Work as a Predictor of Ethylenethiourea (ETU) Exposure During Pregnancy Among Participants Enrolled in the SEMILLA Birth Cohort Study
Abstract
1. Introduction
Background and Rationale
2. Materials and Methods
2.1. Study Design
2.2. Study Setting
2.3. Study Population
2.4. Recruitment, Enrollment, and Follow-Up
2.5. Urinary Ethylenethiourea (ETU) Data Collection and Measurement
2.6. Chemical Analyses of ETU in Urine
2.7. Predictors of ETU
2.8. Statistical Analysis
3. Results
3.1. Sample Characteristics
| Characteristic | All Participants (N = 409) 1 | Agricultural Workers 2 (N = 111) | Non-Agricultural Workers (N = 149) | Non-Workers (N = 149) | p-Value |
|---|---|---|---|---|---|
A. Socioeconomic and Demographic Characteristics | |||||
| Maternal age | |||||
| M (SD) | 27.2 (5.8) | 28.7 (5.3) | 27.5 (6.2) | 25.8 (5.6) | <0.001 |
| Gestational age | |||||
| M (SD) | 15.3 (3.2) | 15.1 (3.0) | 14.9 (3.3) | 15.8 (3.1) | 0.053 |
| Current city of residence N (%) | 0.095 | ||||
| Cayambe canton | 162 (42.9) | 46 (45.1) | 61 (43.3) | 55 (40.7) | |
| Cayambe canton (Cayambe urban center) | 120 (31.7) | 21 (20.6) | 51 (36.2) | 48 (35.6) | |
| Pedro Moncayo canton | 42 (11.1) | 15 (14.7) | 13 (9.2) | 14 (10.4) | |
| Pedro Moncayo canton (Tabacundo urban center) | 54 (14.3) | 20 (19.6) | 16 (11.3) | 18 (13.3) | |
| Length of time living in current city (years) | |||||
| M (SD) | 11.5 (11.6) | 13.7 (12.4) | 11.9 (11.7) | 9.3 (10.6) | 0.010 |
| Status of current home N (%) | <0.001 | ||||
| Owned by participant/her husband or partner | 107 (26.2) | 44 (39.6) | 38 (25.5) | 25 (16.9) | |
| Rented/loaned/through services | 217 (53.0) | 43 (38.8) | 75 (50.3) | 99 (66.3) | |
| Owned by parents | 85 (20.8) | 24 (21.6) | 36 (24.2) | 25 (16.8) | |
| Length of time living in current house (years) | |||||
| M (SD) | 6.8 (8.8) | 8.7 (10.2) | 7.2 (9.1) | 5.0 (6.8) | 0.002 |
| Electricity in the home N (%) | 0.115 | ||||
| No | 3 (0.7) | 0 (0.0) | 0 (0.0) | 3 (2.0) | |
| Yes | 406 (99.3) | 111 (100.0) | 149 (100.0) | 146 (98.0) | |
| Material ownership scale | |||||
| M (SD) | 7.2 (1.9) | 7.4 (1.5) | 7.6 (1.9) | 6.7 (2.0) | <0.001 |
| Number of people that live at home | |||||
| M (SD) | 4.0 (2.1) | 3.8 (1.5) | 4.0 (2.2) | 4.2 (2.3) | 0.377 |
| Number of people <18 that live at home | |||||
| M (SD) | 1.4 (1.2) | 1.4 (0.9) | 1.3 (1.4) | 1.4 (1.3) | 0.861 |
| Lives at home with partner/husband N (%) | 0.118 | ||||
| No | 95 (23.2) | 18 (16.2) | 39 (26.2) | 38 (25.5) | |
| Yes | 314 (76.8) | 93 (83.8) | 110 (73.8) | 111 (74.5) | |
| Lives at home with children N (%) | 0.001 | ||||
| No | 145 (35.4) | 23 (20.7) | 62 (41.6) | 60 (40.3) | |
| Yes | 264 (64.6) | 88 (79.3) | 87 (58.4) | 89 (59.7) | |
| Marital status N (%) | 0.0004 | ||||
| Married | 107 (26.2) | 27 (24.3) | 49 (32.9) | 31 (20.8) | |
| Free union | 209 (51.1) | 65 (58.6) | 59 (39.6) | 85 (57.0) | |
| Separated/divorced/widowed | 13 (3.1) | 7 (6.3) | 5 (3.3) | 1 (0.7) | |
| Single | 80 (19.6) | 12 (10.8) | 36 (24.2) | 32 (21.5) | |
| Language spoken at home N (%) | 0.012 | ||||
| Spanish | 396 (96.8) | 103 (92.8) | 147 (98.6) | 146 (98.0) | |
| Quechua | 1 (0.3) | 0 (0.0) | 1 (0.7) | 0 (0.0) | |
| Mix of Spanish and Quechua | 12 (2.9) | 8 (7.2) | 1 (0.7) | 3 (2.0) | |
| Mother’s educational level (years) | |||||
| M (SD) | 12.2 (3.7) | 11.0 (3.3) | 13.3 (3.9) | 12.0 (3.4) | <0.001 |
| Spouse/partner educational level (years) | |||||
| N | 376 | 105 | 138 | 133 | |
| M (SD) | 11.7 (3.5) | 11.0 (3.1) | 12.5 (3.6) | 11.4 (3.5) | 0.002 |
| Currently, number of people that work for income at home | |||||
| N | 396 | 107 | 140 | 149 | |
| M (SD) | 1.9 (1.0) | 2.1 (0.9) | 2.2 (1.0) | 1.3 (0.8) | <0.001 |
| Total monthly income at home (US $) | |||||
| N | 364 | 99 | 125 | 140 | |
| M (SD) | $512 (227) | $636 (201) | $533 (218) | $404 (200) | <0.001 |
| Number of people that live from monthly income at home | |||||
| M (SD) | 4.2 (3.3) | 4.5 (4.6) | 4.2 (2.9) | 4.0 (2.4) | 0.487 |
| Primary person responsible for generating a majority of income at home N (%) | <0.001 | ||||
| Participant | 65 (15.9) | 22 (19.8) | 42 (28.2) | 1 (0.7) | |
| Husband/partner | 232 (56.7) | 54 (48.7) | 72 (48.3) | 106 (71.1) | |
| Both earn the same | 36 (8.8) | 24 (21.6) | 11 (7.4) | 1 (0.7) | |
| Parents | 42 (10.3) | 4 (3.6) | 18 (12.1) | 20 (13.4) | |
| Other | 22 (5.4) | 7 (6.3) | 5 (3.3) | 10 (6.7) | |
| Not applicable (no one) | 12 (2.9) | 0 (0.0) | 1 (0.7) | 11 (7.4) | |
| Financial hardship scale | |||||
| M (SD) | 1.8 (1.8) | 1.5 (1.6) | 1.6 (1.8) | 2.2 (1.7) | 0.005 |
| Mother’s self-reported ethnicity N (%) | 0.241 | ||||
| Indigenous | 88 (21.5) | 31 (27.9) | 29 (19.5) | 28 (18.8) | |
| Mestiza | 314 (76.8) | 78 (70.3) | 116 (77.8) | 120 (80.5) | |
| Afro-Ecuadorian | 3 (0.7) | 1 (0.9) | 1 (0.7) | 1 (0.7) | |
| White | 4 (1.0) | 1 (0.9) | 3 (2.0) | 0 (0.0) | |
| Partner’s ethnicity (reported by participant) N (%) | 0.403 | ||||
| Indigenous | 69 (16.9) | 25 (22.5) | 23 (15.4) | 21 (14.1) | |
| Mestizo | 298 (72.9) | 80 (72.1) | 109 (73.2) | 109 (73.2) | |
| Afro-Ecuadorian | 1 (0.2) | 0 (0.0) | 1 (0.7) | 0 (0.0) | |
| White | 6 (1.5) | 1 (0.9) | 3 (2.0) | 2 (1.3) | |
| Does not know/does not remember | 7 (1.7) | 2 (1.8) | 2 (1.3) | 3 (2.0) | |
| Not applicable (no partner) | 28 (6.9) | 3 (2.7) | 11 (7.4) | 14 (9.4) | |
B. Residential Environmental Characteristics | |||||
| Type of hygienic service at home (toilet) N (%) | 0.034 | ||||
| None | 3 (0.7) | 1 (0.9) | 1 (0.7) | 1 (0.7) | |
| Toilet with septic tank | 80 (19.6) | 31 (27.9) | 20 (13.4) | 29 (19.4) | |
| Toilet with sewage system | 325 (79.5) | 79 (71.2) | 128 (85.9) | 118 (79.2) | |
| Doesn’t know/does not remember | 1 (0.2) | 0 (0.0) | 0 (0.0) | 1 (0.7) | |
| Type of water consumed at home N (%) | 0.777 | ||||
| Open well | 2 (0.5) | 1 (0.9) | 1 (0.7) | 0 (0.0) | |
| Piped, non-potable (inside/outside of home) | 12 (2.9) | 2 (1.8) | 4 (2.6) | 6 (4.0) | |
| Piped potable water | 393 (96.1) | 108 (97.3) | 143 (96.0) | 142 (95.3) | |
| Tank delivery by truck/bottled | 2 (0.5) | 0 (0.0) | 1 (0.7) | 1 (0.7) | |
| Type of water for domestic use N (%) | 0.685 | ||||
| Open well | 2 (0.5) | 1 (0.9) | 1 (0.7) | 0 (0.0) | |
| Piped, non-potable (inside/outside of home) | 14 (3.4) | 2 (1.8) | 6 (4.0) | 6 (4.0) | |
| Piped potable water | 392 (95.9) | 108 (97.3) | 142 (95.3) | 142 (95.3) | |
| Tank delivery by truck/bottled | 1 (0.2) | 0 (0.0) | 0 (0.0) | 1 (0.7) | |
| Irrigation ditch/open water canal nearby N (%) | 0.977 | ||||
| No | 312 (76.3) | 85 (76.6) | 112 (75.2) | 115 (77.2) | |
| Yes | 95 (23.2) | 26 (23.4) | 36 (24.1) | 33 (22.1) | |
| Doesn’t know/does not remember | 2 (0.5) | 0 (0.0) | 1 (0.7) | 1 (0.7) | |
| Distance to irrigation ditch/water canal (meters) | 0.058 | ||||
| N | 75 | 21 | 28 | 26 | |
| M (SD) | 16.7 (17.3) | 24.2 (21.0) | 14.7 (14.2) | 12.9 (15.7) | |
| Has plots/vegetable patch N (%) | 0.636 | ||||
| No | 268 (65.5) | 70 (63.1) | 96 (64.4) | 102 (68.5) | |
| Yes | 141 (34.5) | 41 (36.9) | 53 (35.6) | 47 (31.5) | |
| Primary person responsible for the plots/vegetable patch N (%) | 0.710 | ||||
| Participant | 50 (35.5) | 14 (34.1) | 18 (34.0) | 18 (38.3) | |
| Participant’s husband/partner | 34 (24.1) | 12 (29.3) | 14 (26.4) | 8 (17.0) | |
| Other | 57 (40.4) | 15 (36.6) | 21 (39.6) | 21 (44.7) | |
| Use of chemical products for the plots/vegetable patch N (%) | 0.026 | ||||
| No, never | 121 (85.8) | 30 (73.2) | 49 (92.5) | 42 (89.4) | |
| Yes | 20 (14.2) | 11 (26.8) | 4 (7.5) | 5 (10.6) | |
| During the past week, frequency of potato consumption | |||||
| M (SD) | 7.1 (5.8) | 8.1 (6.4) | 7.2 (5.7) | 6.4 (5.5) | 0.075 |
| During the past week, frequency of kidney tomato consumption | |||||
| M (SD) | 4.8 (4.1) | 4.9 (4.3) | 5.1 (4.1) | 4.5 (3.8) | 0.483 |
| During the past week, frequency of tree tomato consumption | |||||
| M (SD) | 1.7 (2.8) | 1.6 (2.4) | 1.8 (2.9) | 1.8 (2.9) | 0.702 |
| Air quality outside of the home N (%) | 0.958 | ||||
| Clean, without odor | 214 (52.3) | 57 (51.4) | 79 (53.0) | 78 (52.4) | |
| Other | 195 (47.7) | 54 (48.6) | 70 (47.0) | 71 (47.6) | |
C. Occupational Characteristics | |||||
| During the past week, number of weekly work hours | 0.491 | ||||
| N | 260 | 111 | 149 | - | |
| M (SD) | 38.5 (18.8) | 39.4 (16.4) | 37.8 (20.3) | - | |
| During the past week, contact with chemical products at work N (%) | <0.001 | ||||
| No | 218 (83.9) | 81 (73.0) | 137 (92.0) | - | |
| Yes | 42 (16.1) | 30 (27.0) | 12 (8.0) | - | |
| Access to water at work for hand hygiene N (%) | 0.282 | ||||
| Most of the time | 242 (93.0) | 102 (91.9) | 140 (94.0) | - | |
| Sometimes | 9 (3.5) | 3 (2.7) | 6 (4.0) | - | |
| Never | 9 (3.5) | 6 (5.4) | 3 (2.0) | - | |
| Access to soap at work for hand hygiene N (%) | 0.078 | ||||
| Most of the time | 227 (87.3) | 91 (82.0) | 136 (91.3) | - | |
| Sometimes | 7 (2.7) | 5 (4.5) | 2 (1.3) | - | |
| Never | 26 (10.0) | 15 (13.5) | 11 (7.4) | - | |
| Access to alcohol/gel at work for hand hygiene N (%) | <0.001 | ||||
| Most of the time | 211 (81.1) | 73 (65.8) | 138 (92.6) | - | |
| Sometimes | 9 (3.5) | 6 (5.4) | 3 (2.0) | - | |
| Never | 40 (15.4) | 32 (28.8) | 8 (5.4) | - | |
| Partner’s work sector N (%) | <0.001 | ||||
| Floriculture | 119 (40.6) | 51 (58.6) | 23 (22.5) | 45 (43.3) | |
| Agricultural work | 19 (6.5) | 14 (16.1) | 2 (2.0) | 3 (2.9) | |
| Other | 155 (52.9) | 22 (25.3) | 77 (75.5) | 56 (53.8) | |
D. Urinary ETUSG metabolite levels (µg/L) | |||||
| 0.036 | |||||
| N | 406 | 109 | 149 | 148 | |
| Geometric mean | 3.38 | 5.61 | 3.07 | 2.57 | |
| Mean | 6.84 | 10.07 | 5.94 | 5.37 | |
| Minimum | 0.28 | 0.28 | 0.40 | 0.34 | |
| 25th quantile | 1.59 | 3.25 | 1.47 | 1.38 | |
| Median | 3.25 | 5.27 | 2.89 | 2.33 | |
| 75th quantile | 5.95 | 10.56 | 5.10 | 3.92 | |
| 90th quantile | 13.60 | 18.79 | 12.53 | 9.84 | |
| Maximum | 196.84 | 122.40 | 116.38 | 196.84 | |
3.2. Overall Work Sector Models
3.3. Workers Only Models
4. Discussion
4.1. Limitations
4.2. Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ETU | Ethylenethiourea |
| ETUSG | Specific gravity corrected ethylenethiourea |
| EBDC | Ethylenebisdithiocarbamates |
| SEMILLA | Study of Environmental Exposure of Mothers and Infants Impacted by Large-Scale Agriculture |
| LMIC | Low- and middle-income country |
| FMV | First morning void |
References
- Hu, Z. What Socio-Economic and Political Factors Lead to Global Pesticide Dependence? A Critical Review from a Social Science Perspective. Int. J. Environ. Res. Public Health 2020, 17, 8119. [Google Scholar] [CrossRef]
- Hedlund, J.; Longo, S.B.; York, R. Agriculture, Pesticide Use, and Economic Development: A Global Examination (1990–2014). Rural. Sociol. 2020, 85, 519–544. [Google Scholar] [CrossRef]
- Fungicides Market Worth $32.3 Billion by 2029. Available online: https://www.marketsandmarkets.com/PressReleases/fungicides.asp (accessed on 23 October 2024).
- Stadler, K.; Li, X.; Liu, B.; Bao, W.; Wang, K.; Lehmler, H.J. Systematic Review of Human Biomonitoring Studies of Ethylenethiourea, a Urinary Biomarker for Exposure to Dithiocarbamate Fungicides. Environ. Pollut. 2022, 292 Pt B, 118419. [Google Scholar] [CrossRef]
- Montesano, M.A.; Wang, R.; Montesano, M.A.; Wang, R. Biomonitoring of Contemporary Pesticides: Ethylenethiourea in Occupational Settings. In Pesticides in the Modern World—Effects of Pesticides Exposure; IntechOpen: London, UK, 2011; Available online: https://www.intechopen.com/chapters/19598 (accessed on 23 October 2024).
- The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification, 2019 Edition. Available online: https://www.who.int/publications/i/item/9789240005662 (accessed on 23 October 2024).
- National Toxicology Program. 15th Report on Carcinogens. Available online: https://ntp.niehs.nih.gov/whatwestudy/assessments/cancer/roc (accessed on 23 October 2024).
- Houeto, P.; Bindoula, G.; Hoffman, J.R. Ethylenebisdithiocarbamates and ethylenethiourea: Possible human health hazards. Environ. Health Perspect. 1995, 103, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Khera, K.S. Ethylenethiourea: A review of teratogenicity and distribution studies and an assessment of reproduction risk. Crit. Rev. Toxicol. 1987, 18, 129–139. [Google Scholar] [CrossRef]
- Larsson, K.S.; Arnander, C.; Cekanova, E.; Kjellberg, M. Studies of teratogenic effects of the dithiocarbamates maneb, mancozeb, and propineb. Teratology 1976, 14, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Peters, P.J. Neurotoxicity and behavioral effects of thiram in rats. Environ. Health Perspect. 1976, 17, 35–43. [Google Scholar] [CrossRef]
- Graham, S.L.; Hansen, W.H. Effects of short-term administration of ethylenethiourea upon thyroid function of the rat. Bull. Environ. Contam. Toxicol. 1972, 7, 19–25. [Google Scholar] [CrossRef]
- Maranghi, F.; De Angelis, S.; Tassinari, R.; Chiarotti, F.; Lorenzetti, S.; Moracci, G.; Marcoccia, D.; Gilardi, E.; Di Virgilio, A.; Eusepi, A.; et al. Reproductive toxicity and thyroid effects in Sprague Dawley rats exposed to low doses of ethylenethiourea. Food Chem. Toxicol. 2013, 59, 261–271. [Google Scholar] [CrossRef]
- Panganiban, L.; Cortes-Maramba, N.; Dioquino, C.; Suplido, M.L.; Ho, H.; Francisco-Rivera, A.; Manglicmot-Yabes, A. Correlation between blood ethylenethiourea and thyroid gland disorders among banana plantation workers in the Philippines. Environ. Health Perspect. 2004, 112, 42–45. [Google Scholar] [CrossRef]
- Steenland, K.; Cedillo, L.; Tucker, J.; Hines, C.; Sorensen, K.; Deddens, J.; Cruz, V. Thyroid hormones and cytogenetic outcomes in backpack sprayers using ethylenebis(dithiocarbamate) (EBDC) fungicides in Mexico. Environ. Health Perspect. 1997, 105, 1126. [Google Scholar] [CrossRef]
- Fustinoni, S.; Campo, L.; Liesivuori, J.; Pennanen, S.; Vergieva, T.; Van Amelsvoort, L.G.; Bosetti, C.; Van Loveren, H.; Colosio, C. Biological monitoring and questionnaire for assessing exposure to ethylenebisdithiocarbamates in a multicenter European field study. Hum. Exp. Toxicol. 2008, 27, 681–691. [Google Scholar] [CrossRef]
- Colosio, C.; Harari, R.; Birindelli, S.; Campo, L.; Fustinoni, S.; Harari, H.; Somaruga, C.; Tiramani, M.; Visentin, S.; Maroni, M. Occupational exposure to fungicides in floriculture in Ecuador. G. Ital. Med. Lav. Ergon. 2003, 25 (Suppl. 3), 107–108. [Google Scholar]
- Arcury, T.A.; Chen, H.; Laurienti, P.J.; Howard, T.D.; Barr, D.B.; Mora, D.C.; Quandt, S.A. Farmworker and nonfarmworker Latino immigrant men in North Carolina have high levels of specific pesticide urinary metabolites. Arch. Environ. Occup. Health 2018, 73, 219–227. [Google Scholar] [CrossRef]
- Goldner, W.S.; Sandler, D.P.; Yu, F.; Hoppin, J.A.; Kamel, F.; LeVan, T.D. Pesticide Use and Thyroid Disease Among Women in the Agricultural Health Study. Am. J. Epidemiol. 2010, 171, 455. [Google Scholar] [CrossRef] [PubMed]
- Runkle, J.D.; Tovar-Aguilar, J.A.; Economos, E.; Flocks, J.; Williams, B.; Muniz, J.F.; Semple, M.; McCauley, L. Pesticide risk perception and biomarkers of exposure in Florida female farmworkers. J. Occup. Environ. Med. 2013, 55, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- van Wendel de Joode, B.; Mora, A.M.; Córdoba, L.; Cano, J.C.; Quesada, R.; Faniband, M.; Wesseling, C.; Ruepert, C.; Öberg, M.; Eskenazi, B.; et al. Aerial Application of Mancozeb and Urinary Ethylene Thiourea (ETU) Concentrations among Pregnant Women in Costa Rica: The Infants’ Environmental Health Study (ISA). Environ. Health Perspect. 2014, 122, 1321–1328. [Google Scholar] [CrossRef]
- Orozco, F.A.; Cole, D.C.; Forbes, G.; Kroschel, J.; Wanigaratne, S.; Arica, D. Monitoring Adherence to the International Code of Conduct: Highly Hazardous Pesticides in Central Andean Agriculture and Farmers’ Rights to Health. Int. J. Occup. Environ. Health 2009, 15, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Ecuador (ECU) Exports, Imports, and Trade Partners|The Observatory of Economic Complexity. Available online: https://oec.world/en/profile/country/ecu (accessed on 12 January 2024).
- Handal, A.J.; Hund, L.; Páez, M.; Bear, S.; Greenberg, C.; Fenske, R.A.; Barr, D.B. Characterization of Pesticide Exposure in a Sample of Pregnant Women in Ecuador. Arch. Environ. Contam. Toxicol. 2016, 70, 627–639. [Google Scholar] [CrossRef]
- Handal, A.J.; Orozco, F.; Montenegro, S.; Cadena, N.; Muñoz, F.; Ramírez del Rio, E.; Kaciroti, N. The Study of Environmental Exposure of Mothers and Infants Impacted by Large-Scale Agriculture (SEMILLA): Description of the Aims and Methods of a Community-Based Birth Cohort Study. Children 2024, 11, 1045. [Google Scholar] [CrossRef]
- Evolución y Desafíos de la Floricultura Ecuatoriana en el Futuro Próximo. Metroflor. 2021. Available online: https://www.metroflorcolombia.com/evolucion-y-desafios-de-la-floricultura-ecuatoriana-en-el-futuro-proximo/ (accessed on 12 January 2024).
- Játiva, G.F.B. Diagnóstico de la Economía local, el Caso del Cantón Cayambe Período 2000–2013. Available online: https://repositoriointerculturalidad.ec/jspui/handle/123456789/2430 (accessed on 12 January 2024).
- Handal, A.J.; Lozoff, B.; Breilh, J.; Harlow, S.D. Effect of community of residence on neurobehavioral development in infants and young children in a flower-growing region of Ecuador. Environ. Health Perspect. 2007, 115, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Handal, A.J.; Harlow, S.D.; Breilh, J.; Lozoff, B. Occupational exposure to pesticides during pregnancy and neurobehavioral development of infants and toddlers. Epidemiology 2008, 19, 851–859. [Google Scholar] [CrossRef]
- Handal, A.J.; McGough-Maduena, A.; Páez, M.; Skipper, B.; Rowland, A.S.; Fenske, R.A.; Harlow, S.D. A pilot study comparing observational and questionnaire measures as surrogates of residential pesticide exposures among residents impacted by the Ecuadorian Cut-Flower Farming industry. Arch. Environ. Occup. Health 2015, 70, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Institut National de Santé Publique du Québec. Home—CTQ|, I.N.S.P.Q. Available online: https://www.inspq.qc.ca/en/ctq (accessed on 25 January 2024).
- Bradman, A.; Eskenazi, B.; Barr, D.B.; Bravo, R.; Castorina, R.; Chevrier, J.; Kogut, K.; Harnly, M.E.; McKone, T.E. Organophosphate urinary metabolite levels during pregnancy and after delivery in women living in an agricultural community. Environ. Health Perspect. 2005, 113, 1802–1807. [Google Scholar] [CrossRef] [PubMed]
- MacPherson, S.; Arbuckle, T.E.; Fisher, M. Adjusting urinary chemical biomarkers for hydration status during pregnancy. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, J.R.; O’Brien, K.M.; Ferguson, K.K.; Buckley, J.P. Urinary specific gravity measures in the U.S. population: Implications for the adjustment of non-persistent chemical urinary biomarker data. Environ. Int. 2021, 156, 106656. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadísticas y Censos. Gestión de Estadísticas Permanentes a Hogares: Encuesta Nacional de Empleo, Desempleo y Subempleo. 2023. Available online: https://www.ecuadorencifras.gob.ec/institucional/home/ (accessed on 12 January 2024).
- Lentza-Rizos, C. Ethylenethiourea (ETU) in relation to use of ethylenebisdithiocarbamate (EBDC) fungicides. Rev. Environ. Contam. Toxicol. 1990, 115, 1–37. [Google Scholar] [CrossRef]
- Castorina, R.; Bradman, A.; Fenster, L.; Barr, D.B.; Bravo, R.; Vedar, M.G.; Harnly, M.E.; McKone, T.E.; Eisen, E.A.; Eskenazi, B. Comparison of Current-Use Pesticide and Other Toxicant Urinary Metabolite Levels among Pregnant Women in the CHAMACOS Cohort and NHANES. Environ. Health Perspect. 2010, 118, 856–863. [Google Scholar] [CrossRef]


| Estimate for Urinary log-ETUSG Metabolite Levels | p-Value | Estimate for Urinary ETUSG Metabolite Levels Higher than 4 µg/L | p-Value | Odds Ratio (95% CI) | ||
|---|---|---|---|---|---|---|
| Intercept | 0.852 | <0.001 | −1.320 | <0.001 | - | |
| Participant’s work sector at baseline | Agricultural worker | 0.780 | <0.001 | 1.692 | <0.001 | 5.43 (3.14, 9.38) |
| Non-agricultural worker | 0.178 | 0.125 | 0.64 | 0.014 | 1.89 (1.14, 3.14) | |
| Non-worker | 0 | Reference | 0 | Reference | - | |
| Air quality outside of the home in the past week | Clean, without odor | 0 | Reference | - | - | - |
| Other | 0.195 | 0.050 | - | - | - | |
| Frequency of tree tomato consumption in past week | - | - | - | 0.010 | 0.019 | 1.10 (1.02, 1.19) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Handal, A.J.; Orozco, F.; Montenegro, S.; Cadena, N.; Muñoz, F.; Ramírez del Rio, E.; Kaciroti, N. Work as a Predictor of Ethylenethiourea (ETU) Exposure During Pregnancy Among Participants Enrolled in the SEMILLA Birth Cohort Study. Toxics 2025, 13, 988. https://doi.org/10.3390/toxics13110988
Handal AJ, Orozco F, Montenegro S, Cadena N, Muñoz F, Ramírez del Rio E, Kaciroti N. Work as a Predictor of Ethylenethiourea (ETU) Exposure During Pregnancy Among Participants Enrolled in the SEMILLA Birth Cohort Study. Toxics. 2025; 13(11):988. https://doi.org/10.3390/toxics13110988
Chicago/Turabian StyleHandal, Alexis J., Fadya Orozco, Stephanie Montenegro, Nataly Cadena, Fabián Muñoz, Eileen Ramírez del Rio, and Niko Kaciroti. 2025. "Work as a Predictor of Ethylenethiourea (ETU) Exposure During Pregnancy Among Participants Enrolled in the SEMILLA Birth Cohort Study" Toxics 13, no. 11: 988. https://doi.org/10.3390/toxics13110988
APA StyleHandal, A. J., Orozco, F., Montenegro, S., Cadena, N., Muñoz, F., Ramírez del Rio, E., & Kaciroti, N. (2025). Work as a Predictor of Ethylenethiourea (ETU) Exposure During Pregnancy Among Participants Enrolled in the SEMILLA Birth Cohort Study. Toxics, 13(11), 988. https://doi.org/10.3390/toxics13110988

