Cumulative Exposure and Health Risk Assessment of PFAS in Animal-Derived Foods Using the Relative Potency Factor Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. PFAS Occurrence, Consumption, and Consumer Data
2.2. PEQ Exposure Assessment and Characterization
2.3. Data Presentation
3. Results and Discussion
3.1. Considerations on PFAS Occurrence Data
3.2. Evaluation of PFAS Intake Through Consumption of Milk and Dairy Products
3.3. Evaluation of PFAS Intake Through Consumption of Meat and Meat Products
3.4. Evaluation of PFAS Intake Through Consumption of Eggs and Egg Products
3.5. Evaluation of PFAS Intake Through Consumption of Fish and Seafood
3.6. Dietary Exposure Assessment and Characterization Through Animal-Derived Foods Across Consumer Groups
3.7. Future Perspectives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BMD | Benchmark Dose |
| CB | Concentration-Based |
| ECHA | European Chemicals Agency |
| EPA | Environmental Protection Agency |
| EWI | Estimated Weekly Intake |
| FC | Food Category |
| FDA | U.S. Food and Drug Administration |
| HBGV | Health-Base Guidance Value |
| HI | Hazard Index |
| HQ | Hazard Quotient |
| IARC | International Agency For Research On Cancer |
| IC | Index Compound |
| LB | Lower Bound |
| LOD | Limit of Detection |
| LOQ | Limit of Quantification |
| ML | Machine Learning |
| MLs | Maximum Levels |
| NAMs | New Approach Methodologies |
| PEQ | PFOA Equivalent |
| PFAS | Per- And Polyfluoroalkyl Substances |
| PFBA | Perfluorobutanoic Acid |
| PFBS | Perfluorobutanesulphonic Acid |
| PFDA | Perfluorodecanoic Acid |
| PFDoDA | Perfluorododecanoic Acid |
| PFDS | Perfluorodecanesulfonic Acid |
| PFHpA | Perfluoroheptanoic Acid |
| PFHpS | Perfluoroheptanesulfonic acid |
| PFHxA | Perfluorohexanoic Acid |
| PFHXS | Perfluorohexanesulphonic Acid |
| PFNA | Perfluorononanoic Acid |
| PFOA | Perfluorooctanoic Acid |
| PFOS | Perfluorooctanesulfonic Acid |
| PFPeA | Perfluorinatedpentanoic Acid |
| PFTeDA | Perfluorotetradecanoic Acid |
| PFTrDA | Perfluorotetradecanoic Acid |
| PFUnDA | Perfluoroundecanoic Acid |
| QSAR | Quantitative–Structure Activity Relationship |
| REACH | Registration, Evaluation, Authorisation and Restriction of Chemicals |
| RPF | Relative Potency Factor |
| TEF | Toxic Equivalency Factor |
| TWI | Tolerable Weekly Intake |
| UB | Upper Bound |
References
- Domingo, J.L.; Nadal, M. Per- and Polyfluoroalkyl Substances (PFASs) in Food and Human Dietary Intake: A Review of the Recent Scientific Literature. J. Agric. Food Chem. 2017, 65, 533–543. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.; et al. Risk to Human Health Related to the Presence of Perfluoroalkyl Substances in Food. EFSA J. 2020, 18, e06223. [Google Scholar] [CrossRef]
- Piva, E.; Fais, P.; Ioime, P.; Forcato, M.; Viel, G.; Cecchetto, G.; Pascali, J.P. Per- and Polyfluoroalkyl Substances (PFAS) Presence in Food: Comparison among Fresh, Frozen and Ready-to-Eat Vegetables. Food Chem. 2023, 410, 135415. [Google Scholar] [CrossRef] [PubMed]
- Hossini, H.; Massahi, T.; Parnoon, K.; Nouri, M. Per-and Polyfluoroalkyl Substances (PFAS) in Milk and Dairy Products: A Literature Review of the Occurrence, Contamination Sources, and Health Risks. Food Addit. Contam. Part A 2025, 42, 1284–1296. [Google Scholar] [CrossRef] [PubMed]
- Genualdi, S.; Beekman, J.; Carlos, K.; Fisher, C.M.; Young, W.; DeJager, L.; Begley, T. Analysis of Per- and Poly-Fluoroalkyl Substances (PFAS) in Processed Foods from FDA’s Total Diet Study. Anal. Bioanal. Chem. 2022, 414, 1189–1199. [Google Scholar] [CrossRef]
- Zeilmaker, M.J.; Fragki, S.; Verbruggen, E.M.J.; Bokkers, B.G.H.; Lijzen, J.P.A. Mixture Exposure to PFAS: A Relative Potency Factor Approach; RIVM: Bilthoven, The Netherlands, 2018. [Google Scholar]
- European Union. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, L 119/103. [Google Scholar]
- OECD. Reconciling Terminology of the Universe of Per- and Polyfluoroalkyl Substances: Recommendations and Practical Guidance. In OECD Series on Risk Management of Chemicals; OECD: Paris, France, 2021. [Google Scholar] [CrossRef]
- Zahm, S.; Bonde, J.P.; Chiu, W.A.; Hoppin, J.; Kanno, J.; Abdallah, M.; Blystone, C.R.; Calkins, M.M.; Dong, G.-H.; Dorman, D.C.; et al. Carcinogenicity of Perfluorooctanoic Acid and Perfluorooctanesulfonic Acid. Lancet Oncol. 2024, 25, 16–17. [Google Scholar] [CrossRef]
- EFSA Scientific Committee; Bennekou, S.H.; Allende, A.; Bearth, A.; Casacuberta, J.; Castle, L.; Coja, T.; Crépet, A.; Halldorsson, T.; Hoogenboom, L.; et al. Guidance on the Use of Read-across for Chemical Safety Assessment in Food and Feed. EFSA J. 2025, 23, e9586. [Google Scholar] [CrossRef]
- European Union. European Parliament Regulation (EC) No 1907/2006 of the European Parliament and of the council of 18 December 2006 L 396/1 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, Amending Directive 1999/45/EC and Repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as Well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC 2006. Off. J. Eur. Union 2006, L 396/1. [Google Scholar]
- European Food Safety Authority. Opinion of the Scientific Panel on Plant Protection Products and Their Residues to Evaluate the Suitability of Existing Methodologies and, If Appropriate, the Identification of New Approaches to Assess Cumulative and Synergistic Risks from Pesticides to Human Health with a View to Set MRLs for Those Pesticides in the Frame of Regulation (EC) 396/2005. EFSA J. 2008, 704, 1–85. [Google Scholar] [CrossRef]
- European Food Safety Authority. EFSA Panel on Plant Protection Products and their Residues (PPR) Scientific Opinion on the Identification of Pesticides to Be Included in Cumulative Assessment Groups on the Basis of Their Toxicological Profile. EFSA J. 2013, 11, 3293. [Google Scholar] [CrossRef]
- European Food Safety Authority. EFSA Panel on Plant Protection Products and their Residues (PPR) Guidance on the Use of Probabilistic Methodology for Modelling Dietary Exposure to Pesticide Residues. EFSA J. 2012, 10, 2839. [Google Scholar] [CrossRef]
- Bil, W.; Zeilmaker, M.; Fragki, S.; Lijzen, J.; Verbruggen, E.; Bokkers, B. Risk Assessment of Per- and Polyfluoroalkyl Substance Mixtures: A Relative Potency Factor Approach. Environ. Toxicol. Chem. 2020, 40, 859–870. [Google Scholar] [CrossRef]
- European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast). Off. J. Eur. Union 2020, L 435/1. [Google Scholar]
- European Union. Proposal for a Directive of the European Parliament and of the Council Amending Directive 2000/60/EC Establishing a Framework for Community Action in the Field of Water Policy, Directive 2006/118/EC on the Protection of Groundwater against Pollution and Deterioration and Directive 2008/105/EC on Environmental Quality Standards in the Field of Water Policy. 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52022PC0540 (accessed on 29 September 2025).
- Environmental Protection Agency. EPA’s PFAS Strategic Roadmap: Three Years of Progress; United States Environmental Protection Agency: Washington, DC, USA, 2024. Available online: https://www.epa.gov/system/files/documents/2024-11/epas-pfas-strategic-roadmap-2024_508.pdf (accessed on 29 September 2025).
- Environmental Protection Agency. Per- and Polyfluoroalkyl Substances (PFAS) Final PFAS National Primary Drinking Water Regulation; United States Environmental Protection Agency: Washington, DC, USA, 2025. Available online: https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas (accessed on 29 September 2025).
- European Food Safety Authority. Management of Left-censored Data in Dietary Exposure Assessment of Chemical Substances. EFSA J. 2010, 8, 1557. [Google Scholar] [CrossRef]
- European Food Safety Authority. EFSA Scientific Committee Guidance on Selected Default Values to Be Used by the EFSA Scientific Committee, Scientific Panels and Units in the Absence of Actual Measured Data. EFSA J. 2012, 10, 2579. [Google Scholar] [CrossRef]
- EFSA Scientific Committee; More, S.J.; Bampidis, V.; Benford, D.; Bennekou, S.H.; Bragard, C.; Halldorsson, T.I.; Hernández-Jerez, A.F.; Koutsoumanis, K.; Naegeli, H.; et al. Guidance on Harmonised Methodologies for Human Health, Animal Health and Ecological Risk Assessment of Combined Exposure to Multiple Chemicals. EFSA J. 2019, 17, e05634. [Google Scholar] [CrossRef]
- European Union. Commission Implementing Regulation (EU) 2022/1428 of 24 August 2022 Laying down Methods of Sampling and Analysis for the Control of Perfluoroalkyl Substances in Certain Foodstuffs. Off. J. Eur. Union 2022, L 221/66. [Google Scholar]
- European Union Reference Laboratory for Halogenated Persistent Organic Pollutants in Feed and Food. Guidance Document on Analytical Parameters for the Determination of Per- and Polyfluoroalkyl Substances (PFAS) in Food and Feed; version 2.0 of 10 September 2024. Available online: https://eurl-pops.eu/working-groups#_pfas (accessed on 29 September 2025).
- Goodrum, P.E.; Anderson, J.K.; Luz, A.L.; Ansell, G.K. Application of a Framework for Grouping and Mixtures Toxicity Assessment of PFAS: A Closer Examination of Dose-Additivity Approaches. Toxicol. Sci. 2021, 179, 262–278. [Google Scholar] [CrossRef]
- Curci, D.; Sundaram, T.S.; Ghidini, S.; Arioli, F. What We Know About Per- and Polyfluoroalkyl Contamination Levels in Milk. A Review from the Last Decade. Foods 2025, 14, 2274. [Google Scholar] [CrossRef]
- Mazzoni, M.; Buffo, A.; Cappelli, F.; Pascariello, S.; Polesello, S.; Valsecchi, S.; Volta, P.; Bettinetti, R. Perfluoroalkyl Acids in Fish of Italian Deep Lakes: Environmental and Human Risk Assessment. Sci. Total Environ. 2019, 653, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Marín-García, M.; Fàbregas, C.; Argenté, C.; Díaz-Ferrero, J.; Gómez-Canela, C. Accumulation and Dietary Risks of Perfluoroalkyl Substances in Fish and Shellfish: A Market-Based Study in Barcelona. Environ. Res. 2023, 237, 117009. [Google Scholar] [CrossRef]
- Mikolajczyk, S.; Warenik-Bany, M.; Pajurek, M.; Marchand, P. Perfluoroalkyl Substances in the Meat of Polish Farm Animals and Game—Occurrence, Profiles and Dietary Intake. Sci. Total Environ. 2024, 945, 174071. [Google Scholar] [CrossRef]
- Gazzotti, T.; Sirri, F.; Ghelli, E.; Zironi, E.; Zampiga, M.; Pagliuca, G. Perfluoroalkyl Contaminants in Eggs from Backyard Chickens Reared in Italy. Food Chem. 2021, 362, 130178. [Google Scholar] [CrossRef] [PubMed]
- Lasters, R.; Groffen, T.; Eens, M.; Coertjens, D.; Gebbink, W.A.; Hofman, J.; Bervoets, L. Home-Produced Eggs: An Important Human Exposure Pathway of Perfluoroalkylated Substances (PFAS). Chemosphere 2022, 308, 136283. [Google Scholar] [CrossRef]
- Depau, G.; Zampiga, M.; Rampazzo, G.; Zironi, E.; Sirri, F.; Pagliuca, G.; Gazzotti, T. Preliminary Results from Monitoring Perfluoroalkyl Substances Contamination in the Livers of Broiler Chickens Raised in Italy. Ital. J. Food Saf. 2025, 14, 13520. [Google Scholar] [CrossRef]
- Biesterbos, J.W.H.; den Braver, M.W. Risk Assessment PFAS in Home-Produced Chicken Eggs in Netherlands. Food Risk Assess Europe 2025, 3, 0064E. [Google Scholar] [CrossRef]
- Nobile, M.; Arioli, F.; Curci, D.; Ancillotti, C.; Scanavini, G.; Chiesa, L.M.; Panseri, S. Incidence of Perfluoroalkyl Substances in Commercial Eggs and Their Impact on Consumer’s Safety. Foods 2023, 12, 3846. [Google Scholar] [CrossRef]
- Langberg, H.A.; Hale, S.E.; Breedveld, G.D.; Jenssen, B.M.; Jartun, M. A Review of PFAS Fingerprints in Fish from Norwegian Freshwater Bodies Subject to Different Source Inputs. Environ. Sci. Process. Impacts 2022, 24, 330–342. [Google Scholar] [CrossRef]
- Berger, U.; Glynn, A.; Holmström, K.E.; Berglund, M.; Ankarberg, E.H.; Törnkvist, A. Fish Consumption as a Source of Human Exposure to Perfluorinated Alkyl Substances in Sweden—Analysis of Edible Fish from Lake Vättern and the Baltic Sea. Chemosphere 2009, 76, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Squadrone, S.; Ciccotelli, V.; Favaro, L.; Scanzio, T.; Prearo, M.; Abete, M.C. Fish Consumption as a Source of Human Exposure to Perfluorinated Alkyl Substances in Italy: Analysis of Two Edible Fish from Lake Maggiore. Chemosphere 2014, 114, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Koponen, J.; Airaksinen, R.; Hallikainen, A.; Vuorinen, P.J.; Mannio, J.; Kiviranta, H. Perfluoroalkyl Acids in Various Edible Baltic, Freshwater, and Farmed Fish in Finland. Chemosphere 2015, 129, 186–191. [Google Scholar] [CrossRef]
- Pohořelá, B.; Gramblička, T.; Doležal, M.; Dvořáková, D.; Pulkrabová, J.; Kouřimská, L.; Ilko, V.; Pánek, J. Nutritional Quality and Assessment of Contaminants in Farmed Atlantic Salmon (Salmo salar L.) of Different Origins. J. Food Qual. 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Bedi, M.; Sapozhnikova, Y.; Taylor, R.B.; Ng, C. Per- and Polyfluoroalkyl Substances (PFAS) Measured in Seafood from a Cross-Section of Retail Stores in the United States. J. Hazard. Mater. 2023, 459, 132062. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Dorne, J.L.C.; Crépet, A.; te Biesebeek, J.D.; Machera, K.; Hogstrand, C. Human Risk Assessment of Multiple Chemicals Using Component-based Approaches: A Horizontal Perspective. EFSA Support. Publ. 2020, 17, 1759E. [Google Scholar] [CrossRef]
- Ng, C.; Cousins, I.T.; DeWitt, J.C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Miller, M.; Patton, S.; Scheringer, M.; et al. Addressing Urgent Questions for PFAS in the 21st Century. Environ. Sci. Technol. 2021, 55, 12755–12765. [Google Scholar] [CrossRef]
- Meng, L.; Zhou, B.; Liu, H.; Chen, Y.; Yuan, R.; Chen, Z.; Luo, S.; Chen, H. Advancing Toxicity Studies of Per- and Poly-Fluoroalkyl Substances (Pfass) through Machine Learning: Models, Mechanisms, and Future Directions. Sci. Total Environ. 2024, 946, 174201. [Google Scholar] [CrossRef] [PubMed]
| Food Category | Consumer Group | G/Day |
|---|---|---|
| Fish and seafood | Toddlers | 9.4 |
| Adolescents | 18.7 | |
| Adults | 25.6 | |
| Elderly | 28.9 | |
| Meat and meat products | Toddlers | 47.0 |
| Adolescents | 125.3 | |
| Adults | 135.9 | |
| Elderly | 117.7 | |
| Eggs and egg products | Toddlers | 10.1 |
| Adolescents | 15.9 | |
| Adults | 18.6 | |
| Elderly | 18.3 | |
| Milk and dairy products | Toddlers | 324.5 |
| Adolescents | 318.0 | |
| Adults | 254.6 | |
| Elderly | 237.1 |
| Compound | RPF | |
|---|---|---|
| Min | Max | |
| PFBA | 0.1 | |
| PFBS | 0 | |
| PFDA | 4 | 10 |
| PFDS | 2 | |
| PFDoDA | 3 | |
| PFHpA | 0 | 1 |
| PFHpS * | 0.6 | 2 |
| PFPeS * | 0.001 | 0.6 |
| PFHxA | 0 | |
| PFHxS | 0.6 | |
| PFHxDA | 0.02 | |
| PFNA | 10 | |
| PFOA | 1 | |
| PFOS | 2 | |
| PFODA | 0.02 | |
| PFPeA | 0 | |
| PFTeDA | 0.3 | |
| PFTrDA * | 0.3 | 3 |
| PFUnDA | 4 | |
| PFBS | PFDA (Min) | PFDA (Max) | PFHxA | PFHxS | PFNA | PFOA | PFOS | PFPeA | Cumulative EWI (Min) | Cumulative EWI (Max) | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Toddlers | PEQ-EWI | 0.00 | 0.03 | 0.08 | 0.00 | 0.00 | 0.07 | 0.12 | 0.29 | 0.03 | 0.54 | 0.59 |
| %TWI | 0% | 1% | 2% | 0% | 0% | 2% | 3% | 7% | 1% | 12% | 13% | |
| CB-%TWI * | 0% | 0% | 0% | 0% | 0% | 3% | 3% | 26% | 33% | |||
| Adolescents | PEQ-EWI | 0.00 | 0.01 | 0.02 | 0.00 | 0.00 | 0.02 | 0.03 | 0.08 | 0.01 | 0.14 | 0.15 |
| %TWI | 0% | 0% | 0% | 0% | 0% | 0% | 1% | 2% | 0% | 3% | 3% | |
| CB-%TWI * | 0% | 0% | 0% | 0% | 0% | 1% | 1% | 7% | 9% | |||
| Adults | PEQ-EWI | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.02 | 0.04 | 0.00 | 0.07 | 0.08 |
| %TWI | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 1% | 0% | 2% | 2% | |
| CB-%TWI * | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 4% | 4% | |||
| Elderly | PEQ-EWI | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.04 | 0.00 | 0.07 | 0.07 |
| %TWI | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 1% | 0% | 2% | 2% | |
| CB-%TWI * | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 3% | 3% | |||
| Consumer Group | PFBA | PFBS | PFDA (Min) | PFDA (Max) | PFDS | PFDoDA | PFHpA (Min) | PFHpA (Max) | PFHpS (Min) | PFHpS (Max) | PFHxA | PFHxS | PFNA | PFOA | PFOS | PFPeA | PFTeDA | PFTrDA (Min) | PFTrDA (Max) | PFUnDA | Cumulative EWI (Min) | Cumulative EWI (Max) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Toddlers | PEQ-EWI | 0.00 | 0.00 | 0.18 | 0.44 | 0.09 | 0.32 | 0.00 | 0.02 | 0.00 | 0.01 | 0.00 | 0.00 | 0.29 | 0.57 | 2.53 | 0.00 | 0.00 | 0.01 | 0.05 | 0.11 | 4.11 | 4.44 |
| %TWI | 0% | 0% | 4% | 10% | 2% | 7% | 0% | 0% | 0% | 0% | 0% | 0% | 7% | 13% | 58% | 0% | 0% | 0% | 1% | 2% | 93% | 101% | |
| CB-%TWI * | 2% | 0% | 1% | 1% | 2% | 0% | 0% | 1% | 0% | 1% | 13% | 29% | 3% | 0% | 0% | 1% | 54% | ||||||
| Adolescents | PEQ-EWI | 0.00 | 0.00 | 0.12 | 0.31 | 0.06 | 0.23 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 | 0.4 | 1.8 | 0.00 | 0.00 | 0.00 | 0.04 | 0.07 | 2.91 | 3.15 |
| %TWI | 0% | 0% | 3% | 7% | 1% | 5% | 0% | 0% | 0% | 0% | 0% | 0% | 5% | 9% | 41% | 0% | 0% | 0% | 1% | 2% | 66% | 72% | |
| CB-%TWI * | 1% | 0% | 1% | 1% | 2% | 0% | 0% | 1% | 0% | 0% | 9% | 20% | 2% | 0% | 0% | 0% | 39% | ||||||
| Adults | PEQ-EWI | 0.00 | 0.00 | 0.09 | 0.22 | 0.04 | 0.16 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.28 | 1.26 | 0.00 | 0.00 | 0.00 | 0.03 | 0.05 | 2.04 | 2.20 |
| %TWI | 0% | 0% | 2% | 5% | 1% | 4% | 0% | 0% | 0% | 0% | 0% | 0% | 3% | 6% | 29% | 0% | 0% | 0% | 1% | 1% | 46% | 50% | |
| CB-%TWI * | 1% | 0% | 0% | 0% | 1% | 0% | 0% | 1% | 0% | 0% | 6% | 14% | 2% | 0% | 0% | 0% | 27% | ||||||
| Elderly | PEQ-EWI | 0.00 | 0.00 | 0.08 | 0.19 | 0.04 | 0.14 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.25 | 1.09 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 1.77 | 1.91 |
| %TWI | 0% | 0% | 2% | 4% | 1% | 3% | 0% | 0% | 0% | 0% | 0% | 0% | 3% | 6% | 25% | 0% | 0% | 0% | 1% | 1% | 40% | 43% | |
| CB-%TWI * | 1% | 0% | 0% | 0% | 1% | 0% | 0% | 0% | 0% | 0% | 6% | 12% | 0% | 0% | 0% | 0% | 23% | ||||||
| Consumer Group | PFHpA (Min) | PFHpA (Max) | PFHxA | PFHxS | PFOA | PFOS | PFTrDA (Min) | PFTrDA (Max) | PFUnDA | PFHpA (Min) | PFHpA (Max) | PFUnDA | Cumulative EWI (Min) | Cumulative EWI (Max) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Toddlers | PEQ-EWI | 0.00 | 0.03 | 0.00 | 0.00 | 0.63 | 3.15 | 0.00 | 0.02 | 0.02 | 0.00 | 0.03 | 0.00 | 3.80 | 3.85 |
| %TWI | 0% | 1% | 0% | 0% | 14% | 72% | 0% | 1% | 0% | 0% | 1% | 0% | 86% | 88% | |
| CB-%TWI * | 1% | 1% | 0% | 14% | 36% | 0% | 0% | 0% | 0% | 52% | |||||
| Adolescents | PEQ-EWI | 0.00 | 0.01 | 0.00 | 0.00 | 0.26 | 1.33 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 1.61 | 1.63 |
| %TWI | 0% | 0% | 0% | 0% | 6% | 30% | 0% | 0% | 0% | 0% | 0% | 0% | 37% | 37% | |
| CB-%TWI * | 0% | 0% | 0% | 6% | 15% | 0% | 0% | 0% | 0% | 22% | |||||
| Adults | PEQ-EWI | 0.00 | 0.01 | 0.00 | 0.00 | 0.20 | 1.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 1.23 | 1.24 |
| %TWI | 0% | 0% | 0% | 0% | 5% | 23% | 0% | 0% | 0% | 0% | 0% | 0% | 28% | 28% | |
| CB-%TWI * | 0% | 0% | 0% | 5% | 12% | 0% | 0% | 0% | 0% | 17% | |||||
| Elderly | PEQ-EWI | 0.00 | 0.01 | 0.00 | 0.00 | 0.19 | 0.96 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 1.16 | 1.18 |
| %TWI | 0% | 0% | 0% | 0% | 4% | 22% | 0% | 0% | 0% | 0% | 0% | 0% | 26% | 27% | |
| CB-%TWI * | 0% | 0% | 0% | 4% | 11% | 0% | 0% | 0% | 0% | 16% | |||||
| Consumer Group | PFBS | PFDA (Min) | PFDA (Max) | PFDS | PFDoDA | PFHpA (Min) | PFHpA (Max) | PFHxA | PFHxS | PFNA | PFOA | PFOS | PFPeA | PFTeDA | PFTrDA (Min) | PFTrDA (Max) | PFUnDA | Cumulative EWI (Min) | Cumulative EWI (Max) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Toddlers | PEQ-EWI | 0.00 | 1.93 | 4.83 | 0.00 | 0.35 | 0.00 | 0.04 | 0.00 | 0.01 | 2.56 | 1.38 | 15.59 | 0.02 | 0.00 | 0.04 | 0.41 | 0.73 | 22.62 | 25.93 |
| %TWI | 0% | 44% | 110% | 0% | 8% | 0% | 1% | 0% | 0% | 58% | 31% | 354% | 0% | 0% | 1% | 9% | 17% | 514% | 589% | |
| CB-%TWI * | 1% | 11% | 0% | 3% | 1% | 9% | 0% | 6% | 31% | 177% | 13% | 0% | 3% | 4% | 259% | |||||
| Adolescents | PEQ-EWI | 0.00 | 1.09 | 2.72 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.01 | 1.44 | 0.77 | 8.78 | 0.01 | 0.00 | 0.02 | 0.23 | 0.41 | 12.74 | 14.57 |
| %TWI | 0% | 25% | 62% | 0% | 5% | 0% | 0% | 0% | 0% | 33% | 18% | 199% | 0% | 0% | 1% | 5% | 9% | 289% | 331% | |
| CB-%TWI * | 0% | 6% | 0% | 2% | 0% | 5% | 0% | 3% | 18% | 100% | 7% | 0% | 2% | 2% | 146% | |||||
| Adults | PEQ-EWI | 0.00 | 0.96 | 2.39 | 0.00 | 0.18 | 0.00 | 0.02 | 0.00 | 0.01 | 1.27 | 0.68 | 7.72 | 0.01 | 0.00 | 0.02 | 0.20 | 0.36 | 11.20 | 12.83 |
| %TWI | 0% | 22% | 54% | 0% | 4% | 0% | 0% | 0% | 0% | 29% | 15% | 175% | 0% | 0% | 0% | 5% | 8% | 255% | 292% | |
| CB-%TWI * | 0% | 5% | 0% | 1% | 0% | 4% | 0% | 0% | 15% | 88% | 7% | 0% | 2% | 2% | 128% | |||||
| Elderly | PEQ-EWI | 0.00 | 1.03 | 2.58 | 0.00 | 0.19 | 0.00 | 0.02 | 0.00 | 0.01 | 1.37 | 0.73 | 8.31 | 0.01 | 0.00 | 0.02 | 0.22 | 0.39 | 12.06 | 13.83 |
| %TWI | 0% | 23% | 59% | 0% | 4% | 0% | 0% | 0% | 0% | 31% | 17% | 189% | 0% | 0% | 0% | 5% | 9% | 274% | 314% | |
| CB-%TWI * | 0% | 6% | 0% | 1% | 0% | 5% | 0% | 3% | 17% | 94% | 7% | 0% | 2% | 2% | 138% | |||||
| FC | PFBA | PFBS | PFDA (Min) | PFDA (Max) | PFDS | PFDoDA | PFHpA (Min) | PFHpA (Max) | PFHpS (Min) | PFHpS (Max) | PFHxA | PFHxS | PFNA | PFOA | PFOS | PFPeA | PFTeDA | PFTrDA (Min) | PFTrDA (Max) | PFUnDA | Cumulative EWI (Min) | Cumulative EWI (Max) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Toddlers | ||||||||||||||||||||||
| PEQ-Total EWI | 0.00 | 0.00 | 2.14 | 5.35 | 0.09 | 0.67 | 0.00 | 0.09 | 0.00 | 0.01 | 0.00 | 0.01 | 2.92 | 2.69 | 21.56 | 0.06 | 0.01 | 0.05 | 0.48 | 0.85 | 31.07 | 34.81 |
| PEQ-HI | 7.06 | 7.91 | ||||||||||||||||||||
| CB-HI | 3.98 | |||||||||||||||||||||
| Adolescents | ||||||||||||||||||||||
| PEQ-Total EWI | 0.00 | 0.00 | 1.22 | 3.05 | 0.06 | 0.43 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.01 | 1.67 | 1.47 | 11.98 | 0.02 | 0.00 | 0.03 | 0.27 | 0.50 | 17.40 | 19.50 |
| PEQ-HI | 3.95 | 4.43 | ||||||||||||||||||||
| CB-HI | 2.15 | |||||||||||||||||||||
| Adults | ||||||||||||||||||||||
| PEQ-Total EWI | 0.00 | 0.00 | 1.05 | 2.62 | 0.04 | 0.34 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.01 | 1.42 | 1.18 | 10.03 | 0.02 | 0.00 | 0.02 | 0.23 | 0.42 | 14.54 | 16.35 |
| PEQ-HI | 3.30 | 3.72 | ||||||||||||||||||||
| CB-HI | 1.76 | |||||||||||||||||||||
| Elderly | ||||||||||||||||||||||
| PEQ-Total EWI | 0.00 | 0.00 | 1.11 | 2.78 | 0.04 | 0.33 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.01 | 1.50 | 1.19 | 10.40 | 0.02 | 0.00 | 0.02 | 0.24 | 0.44 | 15.06 | 16.99 |
| PEQ-HI | 3.42 | 3.86 | ||||||||||||||||||||
| CB-HI | 1.82 | |||||||||||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rampazzo, G.; Arioli, F.; Pagliuca, G.; Depau, G.; Zironi, E.; Gazzotti, T. Cumulative Exposure and Health Risk Assessment of PFAS in Animal-Derived Foods Using the Relative Potency Factor Approach. Toxics 2025, 13, 931. https://doi.org/10.3390/toxics13110931
Rampazzo G, Arioli F, Pagliuca G, Depau G, Zironi E, Gazzotti T. Cumulative Exposure and Health Risk Assessment of PFAS in Animal-Derived Foods Using the Relative Potency Factor Approach. Toxics. 2025; 13(11):931. https://doi.org/10.3390/toxics13110931
Chicago/Turabian StyleRampazzo, Giulia, Francesco Arioli, Giampiero Pagliuca, Giacomo Depau, Elisa Zironi, and Teresa Gazzotti. 2025. "Cumulative Exposure and Health Risk Assessment of PFAS in Animal-Derived Foods Using the Relative Potency Factor Approach" Toxics 13, no. 11: 931. https://doi.org/10.3390/toxics13110931
APA StyleRampazzo, G., Arioli, F., Pagliuca, G., Depau, G., Zironi, E., & Gazzotti, T. (2025). Cumulative Exposure and Health Risk Assessment of PFAS in Animal-Derived Foods Using the Relative Potency Factor Approach. Toxics, 13(11), 931. https://doi.org/10.3390/toxics13110931

