Characterization, Source Analysis, and Ecological Risk Assessment of Heavy Metal Pollution in Surface Soils from the Central–Western Ali Region on the Tibetan Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sampling and Analysis
2.3. Evaluation of Heavy Metal Pollution
2.4. Heavy Metal Risk Assessment
3. Results
3.1. Semiquantitative Surface Soil XRD
3.2. Distribution of Heavy Metals in Surface Soil
3.3. Assessment of Heavy Metal Pollution
3.3.1. Geoaccumulation Index ()
3.3.2. Pollution Load Index ()
3.4. Heavy Metal Risk Assessment
3.4.1. Potential Ecological Risk Index ()
3.4.2. Single–Factor Pollution Index and Nemerow Integrated Pollution Index
3.5. Correlation Analysis
3.5.1. Correlations of Heavy Metals in the Surface Soils from the Central–Western Ali Region
3.5.2. Principal Components of Heavy Metal Elements in the Surface Soils from the Central–Western Ali Region
3.5.3. Correlations Between Heavy Metal Element Contents and Mineral Compositions in the Surface Soils from the Central–Western Ali Region
4. Discussion
4.1. Spatial Distribution of Heavy Metal Pollution and Its Relationship with Ore Deposits
4.2. Restrictive Effects of Mineral Compositions on Heavy Metal Enrichment and Migration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hossain, M.A.; Piyatida, P.; da Silva, J.A.T.; Fujita, M. Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J. Bot. 2012, 2012, 872875. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Not. 2011, 1, 402647. [Google Scholar] [CrossRef]
- Rajendran, S.; Priya, T.A.K.; Khoo, K.S.; Hoang, T.K.; Ng, H.S.; Munawaroh, H.S.H.; Karaman, C.; Orooji, Y.; Show, P.L. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere 2022, 287, 132369. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Sardar, K.H.A.N.; Shah, M.T.; Brusseau, M.L.; Khan, S.A.; Mainhagu, J. Transfer of heavy metals from soils to vegetables and associated human health risks at selected sites in Pakistan. Pedosphere 2018, 28, 666–679. [Google Scholar] [CrossRef] [PubMed]
- Štrbac, S.; Ranđelović, D.; Gajica, G.; Hukić, E.; Stojadinović, S.; Veselinović, G.; Orlić, J.; Tognetti, R.; Kašanin-Grubin, M. Spatial distribution and source identification of heavy metals in European mountain beech forests soils. Chemosphere 2022, 309, 136662. [Google Scholar] [CrossRef]
- Wu, Y.; Bin, H.; Zhou, J.; Luo, J.; Yu, D.; Sun, S.; Li, W. Atmospheric deposition of Cd accumulated in the montane soil, Gongga Mt. China. J. Soils Sediments 2011, 11, 940–946. [Google Scholar] [CrossRef]
- Zeng, S.; Li, X.; Yang, L.; Wang, D. Understanding heavy metal distribution in timberline vegetations: A case from the Gongga Mountain, eastern Tibetan Plateau. Sci. Total Environ. 2023, 874, 162523. [Google Scholar] [CrossRef] [PubMed]
- Smith-Downey, N.V.; Sunderland, E.M.; Jacob, D.J. Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model. J. Geophys. Res. Biogeosci. 2010, 115, 227–235. [Google Scholar] [CrossRef]
- Bindler, R. Contaminated lead environments of man: Reviewing the lead isotopic evidence in sediments, peat, and soils for the temporal and spatial patterns of atmospheric lead pollution in Sweden. Environ. Geochem. Health 2011, 33, 311–329. [Google Scholar] [CrossRef]
- Bing, H.; Wu, Y.; Li, J.; Xiang, Z.; Luo, X.; Zhou, J.; Sun, H.; Zhang, G. Biomonitoring trace element contamination impacted by atmospheric deposition in China’s remote mountains. Atmos. Res. 2019, 224, 30–41. [Google Scholar] [CrossRef]
- Moser, K.A.; Baron, J.S.; Brahney, J.; Oleksy, I.A.; Saros, J.E.; Hundey, E.J.; Sadro, S.; Kopáček, J.; Sommaruga, R.; Kainz, M.J.; et al. Mountain lakes: Eyes on global environmental change. Glob. Planet. Change 2019, 178, 77–95. [Google Scholar] [CrossRef]
- Li, Z.; He, Y.; Yang, X.; Theakstone, W.H.; Jia, W.; Pu, T.; Liu, Q.; He, X.; Song, B.; Zhang, N.; et al. Changes of the Hailuogou glacier, Mt. Gongga, China, against the background of climate change during the Holocene. Quat. Int. 2010, 218, 166–175. [Google Scholar] [CrossRef]
- Arellano, L.; Fernández, P.; Tatosova, J.; Stuchlik, E.; Grimalt, J.O. Long-range transported atmospheric pollutants in snowpacks accumulated at different altitudes in the Tatra Mountains (Slovakia). Environ. Sci. Technol. 2011, 45, 9268–9275. [Google Scholar] [CrossRef]
- Chen, Y.; Weng, L.; Ma, J.; Wu, X.; Li, Y. Review on the last ten years of research on source identification of heavy metal pollution in soils. J. Agro-Environ. Sci. 2019, 38, 2219–2238. [Google Scholar] [CrossRef]
- Liu, X.; Gao, W.; Wei, T.; Dong, Z.; Ren, J.; Shao, Y.; Chen, X. Distribution and source of heavy metals in Tibetan Plateau topsoil: New insight into the influence of long-range transported sources to the surrounding glaciers. Environ. Pollut. 2024, 346, 123498. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, H. Soil heavy metal (loid) pollution and health risk assessment of farmlands developed on two different terrains on the Tibetan Plateau, China. Chemosphere 2023, 335, 139148. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, G.; Hou, S.; Zhang, T.; Li, Z.; Du, W. Analysis of heavy metal-related indices in the Eboling permafrost on the Tibetan Plateau. Catena 2021, 196, 104907. [Google Scholar] [CrossRef]
- You, Q.; Chen, D.; Wu, F.; Pepin, N.; Cai, Z.; Ahrens, B.; Jiang, Z.; Wu, Z.; Kang, S.; AghaKouchak, A. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth-Sci. Rev. 2020, 210, 103349. [Google Scholar] [CrossRef]
- Skierszkan, E.K.; Dockrey, J.W.; Lindsay, M.B. Metal Mobilization from Thawing Permafrost is an Emergent Risk to Water Resources. ACS EST Water 2024, 5, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, T.; Zhang, Y.; Lü, D.; Wang, C.; Lü, Y.; Wu, X. Spatiotemporal patterns and driving factors of ecological vulnerability on the Qinghai-Tibet Plateau based on the google earth engine. Remote Sens. 2022, 14, 5279. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Sci. Inf. Database 1969, 2, 108–118. [Google Scholar]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Bhuyan, M.S.; Bakar, M.A.; Rashed-Un-Nabi, M.; Senapathi, V.; Chung, S.Y.; Islam, M.S. Monitoring and assessment of heavy metal contamination in surface water and sediment of the Old Brahmaputra River, Bangladesh. Appl. Water Sci. 2019, 9, 125. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A Sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Chen, R.; Cai, X.; Ding, G.; Ren, F.; Wang, Q.; Cheng, N.; Liu, J.; Li, L.; Shi, R. Ecological risk assessment of heavy metals in farmland soils in Beijing by three improved risk assessment methods. Environ. Sci. Pollut. Res. Int. Nov. 2021, 28, 57970–57982. [Google Scholar] [CrossRef] [PubMed]
- Petrosyan, V.; Pirumyan, G.; Perikhanyan, Y. Determination of heavy metal background concentration in bottom sediment and risk assessment of sediment pollution by heavy metals in the Hrazdan River (Armenia). Appl. Water Sci. 2019, 9, 102. [Google Scholar] [CrossRef]
- Wei-Xin, L.I.; Zhang, X.X.; Bing, W.U.; Shi-Lei, S.U.N.; Yan-Song, C.H.E.N.; Wen-Yang, P.A.N.; Da-Yong, Z.H.A.O.; Cheng, S.P. A comparative analysis of environmental quality assessment methods for heavy metal-contaminated soils. Pedosphere 2008, 18, 344–352. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Zhang, J.; Liu, S.; Ou, C.; Yan, J.; Sun, T. Status, fuzzy integrated risk assessment, and hierarchical risk management of soil heavy metals across China: A systematic review. Sci. Total Environ. 2021, 785, 147180. [Google Scholar] [CrossRef]
- Cheng, Y.A.; Tian, J.L. Background Values of Soil Elements and Their Distribution Characteristics in Tibet; Science Press: Beijing, China, 1993. [Google Scholar]
- Han, R.; Zhou, B.; Huang, Y.; Lu, X.; Li, S.; Li, N. Bibliometric overview of research trends on heavy metal health risks and impacts in 1989–2018. J. Clean. Prod. 2020, 276, 123249. [Google Scholar] [CrossRef]
- Adewumi, A.J.; Ogundele, O.D. Hidden hazards in urban soils: A meta-analysis review of global heavy metal contamination (2010–2022), sources and its Ecological and health consequences. Sustain. Environ. 2024, 10, 2293239. [Google Scholar] [CrossRef]
- Pekey, H.; Karakaş, D.; Bakoglu, M. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Mar. Pollut. Bull. 2004, 49, 809–818. [Google Scholar] [CrossRef]
- Li, Q.Y.; Wei, M.H.; Dai, H.M.; He, P.F.; Liu, K. Characteristics of soil heavy metal pollution and ecological risk assessment in Jinzhou City. Geol. Resour. 2021, 30, 465–472. [Google Scholar] [CrossRef]
- Garcıa-Sánchez, A.; Alastuey, A.; Querol, X. Heavy metal adsorption by different minerals: Application to the remediation of polluted soils. Sci. Total Environ. 1999, 242, 179–188. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- GB 15618-2018; Ministry of Ecology and Environment of the People’s Republic of China, State Administration for Market Regulation, Soil Environmental Quality—Risk Control Standard for Soil Contamination of Agricultural Land (Trial). China Environmental Science Press: Beijing, China, 2018.
- Wilson, S.C.; Lockwood, P.V.; Ashley, P.M.; Tighe, M. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environ. Pollut. 2010, 158, 1169–1181. [Google Scholar] [CrossRef]
- Guo, G.; Wu, F.; Xie, F.; Zhang, R. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J. Environ. Sci. 2012, 24, 410–418. [Google Scholar] [CrossRef]
- Luo, H.; Du, P.; Wang, P.; Chen, J.; Li, Y.; Wang, H.; Teng, Y.; Li, F. Chemodiversity of dissolved organic matter in cadmium-contaminated paddy soil amended with different materials. Sci. Total Environ. 2022, 825, 153985. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Pan, Y.; Zheng, L.; Xie, X. Effects of organic matter components and incubation on the cement-based stabilization/solidification characteristics of lead-contaminated soil. Chemosphere 2020, 260, 127646. [Google Scholar] [CrossRef]
- Zhou, L.X.; Wong, J.W.C. Effect of dissolved organic matter from sludge and sludge compost on soil copper sorption. J. Environ. Qual. 2001, 30, 878–883. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. The Crust. In Treatise on Geochemistry; Elsevier Ltd.: Amsterdam, The Netherlands, 2005; Volume 3, pp. 1–64. [Google Scholar] [CrossRef]
- Nriagu, J.O. A global assessment of natural sources of atmospheric trace metals. Nature 1989, 338, 47–49. [Google Scholar] [CrossRef]
- Roberts, T.L. Cadmium and phosphorous fertilizers: The issues and the science. Procedia Eng. 2014, 83, 52–59. [Google Scholar] [CrossRef]
- Barbosa, J.Z.; Poggere, G.C.; Teixeira, W.W.R.; Motta, A.C.V.; Prior, S.A.; Curi, N. Assessing soil contamination in automobile scrap yards by portable X-ray fluorescence spectrometry and magnetic susceptibility. Environ. Monit. Assess. 2020, 192, 46. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Liu, E.; Shen, J.; Zhou, H.; Geng, Q.; An, S. Characteristics and origins of heavy metals in sediments from Ximen Co Lake during summer monsoon season, a deep lake on the eastern Tibetan Plateau. J. Geochem. Explor. 2014, 136, 76–83. [Google Scholar] [CrossRef]
- Li, C.; Kang, S.; Zhang, Q. Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport. Environ. Pollut. 2009, 157, 2261–2265. [Google Scholar] [CrossRef]
- Sheng, J.; Wang, X.; Gong, P.; Tian, L.; Yao, T. Heavy metals of the Tibetan top soils: Level, source, spatial distribution, temporal variation and risk assessment. Environ. Sci. Pollut. Res. 2012, 19, 3362–3370. [Google Scholar] [CrossRef] [PubMed]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Wei, T.; Dong, Z.; Kang, S.; Zong, C.; Rostami, M.; Shao, Y. Atmospheric deposition and contamination of trace elements in snowpacks of mountain glaciers in the northeastern Tibetan Plateau. Sci. Total Environ. 2019, 689, 754–764. [Google Scholar] [CrossRef]
- Donnay, J.D.H. An Introduction to Crystal Chemistry. J. Am. Chem. Soc. 1965, 87, 141. [Google Scholar] [CrossRef]
- O’Neill, H.S.C.; Navrotsky, A. Simple spinels; crystallographic parameters, cation radii, lattice energies, and cation distribution. Am. Mineral. 1983, 68, 181–194. [Google Scholar]
- Wang, D.; Mathur, R.; Zheng, Y.; Qiu, K.; Wu, H. Redox-controlled antimony isotope fractionation in the epithermal system: New insights from a multiple metal stable isotopic combination study of the Zhaxikang Sb–Pb–Zn–Ag deposit in Southern Tibet. Chem. Geol. 2021, 584, 120541. [Google Scholar] [CrossRef]
- Hazarika, P.; Mishra, B.; Pruseth, K.L. Trace-element geochemistry of pyrite and arsenopyrite: Ore genetic implications for late Archean orogenic gold deposits in southern India. Mineral. Mag. 2017, 81, 661–678. [Google Scholar] [CrossRef]
- Sluzhenikin, S.F.; Krivolutskaya, N.A.; Rad’ko, V.A.; Malitch, K.N.; Distler, V.V.; Fedorenko, V.A. Ultramafic-mafic intrusions, volcanic rocks and PGE-Cu-Ni sulfide deposits of the Noril’sk Province, Polar Siberia. In Proceedings of the 12th International Platinum, Yekaterinburg, Russia, 11–14 August 2014. [Google Scholar] [CrossRef]
- Murakami, H.; Ishihara, S. Trace elements of Indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan: A femto-second LA-ICPMS study. Ore Geol. Rev. 2013, 53, 223–243. [Google Scholar] [CrossRef]
- Chopin, C. Coesite and pure pyrope in high-grade blueschists of the Western Alps: A first record and some consequences. Contrib. Mineral. Petrol. 1984, 86, 107–118. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Gao, T.S.; Wu, Y.B.; Gong, B.; Liu, X.M. Fluid flow during exhumation of deeply subducted continental crust: Zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite. J. Metamorph. Geol. 2007, 25, 267–283. [Google Scholar] [CrossRef]
- Risacher, F.; Alonso, H.; Salazar, C. The origin of brines and salts in Chilean salars: A hydrochemical review. Earth-Sci. Rev. 2003, 63, 249–293. [Google Scholar] [CrossRef]
- Cubillas, P.; Higgins, S.R. Friction characteristics of Cd-rich carbonate films on calcite surfaces: Implications for compositional differentiation at the nanometer scale. Geochem. Trans. 2009, 10, 7. [Google Scholar] [CrossRef]
- Farquhar, M.L.; Vaughan, D.J.; Hughes, C.R.; Charnock, J.M.; England, K.E. Experimental studies of the interaction of aqueous metal cations with mineral substrates: Lead, cadmium, and copper with perthitic feldspar, muscovite, and biotite. Geochim. Cosmochim. Acta 1997, 61, 3051–3064. [Google Scholar] [CrossRef]
- Stern, C.R.; Skewes, M.A.; Arévalo, A. Magmatic evolution of the giant El Teniente Cu–Mo deposit, central Chile. J. Petrol. 2011, 52, 1591–1617. [Google Scholar] [CrossRef]
- Li, Y.; Audétat, A. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth Planet. Sci. Lett. 2012, 355, 327–340. [Google Scholar] [CrossRef]
- Grant, K.J.; Wood, B.J. Experimental study of the incorporation of Li, Sc, Al and other trace elements into olivine. Geochim. Cosmochim. Acta 2010, 74, 2412–2428. [Google Scholar] [CrossRef]
- Xu, N.; Christodoulatos, C.; Braida, W. Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite: Effect of pH and competitive anions. Chemosphere 2006, 62, 1726–1735. [Google Scholar] [CrossRef] [PubMed]
- Kamali, A.A.; Moayyed, M.; Saumur, B.M.; Fadaeian, M. Mineralogy and mineral chemistry of dioritic dykes, quartz diorite enclaves and pyroxene of the Sungun Cu-Mo porphyry deposit, East Azerbaijan, Iran. Minerals 2022, 12, 1218. [Google Scholar] [CrossRef]
- Moëlo, Y.; Makovicky, E.; Mozgova, N.N.; Jambor, J.L.; Cook, N.; Pring, A.; Paar, W.; Nickel, E.H.; Graeser, S.; Karup-Møller, S.; et al. Sulfosalt systematics: A review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. Eur. J. Mineral. 2008, 20, 7–46. [Google Scholar] [CrossRef]
- Rimstidt, J.D.; Balog, A.; Webb, J. Distribution of trace elements between carbonate minerals and aqueous solutions. Geochim. Cosmochim. Acta 1998, 62, 1851–1863. [Google Scholar] [CrossRef]
- Manceau, A.; Marcus, M.A.; Tamura, N. Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. Rev. Miner. Geochem. 2002, 49, 341–428. [Google Scholar] [CrossRef]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef] [PubMed]







| Minimum Value (mg·kg−1) | Maximum Value (mg·kg−1) | Average Value (mg·kg−1) | Coefficient of Variation (%) | Skewness | Kurtosis | UCC [36] (mg·kg−1) | Risk–Based Screening Level [37] (mg·kg−1) (pH > 7.5) | Soil Background Value [30] (mg·kg−1) | |
|---|---|---|---|---|---|---|---|---|---|
| Cr | 12.5 | 370.1 | 82.4 | 80.0 | 2.4 | 6.7 | 35 | 250 | 77.4 |
| Co | 2.8 | 20.8 | 8.6 | 35.4 | 1.3 | 3.9 | 10 | — | 11.6 |
| Ni | 5.2 | 135 | 37.3 | 76.6 | 2.1 | 4.3 | 20 | 190 | 32.1 |
| Cu | 4.8 | 30.3 | 13.9 | 44.6 | 0.7 | 0.1 | 25 | 100 | 21.9 |
| As | 3.2 | 186 | 22.3 | 111 | 5.7 | 37.1 | 1.5 | 25 | 18.7 |
| Mo | 0.2 | 1.7 | 0.7 | 42.9 | 1.2 | 1.3 | 1.45 | — | 1.14 |
| Cd | 0.04 | 0.3 | 0.1 | 53.1 | 1.4 | 2.4 | 0.098 | 0.6 | 0.08 |
| Sb | 0.4 | 5.8 | 1.5 | 71.9 | 2.5 | 6.8 | 0.2 | — | 1.69 |
| Pb | 11.5 | 41.2 | 21.0 | 27.0 | 1.1 | 1.9 | 20 | 250 | 28.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; He, T.; Luo, J.; Ma, X.; Zhang, T. Characterization, Source Analysis, and Ecological Risk Assessment of Heavy Metal Pollution in Surface Soils from the Central–Western Ali Region on the Tibetan Plateau. Toxics 2025, 13, 972. https://doi.org/10.3390/toxics13110972
Huang Y, He T, Luo J, Ma X, Zhang T. Characterization, Source Analysis, and Ecological Risk Assessment of Heavy Metal Pollution in Surface Soils from the Central–Western Ali Region on the Tibetan Plateau. Toxics. 2025; 13(11):972. https://doi.org/10.3390/toxics13110972
Chicago/Turabian StyleHuang, Yanping, Tieguang He, Jun Luo, Xueyang Ma, and Tuo Zhang. 2025. "Characterization, Source Analysis, and Ecological Risk Assessment of Heavy Metal Pollution in Surface Soils from the Central–Western Ali Region on the Tibetan Plateau" Toxics 13, no. 11: 972. https://doi.org/10.3390/toxics13110972
APA StyleHuang, Y., He, T., Luo, J., Ma, X., & Zhang, T. (2025). Characterization, Source Analysis, and Ecological Risk Assessment of Heavy Metal Pollution in Surface Soils from the Central–Western Ali Region on the Tibetan Plateau. Toxics, 13(11), 972. https://doi.org/10.3390/toxics13110972

