Pollution Status, Ecological Risks, and Potential Sources of Metals in the Middle and Lower Reaches of the Lianjiang River Basin, Guangdong Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analytical Procedures
2.3. Data Processing and Statistical Analyses
2.3.1. Enrichment Factor
2.3.2. Potential Ecological Risk Index
2.3.3. Statistical Analyses
3. Results
3.1. Concentrations of Pollutants
3.1.1. Surface Water
3.1.2. Surficial Channel Sediments
3.2. Spearman Correlation Analysis
3.2.1. Dissolved Constituents
3.2.2. Suspended Solids
3.2.3. Surficial Channel Sediments
3.3. Enrichment Factors
3.4. Pollutant Source Identification
3.4.1. E-Waste Recycling Activities
3.4.2. Mixed Pollution from Human Activities
3.4.3. Metal Processing
3.4.4. Battery Manufacture and Recycling
3.5. Risk Assessment of Metals
3.5.1. Surficial Channel Sediments
3.5.2. Suspended Solids
4. Discussion
4.1. Governance Outcomes
4.2. The Role of OM in Element Deposition
4.3. Integrated Management Strategies for the River Basins
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFS | Atomic Fluorescence Spectrometry |
CEIP | Circular Economy Industrial Park |
CND | Chaonan District |
CYD | Chaoyang District |
DO | dissolved oxygen |
EF | enrichment factor |
EFs | enrichment factor values |
E-waste | electronic waste |
FW | filtered water |
HM | heavy metal |
HMs | heavy metals |
ICP-MS | inductively coupled plasma mass spectrometry |
ICP-OES | inductively coupled plasma optical emission spectrometry |
LR | Lianjiang River |
LRB | Lianjiang River Basin |
PCA | principal component analysis |
RI | risk index |
SCA | Spearman correlation analysis |
SCSs | surficial channel sediments |
SSs | suspended solids |
References
- Tiwari, A.; Dwivedi, A.C.; Mayank, P. Time scale changes in the water quality of the Ganga River, India, and estimation of suitability for exotic and hardy fishes. Hydrol. Curr. Res. 2016, 7, 254. [Google Scholar]
- Debnath, A.; Singh, P.K.; Sharma, Y.C. Metallic contamination of global river sediments and latest developments for their remediation. J. Environ. Manag. 2021, 298, 113378. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ahmad, K.; Ahmad, T.; Zafar, A.; Alrefaei, A.F.; Ashfaq, A.; Akhtar, S.; Mahpara, S.; Mehmood, N.; Ugulu, I. Evaluation of nickel toxicity and potential health implications of agriculturally diversely irrigated wheat crop varieties. Arab. J. Chem. 2023, 16, 104934. [Google Scholar] [CrossRef]
- Calmano, W.; Hong, J.; Forstner, U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci. Technol. 1993, 28, 223–235. [Google Scholar] [CrossRef]
- Gaur, V.K.; Gupta, S.K.; Pandey, S.D.; Gopal, K.; Misra, V. Distribution of heavy metals in sediment and water of river Gomti. Environ. Monit. Assess. 2005, 102, 419–433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Abuduwaili, J.; Jiang, F. Heavy metal contamination, sources, and pollution assessment of surface water in the Tianshan Mountains of China. Environ. Monit. Assess. 2015, 187, 33. [Google Scholar] [CrossRef]
- Ahamad, M.I.; Song, J.; Sun, H.; Wang, X.; Mehmood, M.S.; Sajid, M.; Su, P.; Khan, A.J. Contamination level ecological risk, and source identification of heavy metals in the hyporheic zone of the Weihe River China. Int. J. Environ. Res. Public Health 2020, 17, 17. [Google Scholar] [CrossRef]
- Kaushik, A.; Kansal, A.; Santosh; Meena; Kumari, S.; Kaushik, C.P. Heavy metal contamination of river Yamuna, Haryana, India: Assessment by metal enrichment factor of the sediments. J. Hazard. Mater. 2009, 164, 265–270. [Google Scholar] [CrossRef]
- Hiller, E.; Jurkovič, Ľ.; Šutriepka, M. Metals in the surface sediments of selected water reservoirs, Slovakia. Bull. Environ. Contam. Toxicol. 2010, 84, 635–640. [Google Scholar] [CrossRef]
- Shafie, N.A.; Aris, A.Z.; Haris, H. Geoaccumulation and distribution of heavy metals in the urban river sediment. Int. J. Sediment Res. 2014, 29, 368–377. [Google Scholar] [CrossRef]
- Sun, W.; Xiao, E.; Dong, Y.; Tang, S.; Krumins, V.; Ning, Z.; Sun, M.; Zhao, Y.; Wu, S.; Xiao, T. Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in southwest China. Sci. Total Environ. 2016, 550, 297–308. [Google Scholar] [CrossRef]
- Jara-Marini, M.E.; Soto-Jiménez, M.F.; Páez-Osuna, F. Trophic relationships, and transference of cadmium, copper, lead, and zinc in a subtropical coastal lagoon food web from SE Gulf of California. Chemosphere 2009, 77, 1366–1373. [Google Scholar] [CrossRef]
- Ayari, J.; Barbieri, M.; Agnan, Y.; Sellami, A.; Braham, A.; Dhaha, F.; Charef, A. Trace element contamination in the mine-affected stream sediments of Oued Rarai in north-western Tunisia: A river basin scale assessment. Environ. Geochem. Health 2021, 43, 4027–4042. [Google Scholar] [CrossRef]
- Miller, J.R.; Orbock Miller, S.M. Contaminated Rivers: An Overview. In Contaminated Rivers; Springer: Dordrecht, The Netherlands, 2007; pp. 1–31. [Google Scholar]
- Yang, H.J.; Bong, K.M.; Kang, T.W.; Hwang, S.H.; Na, E.H. Assessing heavy metals in surface sediments of the Seomjin River Basin, south Korea, by statistical, and geochemical analysis. Chemosphere 2021, 284, 131400. [Google Scholar] [CrossRef]
- Zhan, S.; Wu, J.; Jin, M.; Zhang, H. Baseline determination, pollution source, and ecological risk of heavy metals in surface sediments of the Amu Darya basin, central Asia. J. Geogr. Sci. 2022, 32, 2349–2364. [Google Scholar] [CrossRef]
- Miller, J.R.; Mackin, G.; Orbock Miller, S.M. Application of Geochemical Tracers to Fluvial Sediment; Springer: Cham, Switzerland, 2015; pp. 11–51. [Google Scholar]
- Zhu, S.; Dong, Z.; Yang, B.; Zeng, G.; Liu, Y.; Zhou, Y.; Meng, J.; Wu, S.; Shao, Y.; Yang, J. Spatial distribution, source identification, and potential ecological risk assessment of heavy metal in surface sediments from river-reservoir system in the Feiyun River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 14944. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, C.; Zhang, H.; Dong, Q. Heavy metal contamination from electronic waste recycling at Guiyu, southeastern China. J. Environ. Qual. 2009, 38, 1617–1626. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Q.; Zhou, H.; Huang, J.; Xiao, Y.; Fan, Z.; Chen, G. Analysis of sediment pollution and their impacts on water quality in mainstream of Lianjiang River. Water Wasterwater Eng. 2021, 47, 67–72. (In Chinese) [Google Scholar]
- Mao, Z.; Li, Y.; Li, H.; Song, A.; Liu, M.; Hu, J. Pollution characteristics, sources, and risks of 23 metallic elements in sediments from Guiyu, and its upstream and downstream. Geochimica 2021, 50, 513–524. (In Chinese) [Google Scholar]
- Wong, C.S.C.; Wu, S.C.; Duzgoren-Aydin, N.S.; Aydin, A.; Wong, M.H. Trace metal contamination of sediments in an e-waste processing village in China. Environ. Pollut. 2007, 145, 434–442. [Google Scholar] [CrossRef]
- Wang, F.; Leung, A.O.; Wu, S.C.; Yang, M.S.; Wong, M.H. Chemical and ecotoxicological analyses of sediments and elutriates of contaminated rivers due to e-waste recycling activities using a diverse battery of bioassays. Environ. Pollut. 2009, 157, 2082–2090. [Google Scholar] [CrossRef]
- Quan, S.X.; Yan, B.; Lei, C.; Yang, F.; Li, N.; Xiao, X.M.; Fu, J.M. Distribution of heavy metal pollution in sediments from an acid leaching site of e-waste. Sci. Total Environ. 2014, 499, 349–355. [Google Scholar] [CrossRef]
- Wu, Q.; Du, Y.; Huang, Z.; Gu, J.; Leung, J.Y.S.; Mai, B.; Xiao, T.; Liu, W.; Fu, J. Vertical profile of soil/sediment pollution and microbial community change by e-waste recycling operation. Sci. Total Environ. 2019, 669, 1001–1010. [Google Scholar] [CrossRef]
- Du, Y.; Wu, Q.; Kong, D.; Shi, Y.; Huang, X.; Luo, D.; Chen, Z.; Xiao, T.; Leung, J.Y.S. Accumulation and translocation of heavy metals in water hyacinth: Maximising the use of green resources to remediate sites impacted by e-waste recycling activities. Ecol. Indic. 2020, 15, 106384. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, S.; Wang, L.; Liang, T. Spatial, and temporal distribution, and potential ecological risk assessment of heavy metals in rivers and sediments before, and after the control of e-waste dismantling in Guiyu. Acta Sci. Circumstantiae 2023, 43, 58–68. (In Chinese) [Google Scholar]
- Shi, J. Transfer Behavior of Persistent Toxic Substances in Middle-Small Scale Basin Affected by Human Activities: A Case Study of the Lian River Basin. Ph.D. Thesis, Shantou University, Shantou, China, 2017. (In Chinese). [Google Scholar]
- Zhou, R.; Wang, S.; Yan, X.; Zhang, J. Practice and deliberations on design consultation of water pollution control project in Lianjiang River Basin. China Water Wastewater 2022, 38, 41–47. (In Chinese) [Google Scholar]
- GB/T 11893-1989; Water Quality—Determination of Total Phosphorus-Ammonium Molybdate Spectrophotometric Method. China Environmental Science Press: Beijing, China, 1989.
- ISO 14869-1: 2001; Soil Quality—Dissolution for the Determination of Total Element Content. Part 1: Dissolution with Hydrofluoric and Perchloric Acids. ISO: Geneva, Switzerland, 2001.
- HJ 680-2013; Soil and Sediment—Determination of Mercury, Arsenic, Selenium, Bismuth, Antimony—Microwave Dissolution/Atomic Fluorescence Spectrometry. China Environmental Science Press: Beijing, China, 2013. (In Chinese)
- HJ 694-2014; Water Quality—Determination of Mercury, Arsenic, Selenium, Bismuth and Antimony—Atomic Fluorescence Spectrometry. China Environmental Science Press: Beijing, China, 2014. (In Chinese)
- NY/T 1121.6-2006; Soil Testing Part 6: Method for Determination of Soil Organic Matter. MAPRC (Ministry of Agriculture of the People’s Republic of China): Beijing, China, 2006. (In Chinese)
- HJ 923-2017; Soil, and Sediment—Determination of Total Mercury—Catalytic Pyrolysis-Cold Atomic Absorption Spectrophotometry. China Environmental Science Press: Beijing, China, 2017. (In Chinese)
- GB/T 17141-1997; Soil Quality—Determination of Lead, Cadmium-Graphite Furnace Atomic Absorption Spectrophotometry. NEPC&NTSBC (National Environmental Protection of China, National Technical Supervision Bureau of China): Beijing, China, 1997. (In Chinese)
- HJ 700-2014; Water Quality—Determination of 65 Elements—Inductively Coupled Plasma-Mass Spectrometry. China Environmental Science Press: Beijing, China, 2014. (In Chinese)
- HJ 776-2015; Water Quality—Determination of 32 Elements-Inductively Coupled Plasma Optical Emission Spectrometry. China Environmental Science Press: Beijing, China, 2015. (In Chinese)
- U.S. EPA Method 6010D; Inductively coupled plasma-atomic emission spectrometry. Revision 4. United States Environmental Protection Agency: Washington, DC, USA, 2018.
- U.S. EPA Method 6020B; Inductively coupled plasma-mass spectrometry. Revision 2. United States Environmental Protection Agency: Washington, DC, USA, 2014.
- Yan, G.; Mao, L.; Liu, S.; Mao, Y.; Ye, H.; Huang, T.; Li, F.; Chen, L. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads. Sci. Total Environ. 2018, 631–632, 942–950. [Google Scholar] [CrossRef]
- Castro, M.F.; Almeida, C.A.; Bazán, C.; Vidal, J.; Delfini, C.D.; Villegas, L.B. Impact of anthropogenic activities on an urban river through a comprehensive analysis of water and sediments. Environ. Sci. Pollut. Res. Int. 2021, 28, 37754–37767. [Google Scholar] [CrossRef]
- Matys Grygar, T.; Popelka, J. Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. J. Geochem. Explor. 2016, 170, 39–57. [Google Scholar] [CrossRef]
- Cheng, Z.; Xie, H.; Bo, H.; Yang, R.; Shang, Y. Abundance of elements in stream sediment in South China. Earth Sci. Front. 2011, 18, 289–295. (In Chinese) [Google Scholar]
- Håkanson, L. An ecological risk index for aquatic pollution control, a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Xu, Z.; Ni, S.; Tuo, X.; Zhang, C. Calculat ion of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environ. Sci. Technol. 2008, 31, 112–115. (In Chinese) [Google Scholar]
- Aksu, A.E.; Yaşar, D.; Uslu, O. Assessment of marine pollution in Izmir Bay: Heavy metal and organic compound concentrations in surficial sediments. Turk. J. Eng. Environ. Sci. 1998, 22, 387–415. [Google Scholar]
- Wang, Q.; Liu, Y.X.; Zhuang, W.; Chen, Q. Research on geochemical characteristics and environmental risk of Be, Sb, and Tl in surface sediments of the Nansihu Lake. Acta Sci. Circumstantiae 2018, 38, 1968–1982. (In Chinese) [Google Scholar]
- Soares, H.M.; Boaventura, R.A.; Machado, A.A.; Esteves da Silva, J.C. Sediments as monitors of heavy metal contamination in the Ave River Basin (Portugal): Multivariate analysis of data. Environ. Pollut. 1999, 105, 311–323. [Google Scholar] [CrossRef]
- Simeonov, V.; Massart, D.L.; Andreev, G.; Tsakovski, S. Assessment of metal pollution based on multivariate statistical modeling of ‘hot spot’ sediments from the Black Sea. Chemosphere 2000, 41, 1411–1417. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental Quality Standards for Surface Water. China Environmental Science Press: Beijing, China, 2002. (In Chinese)
- GB 18668-2002; Marine Sediment Quality. Standards Press of China: Beijing, China, 2002.
- Wang, S.; Li, G.; Ji, X.; Wang, Y.; Xu, B.; Tang, J.; Guo, C. Machine learning-driven assessment of heavy metal contamination in the impounded lakes of China’s South-to-North Water Diversion Project: Identifying spatiotemporal patterns and ecological risks. J. Hazard. Mater. 2024, 480, 135983. [Google Scholar] [CrossRef]
- Wong, C.S.C.; Duzgoren-Aydin, N.S.; Aydin, A.; Wong, M.H. Evidence of excessive releases of metals from primitive e-waste processing in Guiyu, China. Environ. Pollut. 2007, 148, 62–72. [Google Scholar] [CrossRef]
- Hart, B.T. Uptake of trace metals by sediments and suspended particulates: A review. Hydrobiologia 1982, 91, 299–313. [Google Scholar] [CrossRef]
- Adimalla, N.; Chen, J.; Qian, H. Spatial characteristics of heavy metal contamination, and potential human health risk assessment of urban soils: A case study from an urban region of south India. Ecotoxicol. Environ. Saf. 2020, 194, 110406. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Z.F.; Filippelli, G.M.; Ji, J.; Zhang, Q. Distribution, and secondary enrichment of heavy metal elements in karstic sediments with high geochemical background in Guangxi, China. Chem. Geol. 2021, 567, 120081. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Lu, L.; Zhang, J.; Liu, H. Geochemical normalization and assessment of heavy metals (Cu, Pb, Zn, and Ni) in sediments from the Huaihe River, Anhui, China. Catena 2015, 129, 30–38. [Google Scholar] [CrossRef]
- Kennish, M. Environmental threats and environmental future of estuaries. Environ. Conserv. 2002, 29, 78–107. [Google Scholar] [CrossRef]
- Acevedo-Figueroa, D.; Jiménez, B.D.; Rodríguez-Sierra, C.J. Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environ. Pollut. 2006, 141, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Ji, J.; Mao, C.; Yang, Z.; Yuan, X.; Ayoko, G.A.; Frost, R.L. Heavy metal contamination in suspended solids of Changjiang River-environmental implications. Geoderma 2010, 159, 286–295. [Google Scholar] [CrossRef]
- Kähkönen, M.; Pantsar-Kallio, M.; Manninen, P. Analysing heavy metal concentrations in the different parts of Elodea canadensis and surface sediment with PCA in two Boreal lakes in southern Finland. Chemosphere 1997, 35, 2645–2656. [Google Scholar] [CrossRef]
- Rao, K.; Tang, T.; Zhang, X.; Wang, M.; Liu, J.; Wu, B.; Wang, P.; Ma, Y. Spatial-temporal dynamics, ecological risk assessment, source identification, and interactions with internal nutrients release of heavy metals in surface sediments from a large Chinese shallow lake. Chemosphere 2021, 282, 131041. [Google Scholar] [CrossRef]
- Jiang, H.H.; Cai, L.M.; Hu, G.C.; Wen, H.H.; Luo, J.; Xu, H.Q.; Chen, L.G. An integrated exploration on health risk assessment quantification of potentially hazardous elements in soils from the perspective of sources. Ecotoxicol. Environ. Saf. 2021, 208, 111489. [Google Scholar] [CrossRef]
- Li, J.; Duan, H.; Shi, P. Heavy metal contamination of surface soil in electronic waste dismantling area: Site investigation and source-apportionment analysis. Waste Manag. Res. 2011, 29, 727–738. [Google Scholar]
- MEE (Ministry of Ecology and Environment). Integrating Regulation and Support: The Transformation of the ‘E-Waste Capital’—A Comprehensive Approach to Rectifying ‘Dispersed, Unregulated, and Polluting’ Industries in Guiyu Town, Shantou City, Guangdong Province, China; MEE (Ministry of Ecology and Environment): Beijing, China, 2019. (In Chinese)
- Gunawardena, J.; Ziyath, A.M.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Mathematical relationships for metal build-up on urban road surfaces based on traffic and land use characteristics. Chemosphere 2014, 99, 267–271. [Google Scholar] [CrossRef]
- Kamaludeen, S.P.; Megharaj, M.; Juhasz, A.L.; Sethunathan, N.; Naidu, R. Chromium-microorganism interactions in Soils: Remediation implications. In Reviews of Environmental Contamination and Toxicology; Ware, G.W., Ed.; Springer: New York, NY, USA, 2003; Volume 178, pp. 93–164. [Google Scholar]
- Zheng, L.; Wu, K.; Li, Y.; Qi, Z.; Han, D.; Zhang, B.; Gu, C.; Chen, G.; Liu, J.; Chen, S. Blood lead and cadmium levels and relevant factors among children from an e-waste recycling town in China. Environ. Res. 2008, 108, 15–20. [Google Scholar] [CrossRef]
- Sun, X.G. The distribution and application of cobalt resources in the world. World Nonferrous Met. 2000, 15, 38–41. (In Chinese) [Google Scholar]
- Cai, Z.C.; Liu, Z. Adsorption of cobalt on soils of China. Acta Sci. Circumstantiae 1990, 10, 272–279. (In Chinese) [Google Scholar]
- Sutherland, R. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Loska, K.; Wiechuła, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Wang, X.; Yin, J.; Deng, C. Spatial Distribution and Source Analysis of Heavy Metals in sediments of the Upstream Xijiang Basin within Nonferrous Metal Accumulation Areas. Res. Environ. Sci. 2017, 30, 1221–1229. (In Chinese) [Google Scholar]
- Tang, W.; Wang, L.; Shan, B.; Zhao, Y.; Su, H.; Yang, L. Heavy metal pollution of the surface sediments in Daqing River System, Haihe Basin. Acta Sci. Circumstantiae 2015, 35, 3620–3627. (In Chinese) [Google Scholar]
- Yang, L.; Hu, M.; Wang, P.; Yan, Y.; Zhao, L. Pollution characteristics and ecological risk assessment of sediment in Zhongba River, Beijing. Acta Sci. Circumstantiae 2021, 41, 181–189. (In Chinese) [Google Scholar]
- Coskun, A.; Horasan, B.Y.; Ozturk, A. Heavy metal distribution in stream sediments and potential ecological risk assessment in Konya Northeast region. Environ. Earth Sci. 2021, 80, 181. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.; Li, L.; Huang, X.; Lu, G.; Pan, F.; Liu, W. Pollution Status, Ecological Risks, and Potential Sources of Metals in the Middle and Lower Reaches of the Lianjiang River Basin, Guangdong Province, China. Toxics 2025, 13, 840. https://doi.org/10.3390/toxics13100840
Lai Y, Li L, Huang X, Lu G, Pan F, Liu W. Pollution Status, Ecological Risks, and Potential Sources of Metals in the Middle and Lower Reaches of the Lianjiang River Basin, Guangdong Province, China. Toxics. 2025; 13(10):840. https://doi.org/10.3390/toxics13100840
Chicago/Turabian StyleLai, Yongzhong, Le Li, Xianbing Huang, Guoyong Lu, Fengqin Pan, and Wenhua Liu. 2025. "Pollution Status, Ecological Risks, and Potential Sources of Metals in the Middle and Lower Reaches of the Lianjiang River Basin, Guangdong Province, China" Toxics 13, no. 10: 840. https://doi.org/10.3390/toxics13100840
APA StyleLai, Y., Li, L., Huang, X., Lu, G., Pan, F., & Liu, W. (2025). Pollution Status, Ecological Risks, and Potential Sources of Metals in the Middle and Lower Reaches of the Lianjiang River Basin, Guangdong Province, China. Toxics, 13(10), 840. https://doi.org/10.3390/toxics13100840