Heavy Metal Contamination and Its Effects on Ecosystems and Human Health: Challenges and Solutions
1. Introduction
2. What This Special Issue Adds
3. Remaining Gaps and a Forward Program
4. Closing
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Contributions
- Hossain, M.M.; Jahan, I.; Dar, M.A.; Dhanavade, M.J.; Mamtaz, A.F.B.; Maxwell, S.J.; Han, S.; Zhu, D. A Review of Potentially Toxic Elements in Sediment, Water, and Aquatic Species from the River Ecosystems. Toxics 2025, 13, 26. https://doi.org/10.3390/toxics13010026.
- Hake, G.; Mhaske, A.; Shukla, R.; Flora, S.J.S. Copper-Induced Neurodegenerative Disorders and Therapeutic Potential of Curcumin-Loaded Nanoemulsion. Toxics 2025, 13, 108. https://doi.org/10.3390/toxics13020108.
- Santos, N.; Reis, S.; Domingues, I.; Oliveira, M. Does Personality Modulate the Sensitivity to Contaminants? A Case Study with Cadmium and Caffeine. Toxics 2025, 13, 147. https://doi.org/10.3390/toxics13030147.
- Zhao, X.; Li, J.; Yu, J.; Shi, Y.; Tang, M. The Role of Sex Steroid Hormones in the Association Between Manganese Exposure and Bone Mineral Density: National Health and Nutrition Examination Survey 2013–2018. Toxics 2025, 13, 296. https://doi.org/10.3390/toxics13040296.
- Elbagory, M.; Moghanm, F.S.; Mohamed, I.; El-Nahrawy, S.; Omara, A.E.-D.; Goala, M.; Kumar, P.; Mioč, B.; Andabaka, Ž.; Širić, I. Health Risk Assessment of Potentially Toxic Element Uptake by Lotus (Nelumbo nucifera) in Floating Lake Gardens. Toxics 2025, 13, 306. https://doi.org/10.3390/toxics13040306.
- Gonzalez Cano, W.T.; Lonin, S.; Kim, K. Modeling Desorption Rates and Background Concentrations of Heavy Metals Using a One-Dimensional Approach. Toxics 2025, 13, 421. https://doi.org/10.3390/toxics13060421.
- Kunioka, C.T.; de Oliveira Souza, V.C.; Rocha, B.A.; Júnior, F.B.; Belo, L.; Manso, M.C.; Carvalho, M. Association of Urinary Cadmium and Antimony with Osteoporosis Risk in Postmenopausal Brazilian Women: Insights from a 20 Metal(loid) Biomonitoring Study. Toxics 2025, 13, 489. https://doi.org/10.3390/toxics13060489.
- Li, Q.; Li, D.; Wang, Z.; Sun, D.; Zhang, T.; Zhang, Q. Integrated Deterministic and Probabilistic Methods Reveal Heavy Metal-Induced Health Risks in Guizhou, China. Toxics 2025, 13, 515. https://doi.org/10.3390/toxics13060515.
References
- Macklin, M.G.; Thomas, C.J.; Mudbhatkal, A.; Brewer, P.A.; Hudson-Edwards, K.A.; Lewin, J.; Scussolini, P.; Eilander, D.; Lechner, A.; Owen, J.; et al. Impacts of metal mining on river systems: A global assessment. Science 2023, 381, 1345–1350. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Fang, L.; Yang, X.; Luo, X.; Qiu, T.; Zeng, Y.; Huang, F.; Dong, F.; White, J.C.; Bolan, N.; et al. Sources and human health risks associated with potentially toxic elements (PTEs) in urban dust: A global perspective. Environ. Int. 2024, 187, 108708. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Kansha, Y. Comprehensive review of industrial wastewater treatment techniques. Environ. Sci. Pollut. Res. Int. 2024, 31, 51064–51097. [Google Scholar] [CrossRef] [PubMed]
- Isinkaralar, O.; Isinkaralar, K.; Nguyen, T.N.T. Spatial distribution, pollution level and human health risk assessment of heavy metals in urban street dust at neighbourhood scale. Int. J. Biometeorol. 2024, 68, 2055–2067. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Xue, N.; Han, Z. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. J. Environ. Sci. 2021, 101, 217–226. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Aquatic Life Ambient Freshwater Quality Criteria—Copper 2007 Revision; U.S. EPA: Washington, DC, USA, 2007.
- U.S. Environmental Protection Agency. Copper Biotic Ligand Model; U.S. EPA: Washington, DC, USA, 2007.
- ISO 17924:2018; Soil Quality—Procedure for the Estimation of the Human Bioaccessibility/Bioavailability of Metals in Soil. International Organization for Standardization: Geneva, Switzerland, 2018.
- Soltani, N.; Keshavarzi, B.; Moore, F.; Cave, M.; Sorooshian, A.; Mahmoudi, M.R.; Ahmadi, M.R.; Golshani, R. In vitro bioaccessibility, phase partitioning, and health risk of potentially toxic elements in dust of an iron mining and industrial complex. Ecotoxicol. Environ. Saf. 2021, 212, 111972. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. User’s Guide for the Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Children; U.S. EPA: Washington, DC, USA, 2021.
- Larsen, B.; Sánchez-Triana, E. Global health burden and cost of lead exposure in children and adults: A health impact and economic modelling analysis. Lancet Planet Health 2023, 7, e831–e840. [Google Scholar] [CrossRef] [PubMed]
- Kunioka, C.T.; Manso, M.C.; Carvalho, M. Association between Environmental Cadmium Exposure and Osteoporosis Risk in Postmenopausal Women: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 20, 485. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Guo, M.; Xie, J.; Liu, X.; Li, X.; Wang, H.; Xu, Y.; Zheng, D. Relationship between blood cadmium levels and bone mineral density in adults: A cross-sectional study. Front. Endocrinol. 2024, 15, 1354577. [Google Scholar] [CrossRef] [PubMed]
- Crawford, S.E.; Brinkmann, M.; Ouellet, J.D.; Lehmkuhl, F.; Reicherter, K.; Schwarzbauer, J.; Bellanova, P.; Letmathe, P.; Blank, L.M.; Weber, R.; et al. Remobilization of pollutants during extreme flood events poses severe risks to human and environmental health. J. Hazard. Mater. 2022, 421, 126691. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Mercury and Health, Fact Sheet; World Health Organization (WHO): Geneva, Switzerland, 2024. [Google Scholar]
- Murphy, S.F.; McCleskey, R.B.; Martin, D.A.; Holloway, J.M.; Writer, J.H. Wildfire-driven changes in hydrology mobilize arsenic and metals from legacy mine waste. Sci. Total. Environ. 2020, 743, 140635. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, D. Heavy Metal Contamination and Its Effects on Ecosystems and Human Health: Challenges and Solutions. Toxics 2025, 13, 837. https://doi.org/10.3390/toxics13100837
Zhu D. Heavy Metal Contamination and Its Effects on Ecosystems and Human Health: Challenges and Solutions. Toxics. 2025; 13(10):837. https://doi.org/10.3390/toxics13100837
Chicago/Turabian StyleZhu, Daochen. 2025. "Heavy Metal Contamination and Its Effects on Ecosystems and Human Health: Challenges and Solutions" Toxics 13, no. 10: 837. https://doi.org/10.3390/toxics13100837
APA StyleZhu, D. (2025). Heavy Metal Contamination and Its Effects on Ecosystems and Human Health: Challenges and Solutions. Toxics, 13(10), 837. https://doi.org/10.3390/toxics13100837

