Environmental Transport and Transformation of Pollutants
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
List of Contributions
- Zhang, S.; Yecrkenbieke, G.; Shi, S.; Wang, Z.; Yi, L.; Lu, X. Adsorption of Pyrene and Arsenite by Micro/Nano Carbon Black and Iron Oxide. Toxics 2024, 12, 251. https://doi.org/10.3390/toxics12040251.
- Liu, Z.; Lin, X.; Wang, X.; Sun, M.; Ma, S.; Zhang, S. Shift in Bacterial Community Structure in the Biodegradation of Benzene and Toluene under Sulfate-Reducing Condition. Toxics 2024, 12, 423. https://doi.org/10.3390/toxics12060423.
- Khan, A.U.H.; Liu, Y.; Naidu, R.; Fang, C.; Shon, H.K.; Zhang, H.; Dharmarajan, R. Changes in the Aggregation Behaviour of Zinc Oxide Nanoparticles Influenced by Perfluorooctanoic Acid, Salts, and Humic Acid in Simulated Waters. Toxics 2024, 12, 602. https://doi.org/10.3390/toxics12080602.
- Yang, K.; Hung, H.; Huang, W.; Hsieh, C.; Chen, T. Multiphase Partitioning of Estrogens in a River Impacted by Feedlot Wastewater Discharge. Toxics 2024, 12, 671. https://doi.org/10.3390/toxics12090671.
- Hou, Y.; Lin, S.; Fan, J.; Zhang, Y.; Jing, G.; Cai, C. Enhanced Adsorption of Cadmium by a Covalent Organic Framework-Modified Biochar in Aqueous Solution. Toxics 2024, 12, 717. https://doi.org/10.3390/toxics12100717.
- Khan, A.U.H.; Liu, Y.; Naidu, R.; Fang, C.; Shon, H.K. Influence of Tetrabromobisphenol-A on the Fate and Behavior of Zinc Oxide Nanoparticles Affected by Salts, Humic Acid, and Bovine Serum Albumin in Water Systems. Toxics 2025, 13, 148. https://doi.org/10.3390/toxics13030148.
- Kawichai, S.; Sripan, P.; Rerkasem, A.; Rerkasem, K.; Srisukkham, W. Long-Term Retrospective Predicted Concentration of PM2.5 in Upper Northern Thailand Using Machine Learning Models. Toxics 2025, 13, 170. https://doi.org/10.3390/toxics13030170.
- Berrios-Rolón, P.J.; Cotto, M.C.; Márquez, F. Polycyclic Aromatic Hydrocarbons (PAHs) in Freshwater Systems: A Comprehensive Review of Sources, Distribution, and Ecotoxicological Impacts. Toxics 2025, 13, 321. https://doi.org/10.3390/toxics13040321.
- Cai, Y.; Xu, M.; Ouyang, M.; Wu, Y.; Wang, R.; Zheng, K.; Ren, G. Concentrations, Compositions and Human Exposure Risks to Organophosphate Esters in Indoor Air from Various Microenvironments in Guangzhou, China. Toxics 2025, 13, 531. https://doi.org/10.3390/toxics13070531.
- Shi, Y.; Yang, S.; Chen, W.; Zhang, A.; Li, Z.; Wang, L.; Lian, B. Migration Behavior of Technetium-99 in Granite, Clay Rock, and Shale: Insights into Anionic Exclusion Effects. Toxics 2025, 13, 760. https://doi.org/10.3390/toxics13090760.
- Berrios-Rolón, P.J.; Márquez, F.; Cotto, M.C. Occurrence and Distribution of Three Low Molecular Weight PAHs in Caño La Malaria, Cucharillas Marsh (Cataño, Puerto Rico): Spatial and Seasonal Variability, Sources, and Ecological Risk. Toxics 2025, 13, 860. https://doi.org/10.3390/toxics13100860.
- Xu, M.; Wu, Y.; Cai, Y.; Wang, R.; Ren, G. Cytotoxicity of Typical Diodoalkanes from Shale Gas Wastewater in HepG2 Cells. Toxics 2025, 13, 943. https://doi.org/10.3390/toxics13110943.
References
- Wang, F.; Xiang, L.; Sze-Yin Leung, K.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging contaminants: A One Health perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef]
- Meher, A.K.; Zarouri, A. Environmental applications of mass spectrometry for emerging contaminants. Molecules 2025, 30, 364. [Google Scholar] [CrossRef] [PubMed]
- Chettri, D.; Verma, A.K.; Chirania, M.; Verma, A.K. Metagenomic approaches in bioremediation of environmental pollutants. Environ. Pollut. 2024, 363 Pt 2, 125297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zheng, X.; Fan, W.; Wang, X.; Zhao, T.; Zhao, X.; Peijnenburg, W.J.G.M.; Vijver, M.G.; Wang, Y. Fate models of nanoparticles in the environment: A critical review and prospects. Environ. Sci. Nano 2025, 12, 3394–3412. [Google Scholar] [CrossRef]
- Gökçe, S.; Şengör, S.S. Reactive transport modeling of uranium in subsurface: Impact of field-scale heterogeneity and biogeochemical dynamics. Water 2025, 17, 514. [Google Scholar] [CrossRef]
- Rad, M.; Abtahi, A.; Berndtsson, R.; McKnight, U.S.; Aminifar, A. Interpretable machine learning for predicting the fate and transport of pentachlorophenol in groundwater. Environ. Pollut. 2024, 345, 123449. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X. Environmental Transport and Transformation of Pollutants. Toxics 2025, 13, 1028. https://doi.org/10.3390/toxics13121028
Lu X. Environmental Transport and Transformation of Pollutants. Toxics. 2025; 13(12):1028. https://doi.org/10.3390/toxics13121028
Chicago/Turabian StyleLu, Xiaoxia. 2025. "Environmental Transport and Transformation of Pollutants" Toxics 13, no. 12: 1028. https://doi.org/10.3390/toxics13121028
APA StyleLu, X. (2025). Environmental Transport and Transformation of Pollutants. Toxics, 13(12), 1028. https://doi.org/10.3390/toxics13121028
