, 276, 107109. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, R.; Liu, X.; Wang, Y.; Jiang, Y. Effect of carbon chain length and concentration of perfluorinated compounds on polytetrafluoroethylene microplastics transport behavior. NanoImpact 2025, 37, 100550. [Google Scholar] [CrossRef]
- Yu, X.; Gutang, Q.; Wang, Y.; Wang, S.; Li, Y.; Li, Y.; Liu, W.; Wang, X. Microplastic and associated emerging contaminants in marine fish from the South China Sea: Exposure and human risks. J. Hazard. Mater. 2024, 480, 136200. [Google Scholar] [CrossRef]
- Keller, A.A.; Li, W.; Floyd, Y.; Bae, J.; Clemens, K.M.; Thomas, E.; Han, Z.; Adeleye, A.S. Elimination of microplastics, PFAS, and PPCPs from biosolids via pyrolysis to produce biochar: Feasibility and techno-economic analysis. Sci. Total Environ. 2024, 947, 174773. [Google Scholar] [PubMed]
- Jiang, M.; Li, X.; Cai, C.; Xu, Y.; Song, P.; Yu, J. Combined toxicity of polystyrene microplastics and perfluorobutane sulfonate on mouse liver: Impact on lipid metabolism and gut-liver axis disruption. Ecotoxicol. Environ. Saf. 2025, 292, 117904. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, J.; Sun, J.; Gong, M.; Yuan, Z. Exposure to polystyrene microplastics and perfluorooctane sulfonate disrupt the homeostasis of intact planarians and the growth of regenerating planarians. Sci. Total Environ. 2024, 924, 171653. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liu, Y.; Feng, Y.; Wang, H.; Wang, Y.; Zhang, W. Response mechanism of submerged plants to stress induced by per- and poly-fluoroalkyl substances and ultraviolet-aged polylactic acid microplastics. J. Environ. Chem. Eng. 2025, 13, 118149. [Google Scholar] [CrossRef]
- Du, M.; Pu, Q.; Li, X.; Yang, H.; Hao, N.; Li, Q.; Zhao, Y.; Li, Y. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) adsorbed on microplastics in drinking water: Implications for female exposure, reproductive health risk and its mitigation strategies through in silico methods. J. Clean. Prod. 2023, 391, 136191. [Google Scholar] [CrossRef]
- Cole, M.; Gomiero, A.; Jaén-Gil, A.; Haave, M.; Lusher, A. Microplastic and PTFE contamination of food from cookware. Sci. Total Environ. 2024, 929, 172577. [Google Scholar] [CrossRef]
- Brunnbauer, L.; Jirku, M.; Quarles, C.D., Jr.; Limbeck, A. Capabilities of simultaneous 193 nm - LIBS/LA-ICP-MS imaging for microplastics characterization. Talanta 2024, 269, 125500. [Google Scholar] [CrossRef]
- Hatinoglu, M.D.; Perreault, F.; Apul, O.G. Modified linear solvation energy relationships for adsorption of perfluorocarboxylic acids by polystyrene microplastics. Sci. Total Environ. 2023, 860, 160524. [Google Scholar] [CrossRef]
- Enyoh, C.E.; Wang, Q.; Wang, W.; Chowdhury, T.; Rabin, M.H.; Islam, R.; Yue, G.; Yichun, L.; Xiao, K. Sorption of Per- and Polyfluoroalkyl Substances (PFAS) using Polyethylene (PE) microplastics as adsorbent: Grand Canonical Monte Carlo and Molecular Dynamics (GCMC-MD) studies. Int. J. Environ. Anal. Chem. 2024, 104, 2719–2735. [Google Scholar] [CrossRef]
- Belmaker, I.; Anca, E.D.; Rubin, L.P.; Magen-Molho, H.; Miodovnik, A.; van der Hal, N. Adverse health effects of exposure to plastic, microplastics and their additives: Environmental, legal and policy implications for Israel. Isr. J. Health Policy Res. 2024, 13, 44. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Shi, Y.-Z.; Guan, Q. The Microplastic–PFAS Nexus: From Co-Occurrence to Combined Toxicity in Aquatic Environments. Toxics 2025, 13, 1041. https://doi.org/10.3390/toxics13121041
Wang P, Shi Y-Z, Guan Q. The Microplastic–PFAS Nexus: From Co-Occurrence to Combined Toxicity in Aquatic Environments. Toxics. 2025; 13(12):1041. https://doi.org/10.3390/toxics13121041
Chicago/Turabian StyleWang, Ping, Yu-Zhen Shi, and Qingqing Guan. 2025. "The Microplastic–PFAS Nexus: From Co-Occurrence to Combined Toxicity in Aquatic Environments" Toxics 13, no. 12: 1041. https://doi.org/10.3390/toxics13121041
APA StyleWang, P., Shi, Y.-Z., & Guan, Q. (2025). The Microplastic–PFAS Nexus: From Co-Occurrence to Combined Toxicity in Aquatic Environments. Toxics, 13(12), 1041. https://doi.org/10.3390/toxics13121041
