Effect Produced by a Mixture of Phenol, p-Cresol, and Acetophenone on Four Species of Microalgae: Tolerance, Biodegradation, and Metabolic Alterations
Abstract
1. Introduction
2. Materials and Methods
2.1. Microalgae Strain and Culture Conditions
2.2. Biodegradation Experiments
2.3. Determination of Phenolic Compounds
2.4. Enzymatic Assay Experiments
2.5. Statistical Analysis
3. Results and Discussion
3.1. Tolerance of Microalgae to a Mixture of Phenol-Derived Compounds
3.2. Biodegradation of Phenolic Compounds
3.3. Effect of Phenolic Compounds on the Activity Level of Antioxidant Enzymes in Different Microalgae
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APX | Ascorbate peroxidase |
CAT | Catalase |
PH | Phenol hydrolase |
References
- Murtaza, B.; Rahman, S.; Charles, C.; Tingheng, X.; Wensheng, Z. Environmental Impact Associated with Oil and Grease and Their Emerging Mitigation Strategies. Waste Biomass Valorization 2024, 15, 3913–3928. [Google Scholar] [CrossRef]
- Jan, S.; Mishra, A.K.; Bhat, M.A.; Bhat, M.A.; Jan, A.T. Pollutants in Aquatic System: A Frontier Perspective of Emerging Threat and Strategies to Solve the Crisis for Safe Drinking Water. Environ. Sci. Pollut. Res. 2023, 30, 113242–113279. [Google Scholar] [CrossRef]
- Chen, M.; Yin, G.; Zhao, N.; Gan, T.; Feng, C.; Gu, M.; Qi, P.; Ding, Z. Rapid and Sensitive Detection of Water Toxicity Based on Photosynthetic Inhibition Effect. Toxics 2021, 9, 321. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liao, X.; Ma, R.; Deng, N.; Wu, H.; Zhang, Z.; Chen, L.; Wang, Q.; Liao, Q.; Li, Q.; et al. Effects of Co-Exposure to Benzene, Toluene, and Xylene, Polymorphisms of MicroRNA Genes, and Their Interactions on Genetic Damage in Chinese Petrochemical Workers. Toxics 2024, 12, 821. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Liu, Y.; Wei, Y.; Li, X.; Liu, Y.; Su, G.; Wang, X.; Jia, J.; Yan, B. Threats of Per- and Poly-Fluoroalkyl Pollutants to Susceptible Populations. Sci. Total Environ. 2024, 921, 171188. [Google Scholar] [CrossRef]
- El-Gendy, N.S.; Nassar, H.N. Phycoremediation of Phenol-Polluted Petro-Industrial Effluents and Its Techno-Economic Values as a Win-Win Process for a Green Environment, Sustainable Energy and Bioproducts. J. Appl. Microbiol. 2021, 131, 1621–1638. [Google Scholar] [CrossRef]
- Narimani, M.; Gonbadi, M.; Navabi, M.; Khezri-shooshtari, F.; Ebrahim, A.A.; Zerafat, M.M. Photocatalytic Performance of N-Doped Ti 3 O 5 Nano-Catalyst for Phenolic Compounds Removal from Industrial Wastewaters. Sci. Rep. 2025, 15, 10511. [Google Scholar] [CrossRef]
- Chang, B.; Li, G.; Guo, F.; Lu, S.; Peng, Y.; Hou, J. Research on Carbon Dioxide-Assisted Electrocoagulation Technology for Treatment of Divalent Cations in Water. Water 2024, 16, 1715. [Google Scholar] [CrossRef]
- Li, H.; Meng, F. Efficiency, Mechanism, Influencing Factors, and Integrated Technology of Biodegradation for Aromatic Compounds by Microalgae: A Review. Environ. Pollut. 2023, 335, 122248. [Google Scholar] [CrossRef]
- Romero-Cruz, M.d.C.; Leon-Vaz, A.; Giráldez, I.; Vega, J.M.; Vigara, J. Effect of Heavy Metals on the Antioxidant System of the Acid-Tolerant Microalga Coccomyxa Onubensis. Algal Res. 2024, 77, 103337. [Google Scholar] [CrossRef]
- León-Vaz, A.; Torres-Franco, A.F.; García-Encina, P.A.; Muñoz, R. Developing a Microalgal-Bacterial Consortium for the Removal of Organic Pollutants from Petrochemical Industry. J. Water Process Eng. 2025, 73, 107663. [Google Scholar] [CrossRef]
- Cavalcanti Pessoa, L.; Pinheiro Cruz, E.; Mosquera Deamici, K.; Bomfim Andrade, B.; Santana Carvalho, N.; Rocha Vieira, S.; Alves da Silva, J.B.; Magalhaes Pontes, L.A.; Oliveira de Souza, C.; Druzian, J.I.; et al. A Review of Microalgae-Based Biorefineries Approach for Produced Water Treatment: Barriers, Pretreatments, Supplementation, and Perspectives. J. Environ. Chem. Eng. 2022, 10, 108096. [Google Scholar] [CrossRef]
- Nazos, T.T.; Mavroudakis, L.; Pergantis, S.A.; Ghanotakis, D.F. Biodegradation of Phenol by Chlamydomonas Reinhardtii. Photosynth. Res. 2020, 144, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Kumar Jaiswal, K.; Kumar, V.; Arora, N.; Vlaskin, M.S. Evaluation of the Mechanisms Underlying Altered Fatty Acid Biosynthesis in Heterotrophic Microalgal Strain Chlorella Sorokiniana during Biodegradation of Phenol and p - Nitrophenol. Environ. Sci. Pollut. Res. 2023, 30, 87866–87879. [Google Scholar] [CrossRef] [PubMed]
- Parsy, A.; Ficara, E.; Mezzanotte, V.; Mantovani, M.; Guyoneaud, R.; Monlau, F.; Sambusiti, C. Culture of Photosynthetic Microalgae Consortium in Artificial Produced Water Supplemented with Liquid Digestate in Closed Column Photobioreactors and Open-Pond Raceway. Biomass Bioenergy 2024, 184, 107165. [Google Scholar] [CrossRef]
- Serrano, A.; Contreras, C.; Ruiz-Filippi, G.; Borja, R.; Fermoso, F.G. Sequential Adaptation of Nannochloropsis Gaditana to Table Olive Processing Water. J. Environ. Sci. Health Part A 2017, 52, 986–991. [Google Scholar] [CrossRef]
- Meza-Escalante, E.R.; Lepe-Martinié, L.; Díaz-Quiroz, C.; Serrano-Palacios, D.; Álvarez-Valencia, L.H.; Rentería-Mexía, A.; Gortáres-Moroyoqui, P.; Ulloa-Mercado, G. Capacity of Marine Microalga Tetraselmis Suecica to Biodegrade Phenols in Aqueous Media. Sustainability 2022, 14, 6674. [Google Scholar] [CrossRef]
- Xiao, M.; Ma, H.; Sun, M.; Yin, X.; Feng, Q.; Song, H.; Gai, H. Characterization of Cometabolic Degradation of P-Cresol with Phenol as Growth Substrate by Chlorella Vulgaris. Bioresour. Technol. 2019, 281, 296–302. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, L.; Huang, K.; Chen, D.; Gao, F. Mechanisms and Application of Microalgae on Removing Emerging Contaminants from Wastewater: A Review. Bioresour. Technol. 2022, 364, 128049. [Google Scholar] [CrossRef]
- Chen, D.; Huo, S.; Cheng, P.; Cheng, Y.; Zhou, N. Treatment and Nutrient Recovery from Acetophenone Based Wastewater by an Integrated Catalytic Intense Pulsed Light and Tribonema Sp. Cultivation. Chem. Eng. Process. Process Intensif. 2021, 160, 108276. [Google Scholar] [CrossRef]
- Duan, W.; Meng, F.; Lin, Y.; Wang, G. Toxicological Effects of Phenol on Four Marine Microalgae. Environ. Toxicol. Pharmacol. 2017, 52, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tan, J.; Sun, T.; Wang, Y.; Meng, F. Safety Acclimation of Isochrysis Galbana Parke (Isochrysidaceae) for Enhancing Its Tolerance and Biodegradation to High-Level Phenol in Seawater. Ecotoxicol. Environ. Saf. 2021, 207, 111571. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.L.G.; Marques, L.G.; Colepicolo, P. Antioxidant Enzymes Are Induced by Phenol in the Marine Microalga Lingulodinium Polyedrum. Ecotoxicol. Environ. Saf. 2015, 116, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Bastos, P.D.A.; Galinha, C.F.; Santos, M.A.; Carvalho, P.J.; Crespo, J.G. Predicting the Concentration of Hazardous Phenolic Compounds in Refinery Wastewater—A Multivariate Data Analysis Approach. Environ. Sci. Pollut. Res. 2022, 29, 1482–1490. [Google Scholar] [CrossRef]
- Harris, E.H. The Chlamydomonas Sourcebook: Laboratory Use. In Chlamydomonas Sourceb; Elsevier: San Diego, CA, USA, 2009; pp. 241–302. [Google Scholar]
- Guillard, R. Culture of Phytoplankton for Feeding Marine Invertebrates. In Culture of Marine Invertebrates Animals; Smith, M.L., Chanley, M.H., Eds.; Plenum Press: New York, NY, USA, 1975; pp. 29–60. [Google Scholar]
- Wang, Y.; Meng, F.; Li, H.; Zhao, S.; Liu, Q.; Lin, Y.; Wang, G.; Wu, J. Biodegradation of Phenol by Isochrysis Galbana Screened from Eight Species of Marine Microalgae: Growth Kinetic Models, Enzyme Analysis and Biodegradation Pathway. J. Appl. Phycol. 2019, 31, 445–455. [Google Scholar] [CrossRef]
- León-Vaz, A.; León, R.; Díaz-Santos, E.; Vigara, J.; Raposo, S. Using Agro-Industrial Wastes for Mixotrophic Growth and Lipids Production by the Green Microalga Chlorella Sorokiniana. N. Biotechnol. 2019, 51, 31–38. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, X.; Zhang, F.; Wang, Y.; Wu, Y.; Jiang, Z.; Hao, S.; Ye, S.; Zhang, H.; Zhang, X. Use Microalgae to Treat Coke Wastewater for Producing Biofuel: Influence of Phenol on Photosynthetic Properties and Intracellular Components of Microalgae. Chemosphere 2024, 349, 140805. [Google Scholar] [CrossRef]
- Das, B.; Mandal, T.K.; Patra, S. A Comprehensive Study on Chlorella Pyrenoidosa for Phenol Degradation and Its Potential Applicability as Biodiesel Feedstock and Animal Feed. Appl. Biochem. Biotechnol. 2015, 176, 1382–1401. [Google Scholar] [CrossRef]
- Koletti, A.; Skliros, D.; Kalloniati, C.; Marka, S.; Eleftheria, M.-E.; Infante, C.; Mantecón, L.; Flemetakis, E. Global Omics Study of Tetraselmis Chuii Reveals Time - Related Metabolic Adaptations upon Oxidative Stress. Appl. Microbiol. Biotechnol. 2024, 108, 138. [Google Scholar] [CrossRef]
- Abu Jayyab, M.; Al-Zuhair, S. Use of Microalgae for Simultaneous Industrial Wastewater Treatment and Biodiesel Production. Int. J. Environ. Res. 2020, 14, 311–322. [Google Scholar] [CrossRef]
- Radziff, S.B.M.; Ahmad, S.A.; Shaharuddin, N.A.; Merican, F.; Kok, Y.Y.; Zulkharnain, A.; Gomez-Fuentes, C.; Wong, C.Y. Potential Application of Algae in Biodegradation of Phenol: A Review and Bibliometric Study. Plants 2021, 10, 2677. [Google Scholar] [CrossRef]
- Ali, N.; Hellen, B.J.; Duanmu, C.; Yang, Y.; Nawaz, S.; Khan, A.; Ali, F.; Gao, X.; Bilal, M.; Iqbal, H.M.N. Effective Remediation of Petrochemical Originated Pollutants Using Engineered Materials with Multifunctional Entities. Chemosphere 2021, 278, 130405. [Google Scholar] [CrossRef]
- Patelou, M.; Koletti, A.; Infante, C.; Skliros, D.; Komaitis, F.; Kalloniati, C.; Tsiplakou, E.; Mavrommatis, A.; Mantecón, L. Fleme Omics Exploration of Tetraselmis Chuii Adaptations to Diverse Light Regimes. Antonie Van Leeuwenhoek 2025, 118, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hook, I.L.; Ryan, S.; Sheridan, H. Biotransformation of Aliphatic and Aromatic Ketones, Including Several Monoterpenoid Ketones and Their Derivatives by Five Species of Marine Microalgae. Phytochemistry 2003, 63, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Cheng, D.; Wang, L.; Gao, J.; Zhao, Q.; Wei, W.; Sun, Y. Comparative Transcriptomic Analysis Reveals Phenol Tolerance Mechanism of Evolved Chlorella Strain. Bioresour. Technol. 2017, 227, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yuan, Y.; Li, X.; Mei, S.; Gao, J.; Zhao, Q.; Wei, W.; Sun, Y. Exploration of Phenol Tolerance Mechanism through Antioxidative Responses of an Evolved Strain, Chlorella Sp. L5. J. Appl. Phycol. 2018, 30, 2379–2385. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Alharthi, S. Cellular Responses and Phenol Bioremoval by Green Alga Scenedesmus Abundans: Equilibrium, Kinetic and Thermodynamic Studies. Environ. Technol. Innov. 2021, 22, 101463. [Google Scholar] [CrossRef]
- Lu, X.; Liu, J.; Xiao, X.; Xue, J.; Cheng, D.; Zhang, L. The Influence of 2, 6-Di-Tert-Butyl-p-Cresol Stress on the Microalga Phaeodactylum Tricornutum and Phycosphere Bacteria Community. World J. Microbiol. Biotechnol. 2025, 41, 150. [Google Scholar] [CrossRef]
- Papazi, A.; Kotzabasis, K. Bioenergetic Strategy of Microalgae for the Biodegradation of Phenolic Compounds-Exogenously Supplied Energy and Carbon Sources Adjust the Level of Biodegradation. J. Biotechnol. 2007, 129, 706–716. [Google Scholar] [CrossRef]
Strain | Initial Concentration (mg L−1) | ||
---|---|---|---|
Phenol | p-cresol | Acetophenone | |
C. reinhardtii | 60 | 30 | 20 |
C. sorokiniana | 60 | 50 | 25 |
T. chuii | 60 | 30 | 20 |
N. gaditana | 60 | 50 | 25 |
Pollutant | Organism | Initial Concentration | Degradation | Time | Reference |
---|---|---|---|---|---|
Phenol | C. reinhardtii | 375 mg L−1 | 23% | 240 h | [13] |
Tetraselmis suecica | 100 mg L−1 | 90% | 192 h | [17] | |
Chlorella vulgaris | 100 mg L−1 | 100% | 96 h | [18] | |
300 mg L−1 | 58% | ||||
Chlorella pyrenoidosa | 200 mg L−1 | 100% | 144 h | [30] | |
Chlorella vulgaris | 100 mg L−1 | 100% | 144 h | [11] | |
Acetophenone | Tribonema sp. + Catalytic intense pulse light | 100 mg L−1 | 80% | 0.7 h | [20] |
p-cresol | Tetraselmis suecica | 100 mg L−1 | 85% | 192 h | [17] |
Chlorella vulgaris | 100 mg L−1 | 100% | 96 h | [18] | |
300 mg L−1 | 40% | ||||
Mixture | Tetraselmis suecica | 168 h | [17] | ||
Phenol | 40 mg L−1 | 12% | |||
o-cresol | 35 mg L−1 | 29% | |||
p-cresol | 35 mg L−1 | 74% | |||
Mixture | Chlorella vulgaris | 96 h | [18] | ||
Phenol | 100 mg L−1 | 57% | |||
p-cresol | 300 mg L−1 | 55% | |||
Mixture | T. chuii | 72 h | This study | ||
Phenol | 60 mg L−1 | 32% | |||
p-cresol | 30 mg L−1 | 45% | |||
Acetophenone | 20 mg L−1 | 85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rastrojo-Velasco, J.M.; Leon, R.; Sayago, A.; Fernandez-Recamales, A.; Vigara, J.; Leon-Vaz, A. Effect Produced by a Mixture of Phenol, p-Cresol, and Acetophenone on Four Species of Microalgae: Tolerance, Biodegradation, and Metabolic Alterations. Toxics 2025, 13, 848. https://doi.org/10.3390/toxics13100848
Rastrojo-Velasco JM, Leon R, Sayago A, Fernandez-Recamales A, Vigara J, Leon-Vaz A. Effect Produced by a Mixture of Phenol, p-Cresol, and Acetophenone on Four Species of Microalgae: Tolerance, Biodegradation, and Metabolic Alterations. Toxics. 2025; 13(10):848. https://doi.org/10.3390/toxics13100848
Chicago/Turabian StyleRastrojo-Velasco, Juan Manuel, Rosa Leon, Ana Sayago, Angeles Fernandez-Recamales, Javier Vigara, and Antonio Leon-Vaz. 2025. "Effect Produced by a Mixture of Phenol, p-Cresol, and Acetophenone on Four Species of Microalgae: Tolerance, Biodegradation, and Metabolic Alterations" Toxics 13, no. 10: 848. https://doi.org/10.3390/toxics13100848
APA StyleRastrojo-Velasco, J. M., Leon, R., Sayago, A., Fernandez-Recamales, A., Vigara, J., & Leon-Vaz, A. (2025). Effect Produced by a Mixture of Phenol, p-Cresol, and Acetophenone on Four Species of Microalgae: Tolerance, Biodegradation, and Metabolic Alterations. Toxics, 13(10), 848. https://doi.org/10.3390/toxics13100848