Urinary Biomonitoring of Mycotoxins in Spanish Adults: Predictors of Exposure and Health Risk Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethical and Confidentiality
2.3. Determination of Mycotoxins in Urine
2.4. Statistical Analysis
2.5. Exposure and Risk Assessment
3. Results
3.1. Population Characteristics
3.2. Occurrence and Co-Occurrence of Mycotoxins in Urine
3.3. Statistical Relationships and Influence of Exposure Variables
3.4. Risk Assessment
4. Discussion
4.1. Occurrence and Co-Occurrence of Mycotoxins in Urine
4.2. Statistical Relationships and Influence of Exposure Variables
4.3. Risk Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dupouy, E.; Popping, B. Emerging contaminants. In Present Knowledge in Food Safety: A Risk-Based Approach Through the Food Chain; Knowles, M.E., Anelich, L.E., Boobis, A.R., Popping, B., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2023; pp. 267–269. [Google Scholar] [CrossRef]
- European Commission. Annual Report 2023—Alert and Cooperation Network; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2019, 60, 2773–2789. [Google Scholar] [CrossRef]
- Dasí-Navarro, N.; Lozano, M.; Llop, S.; Vioque, J.; Peiró, J.; Espulgues, A.; Manyes, L.; Vila-Donat, P. Associated factors with mycotoxin exposure in Spanish population. Environ. Res. 2023, 242, 117618. [Google Scholar] [CrossRef]
- Serrano, A.B.; Font, G.; Ruiz, M.J.; Ferrer, E. Co-occurrence and risk assessment of mycotoxins in food and diet from Mediterranean area. Food Chem. 2012, 135, 423–429. [Google Scholar] [CrossRef]
- Gallardo, J.A.; Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Deterministic and probabilistic dietary exposure assessment to Deoxynivalenol in Spain and the Catalonia region. Toxins 2022, 14, 506. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, C. Risk assessment for mycotoxin contamination in fish feeds in Europe. Mycotoxin Res. 2020, 36, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Saha Turna, N.; Wu, F. Aflatoxin M1 in milk: A global occurrence, intake, & exposure assessment. Trends Food Sci. Tech. 2021, 110, 183–192. [Google Scholar] [CrossRef]
- Pallarés, N.; Carballo, D.; Ferrer, E.; Rodríguez-Carrasco, Y.; Berrada, H. High-throughput determination of major mycotoxins with human health concerns in urine by LC-qTOF-MS and its application to an exposure study. Toxins 2022, 14, 42. [Google Scholar] [CrossRef]
- Lee, H.J.; Ryu, D. Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef]
- Pleadin, J.; Frece, J.; Markov, K. Mycotoxins in food and feed. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2019; Volume 89. [Google Scholar]
- Urugo, M.M.; Teka, T.A.; Berihune, R.A.; Teferi, S.L.; Garbaba, C.A.; Adebo, J.A.; Woldemariam, H.W.; Astatkie, T. Novel non-thermal food processing techniques and their mechanism of action in mycotoxins decontamination of foods. Innovat. Food Sci. Emerg. Technol. 2023, 85, 103312. [Google Scholar] [CrossRef]
- Claeys, L.; Romano, C.; De Ruyck, K.; Wilson, H.; Fervers, B.; Korenjak, M.; Zavadil, J.; Gunter, M.J.; De Saeger, S.; De Boevre, M.; et al. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1449–1464. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, X.; Wu, L.; Zhou, S.; Gong, Z.; Zhao, Y.; Wu, Y. Development of a sensitive and reliable UHPLC-MS/MS method for the determination of multiple urinary biomarkers of mycotoxin exposure. Toxins 2020, 12, 193. [Google Scholar] [CrossRef]
- Gacem, M.A.; Ould El Hadj-Khelil, A.; Boudjemaa, B.; Gacem, H. Mycotoxins Occurrence, Toxicity and Detection Methods. In Sustainable Agriculture Reviews 40; Lichtfouse, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–42. [Google Scholar] [CrossRef]
- Carballo, D.; Pallarés, N.; Ferrer, E.; Barba, F.J.; Berrada, H. Assessment of human exposure to deoxynivalenol, ochratoxin A, zearalenone and their metabolites biomarker in urine samples using LC-ESI-qTOF. Toxins 2021, 13, 530. [Google Scholar] [CrossRef]
- Xia, L.; Rasheed, H.; Routledge, M.N.; Wu, H.; Gong, Y.Y. Super-sensitive LC-MS analyses of exposure biomarkers for multiple mycotoxins in a rural Pakistan population. Toxins 2022, 14, 193. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, L119/103. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj/eng (accessed on 1 August 2025).
- International Agency for Research on Cancer (IARC). A review of human carcinogens: Chemical agents and related occupations. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 225–248. [Google Scholar]
- Foerster, C.; Ríos-Gajardo, G.; Gómez, P.; Muñoz, K.; Cortés, S.; Maldonado, C.; Ferreccio, C. Assessment of mycotoxin exposure in a rural county of Chile by Urinary Biomarker Determination. Toxins 2021, 13, 439. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Appropriateness to Set a Group Health-based Guidance Value for Zearalenone and Its Modified Forms. EFSA J. 2016, 14, 4425. [Google Scholar] [CrossRef]
- Franco, L.T.; Khaneghah, A.M.; Lee, S.H.I.; Oliveira, C.A.F. Biomonitoring of mycotoxin exposure using urinary biomarker approaches: A review. Toxin Rev. 2021, 40, 383–403. [Google Scholar] [CrossRef]
- Habschied, K.; Šarić, G.K.; Krstanović, V.; Mastanjević, K. Mycotoxins—Biomonitoring and Human Exposure. Toxins 2021, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Assunção, R.; Nunes, C.; Torres, D.; Alvito, P. Are data from mycotoxins’ urinary biomarkers and food surveys linked? A review underneath risk assessment. Food Rev. Int. 2021, 37, 373–398. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, 6113. [Google Scholar] [CrossRef] [PubMed]
- Gil, L.; Ruiz, P.; Manyes, L. An overview of the applications of hazards analysis and critical control point (HACCP) system to mycotoxins. Rev. Toxicol. 2016, 33, 50–55. [Google Scholar]
- Braun, D.; Abia, W.A.; Šarkanj, B.; Sulyok, M.; Waldhoer, T.; Erber, A.C.; Krska, R.; Turner, P.C.; Marko, D.; Ezekiel, C.N.; et al. Mycotoxin-mixture assessment in mother-infant pairs in Nigeria: From mothers’ meal to infants’ urine. Chemosphere 2022, 287, 132226. [Google Scholar] [CrossRef]
- Mihalache, O.A.; De Boevre, M.; Dellafiora, L.; De Saeger, S.; Moretti, A.; Pinson-Gadais, L.; Ponts, N.; Richard-Forget, F.; Susca, A.; Dall’Asta, C. The occurrence of non-regulated mycotoxins in foods: A systematic review. Toxins 2023, 15, 583. [Google Scholar] [CrossRef]
- Qiao, X.; Gang, L.; Zhang, J.; Du, J.; Yang, Y.; Yin, J.; Li, H.; Xie, J.; Jiang, Y.; Fang, X.; et al. Urinary analysis reveals high Alternaria mycotoxins exposure in the general population from Beijing, China. J. Environ. Sci. 2022, 118, 122–129. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Dietary exposure assessment to Alternaria toxins in the European population. EFSA J. 2016, 14, 4654. [Google Scholar] [CrossRef]
- Warth, B.; Sulyok, M.; Krska, R. LC-MS/MS-based multibiomarker approaches for the assessment of human exposure to mycotoxins. Anal. Bioanal. Chem. 2013, 405, 5687–5695. [Google Scholar] [CrossRef]
- De Nijs, M.; Mengelers, M.J.B.; Boon, P.E.; Heyndrickx, E.; Hoogenboom, L.A.P.; Lopez, P.; Mol, H.G.J. Strategies for estimating human exposure to mycotoxins via food. World Mycotoxin J. 2016, 9, 831–845. [Google Scholar] [CrossRef]
- Marin-Sáez, J.; Hernández-Mesa, M.; Gallardo-Ramos, J.A.; Gámiz-Gracia, L.; García-Campaña, A.M. Assessing human exposure to pesticides and mycotoxins: Optimization and validation of a method for multianalyte determination in urine samples. Anal. Bioanal. Chem. 2024, 416, 1935–1949. [Google Scholar] [CrossRef]
- Heyndrickx, E.; Sioen, I.; Huybrechts, B.; Callebaut, A.; De Henauw, S.; De Saeger, S. Human biomonitoring of multiple mycotoxins in the Belgian population: Results of the BIOMYCO study. Environ. Int. 2015, 84, 82–89. [Google Scholar] [CrossRef]
- Franco, L.T.; Petta, T.; Rottinghaus, G.E.; Bordin, K.; Gomes, G.A.; Alvito, P.; Assunção, R.; Oliveira, C.A.F. Assessment of mycotoxin exposure and risk characterization using occurrence data in foods and urinary biomarkers in Brazil. Food Chem. Toxicol. 2019, 128, 21–34. [Google Scholar] [CrossRef]
- Dasí-Navarro, N.; Lozano, M.; Llop, S.; Espulgues, A.; Cimbalo, A.; Font, G.; Manyes, L.; Mañes, J.; Vila-Donat, P. Development and validation of LC-Q-TOF-MS methodology to determine mycotoxin biomarkers in human urine. Toxins 2022, 14, 651. [Google Scholar] [CrossRef]
- De Ruyck, K.; De Boevre, M.; Huybrechts, I.; De Saeger, S. Dietary mycotoxins, coexposure, and carcinogenesis in humans: Short review. Mutat. Res. 2015, 766, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Malir, F.; Ostry, V.; Novotna, E. Toxicity of the Mycotoxin Ochratoxin A in the Light of Recent Data. Toxin Rev. 2013, 32, 19–33. [Google Scholar] [CrossRef]
- Wu, Q.; Dohnal, V.; Huang, L.; Kuča, K.; Wang, X.; Chen, G.Y. Metabolic Pathways of Ochratoxin A. Curr. Drug Metab. 2011, 12, 1–10. [Google Scholar] [CrossRef]
- Ali, N.; Blaszkewicz, M.; Degen, G.H. Occurrence of the mycotoxin citrinin and its metabolite dihydrocitrinone in urines of German adults. Arch. Toxicol. 2015, 89, 573–578. [Google Scholar] [CrossRef]
- Degen, G.H.; Ali, N.; Gundert-Remy, U. Preliminary data on citrinin kinetics in humans and their use to estimate citrinin exposure based on biomarkers. Toxicol. Lett. 2018, 282, 43–48. [Google Scholar] [CrossRef]
- Šarkanj, B.; Ezekiel, C.N.; Turner, P.C.; Abia, W.A.; Rychlik, M.; Krska, R.; Sulyok, M.; Warth, B. Ultra-sensitive, stable isotope assisted quantification of multiple urinary mycotoxin exposure biomarkers. Anal. Chim. Acta 2018, 1019, 84–92. [Google Scholar] [CrossRef]
- Fan, K.; Xu, J.; Jiang, K.; Liu, X.; Meng, J.; Di Mavungu, J.D.; Guo, W.; Zhang, Z.; Jing, J.; Li, H.; et al. Determination of multiple mycotoxins in paired plasma and urine samples to assess human exposure in Nanjing, China. Environ. Pollut. 2019, 248, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Vidal, A.; De Boevre, M.; De Saeger, S.; Nunes, C.; Torres, D.; Goios, A.; Lopes, C.; Assunção, R.; Alvito, P. Exposure assessment of Portuguese population to multiple mycotoxins: The human biomonitoring approach. Int. J. Hyg. Environ. Health 2019, 222, 913–925. [Google Scholar] [CrossRef]
- Martins, C.; Vidal, A.; De Boevre, M.; De Saeger, S.; Nunes, C.; Torres, D.; Goios, A.; Lopes, C.; Alvito, P.; Assunção, R. Burden of disease associated with dietary exposure to carcinogenic aflatoxins in Portugal using human biomonitoring approach. Food Res. Int. 2020, 134, 109210. [Google Scholar] [CrossRef]
- Collins, S.L.; Walsh, J.P.; Renaud, J.B.; McMillan, A.; Rulisa, S.; Miller, J.D.; Reid, G.; Sumarah, M.W. Improved methods for biomarker analysis of the big five mycotoxins enables reliable exposure characterization in a population of childbearing age women in Rwanda. Food Chem. Toxicol. 2021, 147, 111854. [Google Scholar] [CrossRef]
- Huang, Q.; Jiang, K.; Tang, Z.; Fan, K.; Meng, J.; Nie, D.; Zhao, Z.; Wu, Y.; Han, Z. Exposure assessment of multiple mycotoxins and cumulative health risk assessment: A biomonitoring-based study in the Yangtze River Delta, China. Toxins 2021, 13, 103. [Google Scholar] [CrossRef]
- Kyei, N.N.A.; Cramer, B.; Humpf, H.U.; Degen, G.H.; Ali, N.; Gabrysch, S. Assessment of multiple mycotoxin exposure and its association with food consumption: A human biomonitoring study in a pregnant cohort in rural Bangladesh. Arch. Toxicol. 2022, 96, 2123–2138. [Google Scholar] [CrossRef]
- Ali, N.; Degen, G.H. Urinary biomarkers of exposure to the mycoestrogen zearalenone and its modified forms in German adults. Arch. Toxicol. 2018, 92, 2691–2700. [Google Scholar] [CrossRef]
- Mitropoulou, A.; Gambacorta, L.; Warensjö Lemming, E.; Solfrizzo, M.; Olsen, M. Extended evaluation of urinary multi-biomarker analyses of mycotoxins in Swedish adults and children. World Mycotoxin J. 2018, 11, 647–659. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, S.; Gong, Y.Y.; Zhao, Y.; Wu, Y. Human dietary and internal exposure to zearalenone based on a 24-hour duplicate diet and following morning urine study. Environ. Int. 2020, 142, 105852. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Ramos, J.A.; Marin-Sáez, J.; Sanchis, V.; Gámiz-Gracia, L.; García-Campaña, A.M.; Hernández-Mesa, M.; Cano-Sancho, G. Simultaneous detection of mycotoxins and pesticides in human urine samples: A 24-h diet intervention study comparing conventional and organic diets in Spain. Food. Chem. Toxicol. 2024, 188, 114650. [Google Scholar] [CrossRef] [PubMed]
- Peris-Camarasa, B.; Pardo, O.; Fernández, S.F.; Dualde, P.; Coscollà, C. Assessment of acrylamide exposure in Spain by human biomonitoring: Risk and predictors of exposure. Environ. Pollut. 2023, 331, 121896. [Google Scholar] [CrossRef]
- Peris-Camarasa, B.; Pardo, O.; Dualde, P.; Coscollà, C. Multi-mycotoxin determination in human urine by UHPLC-MS/MS: An environmentally friendly and high-throughput approach. J. Chrom. A 2025, 1760, 466317. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Management of left-censored data in dietary exposure assessment of chemical substances. EFSA J. 2010, 8, 1557. [Google Scholar] [CrossRef]
- Sakhi, A.M.; Sabaredzovic, A.; Papadopoulou, E.; Cequier, E.; Thomsen, C. Levels, variability and determinants of environmental phenols in pairs of Norwegian mothers and children. Environ. Int. 2018, 114, 242–251. [Google Scholar] [CrossRef]
- Gys, C.; Bastiaensen, M.; Bruckers, L.; Colles, A.; Govarts, E.; Martin, L.R.; Verheyen, V.; Koppen, G.; Morrens, B.; Hond, E.D.; et al. Determinants of exposure levels of bisphenols in flemish adolescents. Environ. Res. 2021, 193, 110567. [Google Scholar] [CrossRef] [PubMed]
- Peris-Camarasa, B.; Pardo, O.; Fernández, S.F.; Dualde, P.; Coscollà, C. Risk assessment and predictors of the exposure to polycyclic aromatic hydrocarbons in Spanish adults by urinary human biomonitoring. Chemosphere 2024, 352, 141330. [Google Scholar] [CrossRef] [PubMed]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- HBM4EU. D10.2—Statistical Analysis Plan, Deliverable Report 10.5—Version 6.0. 2019. Available online: https://www.hbm4eu.eu/work-packages/deliverable-10-5-statistical-analysis-plan/ (accessed on 1 August 2025).
- Konishi, S.; Kitagawa, G. Information Criteria and Statistical Modeling; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Barr, D.B.; Wilder, L.C.; Caudill, S.P.; Gonzalez, A.J.; Needham, L.L.; Pirkle, J.L. Urinary creatinine concentrations in the U.S. population: Implications for urinary biologic monitoring measurements. Environ. Health Perspect. 2005, 113, 192–200. [Google Scholar] [CrossRef]
- Aylward, L.L.; Krishnan, K.; Kirman, C.R.; Nong, A.; Hays, S.M. Biomonitoring equivalents for deltamethrin. Regul. Toxicol. Pharmacol. 2011, 60, 189–199. [Google Scholar] [CrossRef]
- Mage, D.T.; Allen, R.H.; Gondy, G.; Smith, W.; Barr, D.B.; Needham, L.L. Estimating pesticide dose from urinary pesticide concentration data by creatinine correction in the third national health and nutrition examination survey (NHANES-III). J. Expo. Anal. Environ. Epidemiol. 2004, 14, 457–465. [Google Scholar] [CrossRef]
- Jager, A.V.; Tonin, F.G.; Baptista, G.Z.; Souto, P.C.M.C.; Oliveira, C.A.F. Assessment of aflatoxin exposure using serum and urinary biomarkers in São Paulo, Brazil: A pilot study. Int. J. Hyg. Environ. Health 2016, 219, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Warth, B.; Sulyok, M.; Berthiller, F.; Schuhmacher, R.; Krska, R. New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone. Toxicol. Lett. 2013, 220, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Studer-Rohr, I.; Schlatter, J.; Dietrich, D.R. Kinetic parameters and intra-individual fluctuations of ochratoxin A plasma levels in humans. Arch. Toxicol. 2000, 74, 499–510. [Google Scholar] [CrossRef]
- Puntscher, H.; Hankele, S.; Tillmann, K.; Attakpah, E.; Braun, D.; Kütt, M.-L.; Del Favero, G.; Aichinger, G.; Pahlke, G.; Höger, H.; et al. First insights into Alternaria multi-toxin in vivo metabolism. Toxicol. Lett. 2019, 301, 168–178. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). International frameworks dealing with human risk assessment of combined exposure to multiple chemicals. EFSA J. 2013, 11, 3313. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Opinion of the Scientific Committee on a request from EFSA related to a harmonized approach for risk assessment of substances which are both genotoxic and carcinogenic. EFSA J. 2005, 282, 1–31. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Risk assessment of aflatoxins in food. EFSA J. 2020, 18, 6040. [Google Scholar] [CrossRef]
- Martin, O.V. Synergistic effects of chemical mixtures: How frequent is rare? Curr. Opin. Toxicol. 2023, 36, 100424. [Google Scholar] [CrossRef]
- Wang, P.; Yao, Q.; Zhu, D.; Yang, X.; Chen, Q.; Lu, Q.; Liu, A. Resveratrol protects against deoxynivalenol-induced ferroptosis in HepG2 cells. Toxicology 2023, 494, 153589. [Google Scholar] [CrossRef]
- Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr. 2016, 57, 3489–3507. [Google Scholar] [CrossRef]
- Wielogorska, E.; Mooney, M.; Eskola, M.; Ezekiel, C.N.; Stranska, M.; Krska, R.; Elliott, C. Occurrence and human health impacts of mycotoxins in Somalia. J. Agric. Food Chem. 2019, 67, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
- De Gavelle, E.; De Lauzon-Guillain, B.; Charles, M.; Chevrier, C.; Hulin, M.; Sirot, V.; Merlo, M.; Nougadère, A. Chronic dietary exposure to pesticide residues and associated risk in the French ELFE cohort of pregnant women. Environ. Int. 2016, 92–93, 533–542. [Google Scholar] [CrossRef]
- Gari, M.; Koch, H.M.; Pälmke, C.; Jankowska, A.; Wesołowska, E.; Hanke, W.; Nowak, D.; Bose-O’Reilly, S.; Polańska, K. Determinants of phthalate exposure and risk assessment in children from Poland. Environ. Int. 2019, 127, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Fallahzadeh, R.A.; Khosravi, R.; Dehdashti, B.; Ghahramani, E.; Omidi, F.; Adli, A.; Miri, M. Spatial distribution variation and probabilistic risk assessment of exposure to chromium in ground water supplies; a case study in the east of Iran. Food Chem. Toxicol. 2018, 115, 260–266. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Cumulative dietary risk characterisation of pesticides that have acute effects on the nervous system. EFSA J. 2020, 18, e0687. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Cumulative dietary risk characterisation of pesticides that have chronic effects on the thyroid. EFSA J. 2020, 18, e0688. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr. Eval. Carcinog. Risks Hum. 2002, 82, 1–556. [Google Scholar]
- CAC/RCP 51–2003; Codex Alimentarius. Code of Practice for the Prevention and Reduction of Mycotoxin Contamination in Cereals. World Health Organization: Geneva, Switzerland, 2016.
- Vidal, A.; Mengelers, M.; Yang, S.; De Saeger, S.; De Boevre, M. Mycotoxin biomarkers of exposure: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1127–1155. [Google Scholar] [CrossRef]
- Solfrizzo, M.; Gambacorta, L.; Visconti, A. Assessment of multi-mycotoxin exposure in Southern Italy by urinary multi-biomarker determination. Toxins 2014, 6, 523–538. [Google Scholar] [CrossRef]
- Serasinghe, N.; Vepsäläinen, H.; Lehto, R.; Abdollahi, A.M.; Erkkola, M.; Roos, E.; Ray, C. Associations between socioeconomic status, home food availability, parental role-modeling, and children’s fruit and vegetable consumption: A mediation analysis. BMC Publ. Health 2023, 23, 1037. [Google Scholar] [CrossRef]
- Giezenaar, C.; Chapman, I.; Luscombe-Marsh, N.; Feinle-Bisset, C.; Horowitz, M.; Soenen, S. Ageing is associated with decreases in appetite and energy intake: A meta-analysis in healthy adults. Nutrients 2016, 8, 28. [Google Scholar] [CrossRef]
- Dardzińska, J.A.; Wasilewska, E.; Szupryczyńska, N.; Gładyś, K.; Wojda, A.; Śliwińska, A.; Janczy, A.; Pieszko, M.; Kaczkan, M.; Wernio, E.; et al. Inappropriate dietary habits in tobacco smokers as a potential risk factor for lung cancer: Pomeranian cohort study. Nutrition 2023, 108, 111965. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Cheng, X.; Guo, W.; Liu, X.; Zhang, Z.; Yao, Q.; Nie, D.; Yao, B.; Han, Z. Ochratoxin A in human blood plasma samples from apparently healthy volunteers in Nanjing, China. Mycotoxin Res. 2020, 36, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Apel, P.; Kortenkamp, A.; Koch, H.M.; Vogel, N.; Rüther, M.; Kasper-Sonnenberg, M.; Conrad, A.; Brüning, T.; Kolossa-Gehring, M. Time course of phthalate cumulative risks to male developmental health over a 27-year period: Biomonitoring samples of the German Environmental Specimen Bank. Environ. Int. 2020, 137, 105467. [Google Scholar] [CrossRef] [PubMed]
Population’s Descriptors | N (%) | Median (Range) |
---|---|---|
Sex | ||
Male | 261 (53.0) | − |
Female | 231 (47.0) | − |
Age (years) | − | 43 (18–65) |
18–30 | 103 (21.0) | − |
31–40 | 104 (21.1) | − |
41–50 | 153 (31.1) | − |
51–60 | 132 (26.8) | − |
Home location (Province) | ||
Castellon | 60 (12.2) | − |
Valencia | 261 (53.0) | − |
Alicante | 171 (34.8) | − |
Annual per capita income (euros, €) | ||
<19,999 | 179 (36.4) | − |
20,000–59,999 | 265 (53.8) | − |
>60,000 | 48 (9.8) | − |
Smoking status | ||
Non-smoker | 60 (12.2) | − |
Passive smoker | 261 (53.0) | − |
Smoker | 171 (34.8) | − |
Food consumed last 24 h (grams) | ||
Coffee | − | 50 (0–400) |
Nuts | − | 0 (0–210) |
Chocolate | − | 0 (0–200) |
Processed meat | − | 0 (0–750) |
Chicken | − | 0 (0–500) |
Fish | − | 0 (0–2250) |
Legumes | − | 0 (0–375) |
Rice | − | 0 (0–375) |
Cereals | − | 0 (0–375) |
Corn | − | 0 (0–150) |
Dairy products | − | 155 (0–1340) |
Biomarker | LoQ | DF (%) | P25 | P50 | AM | GM | P75 | P95 | Min.–Max. | SD |
---|---|---|---|---|---|---|---|---|---|---|
AFB1 | 0.005 | 76.0 | 0.005 (0.009) | 0.04 (0.05) | 0.08 (0.11) | 0.02 (0.03) | 0.08 (0.11) | 0.21 (0.26) | <LoQ–8.16 (<LoQ–12.2) | 0.38 (0.56) |
AFB2 | 0.005 | 78.3 | 0.007 (0.012) | 0.04 (0.05) | 0.06 (0.07) | 0.03 (0.03) | 0.08 (0.10) | 0.23 (0.25) | <LoQ–0.52 (<LoQ–0.61) | 0.07 (0.09) |
a AFG1 | 0.005 | 10.8 | − | − | 0.06 (0.08) | − | − | − | <LoQ–0.34 (<LoQ–0.33) | − |
AFG2 | 0.01 | 83.5 | 0.16 (0.19) | 0.56 (0.69) | 0.95 (1.25) | 0.28 (0.36) | 1.26 (1.66) | 3.37 (4.45) | <LoQ–5.52 (<LoQ–20.8) | 1.11 (1.70) |
AFM1 | 0.01 | 89.0 | 0.05 (0.08) | 0.30 (0.36) | 0.47 (0.55) | 0.18 (0.22) | 0.71 (0.83) | 1.48 (1.65) | <LoQ–4.84 (<LoQ–6.45) | 0.55 (0.65) |
b ∑AFs | − | − | 0.52 (0.64) | 1.03 (1.26) | 1.84 (1.99) | 0.92 (1.17) | 2.15 (2.71) | 4.79 (6.04) | 0.01–12.1 (0.03–21.4) | 1.61 (2.27) |
ZEN | 0.01 | <LoQ | <LoQ | 0.01 (0.02) | <LoQ | <LoQ (0.01) | 0.08 (0.11) | <LoQ–0.36 (<LoQ–0.35) | 0.03 (0.04) | |
ZAN | 0.01 | <LoQ | 0.04 (0.05) | 0.57 (0.66) | 0.03 (0.04) | 0.50 (0.65) | 2.05 (2.39) | <LoQ–46.2 (<LoQ–55.5) | 2.53 (2.86) | |
c ∑ZENs | − | − | <LoQ (0.01) | 0.08 (0.11) | 0.59 (0.68) | 0.06 (0.08) | 0.51 (0.66) | 2.05 (2.40) | <LoQ–46.2 (<LoQ–55.5) | 2.53 (2.86) |
OTA | 0.05 | <LoQ | <LoQ | 0.01 (0.06) | <LoQ | 0.05 (0.07) | 0.11 (0.16) | <LoQ–0.44 (<LoQ–0.64) | 0.05 (0.06) | |
AOH | 0.5 | <LoQ | 0.83 (1.11) | 1.43 (1.70) | 0.77 (0.98) | 1.86 (2.08) | 4.47 (4.74) | <LoQ–27.7 (<LoQ–35.0) | 2.09 (2.45) | |
a AME | 0.5 | − | − | 0.84 (1.01) | − | − | − | <LoQ–1.87 (<LoQ–2.49) | − | |
a CIT | 0.5 | − | − | 0.56 (0.56) | − | − | − | <LoQ–0.68 (<LoQ–0.75) | − | |
a STER | 0.005 | − | − | 0.03 (0.04) | − | − | − | <LoQ–0.31 (<LoQ–0.34) | − |
Biomarker | Variable | Standardized Coefficients (β) (95% Confidence Interval) | p-Value * | R2 |
---|---|---|---|---|
ΣAFs | Intercept | −22.174 (−29.083–−15.265) | <0.001 | 0.170 |
Specific gravity | 21.557 (14.784–28.330) | <0.001 | ||
Sex: Female | −0.160 (−0.246–−0.074) | 0.001 | ||
Sex: Male | Ref. | |||
Annual per capita income: <19,999 € | 0.226 (0.073–0.379) | 0.004 | ||
Annual per capita income: 20,000–59,999 € | 0.156 (0.009–0.302) | 0.037 | ||
Annual per capita income: >60,000 € | Ref. | |||
Processed meat (kg in last 24 h) | 0.657 (0.175–1.139) | 0.008 | ||
Chicken (kg in last 24 h) | 0.381 (0.036–0.727) | 0.031 | ||
Smoking status: Smoker | 0.109 (0.008–0.209) | 0.034 | ||
Smoking status: Passive smoker | 0.017 (−0.110–0.144) | 0.796 | ||
Smoking status: Non-smoker | Ref. | |||
ΣZENs | Intercept | −14.842 (−30.127–0.442) | 0.047 | 0.033 |
Specific gravity | 13.140 (−1.835–28.116) | 0.045 | ||
Cereals (kg in last 24 h) | 5.479 (0.949–10.009) | 0.018 | ||
Age | 0.009 (0.001–0.018) | 0.032 | ||
OTA | Intercept | −8.741 (−13.428–−4.054) | <0.001 | 0.068 |
Specific gravity | 6.907 (2.312–11.501) | 0.003 | ||
Smoking status: Smoker | 0.155 (0.088–0.223) | <0.001 | ||
Smoking status: Passive smoker | 0.085 (−0.004–0.174) | 0.063 | ||
Smoking status: Non-smoker | Ref. | |||
Age | 0.003 (0.001–0.006) | 0.014 | ||
AOH | Intercept | −26.213 (−33.037–−19.389) | <0.001 | 0.108 |
Specific gravity | 25.583 (18.893–32.273) | <0.001 | ||
Cereals (kg in last 24 h) | 1.888 (−0.146–3.922) | 0.049 |
GM | P95 | ||
---|---|---|---|
ΣAFs | PDI (µg/kg-bw/day) | 1.27–2.03 | 6.26–9.77 |
BMDL10 (µg/kg-bw/day | 0.40 | ||
MOE | 0.20–0.31 | 0.04–0.06 | |
ΣZENs | PDI (µg/kg-bw/day) | 0.01–0.02 | 0.36–0.65 |
TDI (µg/kg-bw/day) | 0.25 | ||
HQ | 0.05–0.08 | 1.45–2.58 | |
OTA | PDI (µg/kg-bw/day) | 0.02–0.04 | 0.11–0.16 |
BMDL10 (µg/kg-bw/day) | 14.5 | ||
MOE | 390–623 | 90–131 | |
AOH | PDI (µg/kg-bw/day) | 0.17–0.27 | 0.85–1.39 |
TTC (µg/kg-bw/day) | 0.0025 | ||
HQ | 67–107 | 341–554 | |
Cumulative exposure | HI | 67–108 | 341–557 |
MOET | 0.20–0.31 | 0.04–0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peris-Camarasa, B.; Coscollà, C.; Dualde, P.; Pardo, O. Urinary Biomonitoring of Mycotoxins in Spanish Adults: Predictors of Exposure and Health Risk Evaluation. Toxics 2025, 13, 856. https://doi.org/10.3390/toxics13100856
Peris-Camarasa B, Coscollà C, Dualde P, Pardo O. Urinary Biomonitoring of Mycotoxins in Spanish Adults: Predictors of Exposure and Health Risk Evaluation. Toxics. 2025; 13(10):856. https://doi.org/10.3390/toxics13100856
Chicago/Turabian StylePeris-Camarasa, Borja, Clara Coscollà, Pablo Dualde, and Olga Pardo. 2025. "Urinary Biomonitoring of Mycotoxins in Spanish Adults: Predictors of Exposure and Health Risk Evaluation" Toxics 13, no. 10: 856. https://doi.org/10.3390/toxics13100856
APA StylePeris-Camarasa, B., Coscollà, C., Dualde, P., & Pardo, O. (2025). Urinary Biomonitoring of Mycotoxins in Spanish Adults: Predictors of Exposure and Health Risk Evaluation. Toxics, 13(10), 856. https://doi.org/10.3390/toxics13100856