A Review on the Application of Magnetic Nanomaterials for Environmental and Ecological Remediation
Abstract
1. Introduction
2. Methodology for Literature Selection
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Literature Screening
2.4. Data Extraction and Synthesis
3. Applications and Research Progress in Water Pollution Control
3.1. Removal of Heavy Metal Ions
3.1.1. Surface Functionalization and Composites
3.1.2. Advanced Composites and Performance
3.2. Organic Pollutant Degradation
3.2.1. Mechanisms and Enhancement Strategies
3.2.2. Performance of Fenton-like and Heterogeneous Systems
3.3. Summary
3.3.1. Material-Centric Limitations
3.3.2. Performance and Mechanistic Challenges
3.3.3. Environmental and System Complexity
4. Applications and Research Progress in Soil Pollution Remediation
4.1. Remediation of Heavy Metal Contamination
4.1.1. Research Advances
4.1.2. Key Limitations for Heavy Metal Remediation
4.2. Degradation of Organic Pollutants
4.3. Challenges
5. Advances in Biocompatibility Research
5.1. Toxicity Mechanisms and Ecological Impacts
5.1.1. Cellular and Genetic Toxicity
5.1.2. Stability and Behavior in Biological Environments
5.1.3. Impacts on Soil Microbial Communities and Ecosystem Functions
5.1.4. Knowledge Gaps in Toxicity Assessment
5.2. Strategies for Enhancing MNM Biocompatibility
5.2.1. Surface Modification
5.2.2. Synergism with Antioxidants
5.3. Summary and Future Perspectives
6. Perspectives and Conclusions
6.1. Perspectives
6.1.1. Performance Optimization and Stability Enhancement
6.1.2. Comprehensive and Standardized Safety and Lifecycle Evaluation
6.1.3. Interdisciplinary Integration and Technological Enablement
6.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhokpande, S.R.; Deshmukh, S.M.; Khandekar, A. A Review Outlook on Methods for Removal of Heavy Metal Ions from Wastewater. Sep. Purif. Technol. 2024, 350, 127868. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Rani, N.; Kumar, V.; Mythili, R.; Jain, D. A Review on Simultaneous Heavy Metal Removal and Organo-Contaminants Degradation by Potential Microbes: Current Findings and Future Outlook. Microbiol. Res. 2023, 273, 127419. [Google Scholar] [CrossRef] [PubMed]
- Duffus, J. Heavy metals a meaningless term? (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef]
- Guabloche, A.; Alvariño, L.; Acioly, T.M.d.S.; Viana, D.C.; Iannacone, J. Assessment of Essential and Potentially Toxic Elements in Water and Sediment and the Tissues of Sciaena deliciosa (Tschudi, 1846) from the Coast of Callao Bay, Peru. Toxics 2024, 12, 68. [Google Scholar] [CrossRef]
- Rajkumar, V.; Lee, V.R.; Gupta, V. Heavy Metal Toxicity; Updated 23 March 2023; Stat Pearls Publishing: Treasure Island, FL, USA, 2023; Available online: https://www.ncbi.nlm.nih.gov/books/NBK560920/ (accessed on 24 December 2023).
- Peycheva, K.; Panayotova, V.; Stancheva, R.; Makedonski, L.; Merdzhanova, A.; Parrino, V.; Nava, V.; Cicero, N.; Fazio, F. Risk Assessment of Essential and Toxic Ele-ments in Freshwater Fish Species from Lakes near Black Sea, Bulgaria. Toxics 2022, 10, 675. [Google Scholar] [CrossRef]
- Osman, A.I.; El-Monaem, E.M.A.; Elgarahy, A.M.; Aniagor, C.O.; Hosny, M.; Farghali, M.; Rashad, E.; Ejimofor, M.I.; López-Maldonado, E.A.; Ihara, I.; et al. Methods to Prepare Biosorbents and Magnetic Sorbents for Water Treatment: A Review. Environ. Chem. Lett. 2023, 21, 2337–2398. [Google Scholar] [CrossRef]
- Nikić, J.; Watson, M.; Tubić, A.; Šolić, M.; Agbaba, J. Recent trends in the application of magnetic nanocomposites for heavy metals removal from water: A review. Sep. Sci. Technol. 2024, 59, 293–331. [Google Scholar] [CrossRef]
- Pozzi, M.; Dutta, S.J.; Kuntze, M.; Bading, J.; Rüßbült, J.S.; Fabig, C.; Langfeldt, M.; Schulz, F.; Horcajada, P.; Parak, W.J. Visualization of the High Surface-to-Volume Ratio of Nanomaterials and Its Consequences. J. Chem. Educ. 2024, 101, 3146–3155. [Google Scholar] [CrossRef]
- Sarma, G.K.; Gupta, S.S.; Bhattacharyya, K.G. Nanomaterials as Versatile Adsorbents for Heavy Metal Ions in Water: A Review. Environ. Sci. Pollut. Res. 2019, 26, 6245–6278. [Google Scholar] [CrossRef]
- Shi, Y.H.Y. Magneto-Responsive Thermal Switch for Remote-Controlled Locomotion and Heat Transfer Based on Magnetic Nanofluid. Nano Energy 2020, 71, 104582. [Google Scholar] [CrossRef]
- Chaves, T.D.; Bini, R.D.; Junior, V.A.D.O.; Polli, A.D.; Garcia, A.; Dias, G.S.; Santos, I.A.D.; de Oliveira, P.N.; Pamphile, J.A.; Cotica, L.F. Fungus-based Magnetic Nanobiocomposites for Environmental Remediation. Magnetochemistry 2022, 8, 139. [Google Scholar] [CrossRef]
- Keshta, B.E.; Gemeay, A.H.; Sinha, D.K.; Elsharkawy, S.; Hassan, F.; Rai, N.; Arora, C. State of the art on the magnetic iron oxide Nanoparticles: Synthesis, Functionalization, and Applications in Wastewater Treatment. Results Chem. 2024, 7, 101388. [Google Scholar] [CrossRef]
- Klekotka, U.; Winska, E.; Zambrzycka-Szelewa, E.; Satula, D.; Kalska-Szostko, B. Magnetic Nanoparticles as Effective Heavy Ion Adsorbers in Natural Samples. Sensors 2022, 22, 3297. [Google Scholar] [CrossRef]
- Miyah, Y.; El Messaoudi, N.; Benjelloun, M.; Georgin, J.; Franco, D.S.P.; Acikbas, Y.; Kusuma, H.S.; Sillanpää, M. MOF-Derived Magnetic Nanocomposites as Potential Formulations for the Efficient Removal of Organic Pollutants from Water Via Adsorption and Advanced Oxidation Processes: A Review. Mater. Today Sustain. 2024, 28, 100985. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Ji, H.Y.; Lu, H.H.; Liu, Y.X.; Yang, R.Q.; He, L.L.; Yang, S.M. Simultaneous Removal of Sb(iii) and Cd(ii) in Water by Adsorption onto a MnFe2O4–biochar Nanocomposite. RSC Adv. 2018, 8, 3264–3273. [Google Scholar] [CrossRef]
- Sheraz, M.; Sun, X.F.; Wang, Y.; Siddiqui, A.; Chen, J.; Sun, L. Preparation of Magnetic Hemicellulosic Composite Microspheres and Adsorption of Copper Ions. Polymers 2024, 16, 3460. [Google Scholar] [CrossRef]
- Xu, H.Y.; Yu, R.P.; Bian, Y.; Gong, W.Z.; Jia, B.Z.; Yang, L.H.; Jia, L.Y. Efficient Removal of Copper Ions and Organic Dyes Using Chitosan, Pectin, and Magnetic Hydrogel Composites: Structural Characterization and Adsorption Mechanisms. Int. J. Biol. Macromol. 2024, 282, 136900. [Google Scholar] [CrossRef] [PubMed]
- Sahare, S.P.; Wankhade, A.V.; Sinha, A.K.; Zodape, S.P. Modified Cobalt Ferrite Entrapped Chitosan Beads as a Magnetic Adsorbent for Effective Removal of Malachite Green and Copper (II) Ions from Aqueous Solutions. J. Inorg. Organomet. Polym. Mater. 2023, 33, 266–286. [Google Scholar] [CrossRef]
- Herrera, W.; Vera, J.; Hermosilla, E.; Diaz, M.; Tortella, G.R.; Dos Reis, R.A.; Seabra, A.B.; Diez, M.C.; Rubilar, O. The Catalytic Role of Superparamagnetic Iron Oxide Nanoparticles as a Support Material for TiO2 and ZnO on Chlorpyrifos Photodegradation in an Aqueous Solution. Nanomaterials 2024, 14, 299. [Google Scholar] [CrossRef]
- Barasarathi, J.; Abdullah, P.S.; Uche, E.C. Application of Magnetic Carbon Nanocomposite from Agro-waste for the Removal of Pollutants from Water and Wastewater. Chemosphere 2022, 305, 135384. [Google Scholar] [CrossRef]
- Kheilkordi, Z.; Ziarani, G.M.; Mohajer, F.; Badiei, A.; Sillanpää, M. Recent Advances in the Application of Magnetic Bio-polymers as Catalysts in Multicomponent Reactions. RSC Adv. 2022, 12, 12672–12701. [Google Scholar] [CrossRef]
- Rushdi, I.W.; Hardian, R.; Rusidi, R.S.; Khairul, W.M.; Hamzah, S.; Khalik, W.M.A.W.M.; Abdullah, N.S.; Yahaya, N.K.E.M.; Szekely, G.; Azmi, A.A. Microplastic and Organic Pollutant Removal Using Imine-functionalized Mesoporous Magnetic Silica Nanoparticles Enhanced by Machine Learning. J. Contam. Hydrol. 2025, 510, 161595. [Google Scholar] [CrossRef]
- OECD. Economic Outlook and Environmental Policies; Organisation for Economic Co-Operation and Development: Paris, France, 2020. [Google Scholar]
- WHO. Global Health Report 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Rajan, S.; Nandimandalam, J.R. Environmental Health Risk Assessment and Source Apportion of Heavy Metals Using Chemometrics and Pollution Indices in the Upper Yamuna River Basin, India. Chemosphere 2024, 346, 140570. [Google Scholar] [CrossRef]
- Asim, M.; Nageswara, R.K. Assessment of Heavy Metal Pollution in Yamuna River, Delhi-NCR, Using Heavy Metal Pollution Index and GIS. Environ. Monit. Assess. 2021, 193, 103. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, N.; Darbha, G.K. A Decade of Exploring MXenes as Aquatic Cleaners: Covering a Broad Range of Contaminants, Current Challenges and Future Trends. Chemosphere 2021, 279, 130587. [Google Scholar] [CrossRef]
- Koul, S.; Singhvi, M.; Kim, B.S. Green Synthesis of Cobalt-Doped CeFe2O5 Nanocomposites Using Waste Gossypium arboreum L. Stalks and Their Application in the Removal of Toxic Water Pollutants. Nanomaterials 2024, 14, 1339. [Google Scholar] [CrossRef]
- Saffari, M. Optimization of Cadmium Removal from Aqueous Solutions Using Walnut-shell Residues Biochar Supported/Unsupported by Nanoscale Zero-valent Iron through Response Surface Methodology. J. Chem. Health Risks 2018, 8, 19–37. [Google Scholar]
- Liu, Z.Y.; Tian, N.; Zhang, Z.Y.; Li, N.N.; Nie, Y.L.; Tian, X.K.; Dai, C. Key Role of La in La@nZVI/rGO for the Efficient and Steady PMS Activation towards Ofloxacin Degradation Via A Non-radical Process. Chem. Eng. J. 2023, 476, 146635. [Google Scholar] [CrossRef]
- Lisandra, D.C.A.; Yáñez-Vilar, S.; Piñeiro-Redondo, Y.; Rivas, J. Novel Magnetic Nanostructured Beads for Cadmium(II) Removal. Nanomaterials 2019, 9, 356. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Wang, Z.; Lv, Q.; Li, C.L.; Sun, S.Q.; Hu, S.Q. Preparation of Amino-Functionalized Fe2O3@mSiO4 Core-Shell Magnetic Nanoparticles and Their Application for Aqueous Fe3+ Removal. J. Hazard. Mater. 2018, 341, 198–206. [Google Scholar]
- Lei, T.; Jiang, X.; Zhou, Y.; Chen, H.O.; Bai, H.P.; Wang, S.X.; Yang, X.J. A Multifunctional Adsorbent Based on 2,3-Dimercaptosuccinic Acid/Dopamine-Modified Magnetic Iron Oxide Nanoparticles for the Removal of Heavy-Metal Ions. J. Colloid Interface Sci. 2023, 636, 153–166. [Google Scholar] [CrossRef]
- Xiao, W.; Garba, Z.N.; Sun, S.C.; Lawan, I.; Wang, L.W.; Lin, M.; Yuan, Z.H. Preparation and Evaluation of An Effective Activated Carbon from White Sugar for the Adsorption of Rhodamine B Dye. J. Clean. Prod. 2020, 253, 119989. [Google Scholar] [CrossRef]
- Zhu, X.F.; Song, T.H.; Lv, Z.; Ji, G.D. High-Efficiency and Low-Cost α-Fe2O3 Nanoparticles Coated Volcanic Rock for Cd (II) Removal from Wastewater. Process Saf. Environ. Prot. 2016, 104 Pt A, 373–381. [Google Scholar] [CrossRef]
- Bulin, C.; Zheng, R.X.; Song, J.L.; Ban, J.X.; Xin, G.X.; Zhang, B.W. Magnetic Graphene Oxide-Chitosan Nanohybrid for Efficient Removal of Aqueous Hg(Π) and the Interaction Mechanism. J. Mol. Liq. 2023, 370, 121050. [Google Scholar] [CrossRef]
- Oroujzadeh, N.; Rezaei Jamalabadi, S. Fabrication of A Novel Magnetic Nanocomposite to Remove Cu (II) Ions from Contaminated Water. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1501–1503. [Google Scholar] [CrossRef]
- Khalid, N.; Kalsoom, U.; Ahsan, Z.; Bilal, M. Non-Magnetic and Magnetically Responsive Support Materials Immobilized Peroxidases for Biocatalytic Degradation of Emerging Dye Pollutants—A Review. Int. J. Biol. Macromol. 2022, 207, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Mphuthi, L.E.; Erasmus, E.; Langner, E.H.G. Metal Exchange of ZIF-8 and ZIF-67 Nanoparticles with Fe(II) for Enhanced Photocatalytic Performance. ACS Omega 2021, 47, 31632–31645. [Google Scholar] [CrossRef]
- Luo, W.; Huang, W.Y.; Feng, X.Q.; Huang, Y.; Song, X.W.; Lin, H.F.; Wang, S.F.; Mailhot, G. The Utilization of Fe-doped g-C3N4 in A Heterogeneous Photo-Fenton-Like Catalytic System: The Effect of Different Parameters and a System Mechanism Investigation. RSC Adv. 2020, 10, 21876–21886. [Google Scholar] [CrossRef]
- Munsi, M.A.; Rahman, M.A.; Islam, M.M.; Alam, M.A.; Nuri, M.A.; Mefford, O.T.; Miah, M.A.J.; Ahmad, H. Magnetically Recyclable Adsorption of Anionic Pollutants from Wastewater Using 3,5-diaminobenzoic Acid-functionalized Magnetic Iron Oxide Nanoparticles. New J. Chem. 2024, 48, 12399–12411. [Google Scholar] [CrossRef]
- Yang, J.R.; Zhang, Y.H.; Zeng, D.Q.; Zhang, B.; Hassan, M.; Li, P.; Qi, C.D.; He, Y.L. Enhanced Catalytic Activation of Photo-Fenton Process by Cu0.5Mn0.5Fe2O4 for Effective Removal of Organic Contaminants. Chemosphere 2020, 247, 125780. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.Y.; Zhang, L.H.; Zou, G.L.; Chen, Q.; Gao, Y.L.; Liang, S.M.; Hu, L.J.; North, M.; Xie, H.B. Carboxylcellulose Hydrogel Confined-Fe3O4 Nanoparticles Catalyst for Fenton-like Degradation of Rhodamine B. Int. J. Biol. Macromol. 2021, 180, 792–803. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.C.; Wu, G.R. Research progress on the mechanism and applications of MOFs composite materials for catalytic degradation of organic pollutants in the solution. J. Chem. Ind. Eng. 2019, 38, 1775–1784. [Google Scholar]
- Mersly, L.E.; El Mouchtari, E.M.; Moujahid, E.M.; Forano, C.; El Haddad, M.; Briche, S.; Tahiri, A.A.; Rafqah, S. ZnCr-LDHs with Dual Adsorption and Photocatalysis Capability for the Removal of Acid Orange 7 Dye in Aqueous Solution. J. Sci. Adv. Mater. Devices 2021, 6, 118–126. [Google Scholar] [CrossRef]
- Chen, Y.X.; Zhang, Y.; Liu, Z.H.; Guan, H.H.; Huang, C.; Su, X.B.; Hua, R. Synthesis of Carbon-Coated Magnetic Nanocomposites and Its Application for Recycling of Uranium-Containing Wastewater. J. Radioanal. Nucl. Chem. 2024, 333, 6213–6224. [Google Scholar] [CrossRef]
- Song, W.; Gao, B.; Xu, X.; Wang, F.; Xue, N.; Sun, S.L.; Song, W.C.; Jia, R.B. Adsorption of Nitrate from Aqueous Solution by Magnetic Amine-Crosslinked Biopolymer Based Corn Stalk and Its Chemical Regeneration Property. J. Hazard. Mater. 2016, 304, 280–290. [Google Scholar] [CrossRef]
- Weng, B.; Zhang, M.; Lin, Y.Z.; Yang, J.C.; Lv, J.Q.; Han, N.; Xie, J.F.; Jia, H.P.; Su, B.L.; Roeffaers, M.; et al. Photo-Assisted Technologies for Environmental Remediation. Nat. Rev. Clean Technol. 2025, 1, 201–215. [Google Scholar] [CrossRef]
- Chen, M.; Guo, Q.; Pei, F.K.; Chen, L.Y.; Rehman, S.; Liang, S.L.; Dang, Z.; Wu, P.X. The Role of Fe(III) in Enhancement of Interaction Between Chitosan and Vermiculite for Synergistic Co-removal of Cr(VI) and Cd(II). Colloids Surf. A Physicochem. Eng. Asp. 2020, 606, 125356. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Y.; Sun, H.; Zuo, F.; Kuang, S.; Zhang, S.; Wang, F. Surfactant-Based Chemical Washing to Remediate Oil-Contaminated Soil: The State of Knowledge. Toxics 2024, 12, 648. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Jin, Q.; Li, Y.; Li, F. Oxidation and Removal of As(III) from Soil Using Novel Magnetic Nanocomposite Derived from Biomass Waste. Environ. Sci. Nano 2019, 6, 478–488. [Google Scholar] [CrossRef]
- Liu, F.Y.; Su, Y.R.; Ma, C.; Xie, P.; Zhao, J.H.; Zhang, H.Z. Remediation of Pb-Contaminated Soil Using a Novel Magnetic Nanomaterial Immobilization Agent. Bull. Environ. Contam. Toxicol. 2022, 108, 315–323. [Google Scholar] [CrossRef]
- Ma, Y.L.; Gu, N.; Gao, J.L.; Wang, K.T.; Wu, Y.X.; Meng, X.Y. Remediation of Anthracene-Contaminated Soil by ClO2 in the Presence of Magnetic Fe3O4-CuO@Montmorillonite as Catalyst. Water Air Soil Pollut. 2016, 227, 303. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Xie, W.; Wang, Y.; Li, Z.; Ren, G. Efficient Organic Pollutant Removal by Bio/MNs Collaborating with Pseudomonas aeruginosa PAO1. Sustainability 2023, 15, 13984. [Google Scholar] [CrossRef]
- Zhao, W.K.; Yang, B. Fabrication of Magnetic MnFe2O4@HL Composites with an In Situ Fenton-like Reaction for Enhancing Tetracycline Degradation. J. Colloid Interface Sci. 2024, 658, 997–1008. [Google Scholar] [CrossRef]
- Liang, C.; Jiang, Q.; Liu, Z.; Yang, J.; Zhang, J.; Zhang, S.; Xin, W. Effect of Sublethal Concentrations of Metal Nanomaterials on Cell Energy Metabolism. Toxics 2023, 11, 453. [Google Scholar] [CrossRef]
- Benayas, E.; Espinosa, A.; Portolés, M.T.; Sol, V.D.; Morales, M.P.; Serrano, M.C. Cellular and Molecular Processes are Differently Influenced in Primary Neural Cells by Slight Changes in the Physicochemical Properties of Multicore Magnetic Nanoparticles. ACS Appl. Mater. Interfaces 2023, 15, 17726–17741. [Google Scholar] [CrossRef]
- Yang, H.X.; Tai, F.M.; Wang, T.T.; Zheng, X.F.; Ge, C.H.; Qin, Y.D.; Fu, H.J. Hydrogen Peroxide and Iron Ions can Modulate Lipid Peroxidation, Apoptosis, and the Cell Cycle, but do not Have a Significant Effect on DNA Double-Strand Break. Biochem. Biophys. Res. Commun. 2023, 651, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Zarria-Romero, J.Y.; Ramos-Guivar, J.A. Cytotoxicity and Genotoxicity Effects of a Magnetic Zeolite Composite in Daphnia magna (Straus, 1820). Int. J. Mol. Sci. 2024, 25, 7542. [Google Scholar] [CrossRef]
- Anza, M.; Salazar, O.; Epelde, L.; Alkorta, I.; Garbisu, C. The Application of Nanoscale Zero-Valent Iron Promotes Soil Remediation While Negatively Affecting Soil Microbial Biomass and Activity. Front. Environ. Sci. 2019, 7, 19. [Google Scholar] [CrossRef]
- Sadeghi, M.; Moghimifar, Z.; Javadian, H. Fe3O4@SiO2 Nanocomposite Immobilized with Cellulase Enzyme: Stability Determination and Biological Activity. Chem. Phys. Lett. 2023, 811, 140161. [Google Scholar] [CrossRef]
- Kumar, S.; Saha, D.; Takata, S.; Aswal, V.K.; Seto, H. Modifications in the Nanoparticle-Protein Interactions for Tuning the Protein Adsorption and Controlling the Stability of Complexes. Appl. Phys. Lett. 2021, 118, 153701. [Google Scholar] [CrossRef]
- Asadishad, B.; Chahal, S.; Akbari, A.; Cianciarelli, V.; Azodi, M.; Ghoshal, S.; Tufenkji, N. Amendment of Agricultural Soil with Metal Nanoparticles: Effects on Soil Enzyme Activity and Microbial Community Composition. Environ. Sci. Technol. 2018, 52, 1908–1918. [Google Scholar] [CrossRef]
- Losito, D.W.; Souza, N.I.N.; Martins, T.S.; Britos, T.N.; Schumacher, M.L.; Haddad, P.S. A Review of Superparamagnetic Nanoparticles Applications and Regulatory Aspects in Medicine and Environmental Areas. J. Mater. Sci. 2024, 59, 16038–16068. [Google Scholar] [CrossRef]
- Vyas, T.K.; Vala, A.K. The Impact of Magnetic Nanoparticles on Microbial Community Structure and Function in Rhizospheric Soils. In Handbook of Magnetic Hybrid Nanoalloys and Their Nanocomposites; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Song, P.P.; Liu, j.; Ma, W.J.; Gao, X.Y. Remediation of Cadmium-Contaminated Paddy Soil by Biochar-Loaded Nano-Zero-Valent Iron and Its Microbial Community Responses. J. Environ. Chem. Eng. 2024, 12, 112311. [Google Scholar] [CrossRef]
- Zhang, E.F.; Liu, L.J. Iron Oxide Nanoparticles Affect Plant Growth by Negatively Regulating Soil Bacterial Community. S. Afr. J. Bot. 2024, 174, 410–419. [Google Scholar] [CrossRef]
- Wang, J.; Guo, L.F.; Yang, F.M.; Xiang, J.; Long, L.Z.; Ni, K. Nanoparticles of Zinc Oxides Mitigated N2O Emissions in Tea Plantation Soil. Agronomy 2024, 14, 1113. [Google Scholar] [CrossRef]
- Xin, X.; Yang, H.; Guan, L.; Liu, S.Q.; Liu, J. Responses of Nitrogen and Phosphorus Removal Performance and Microbial Community to Fe3O4@SiO2 Nanoparticles in A Sequencing Batch Reactor. Appl. Biochem. Biotechnol. 2021, 193, 544–559. [Google Scholar] [CrossRef]
- Chen, L.K.; Guo, C.S.; Liu, M.; Li, Z.; Xu, J. The Cytotoxic Effects of Magnetie Nanoparticle-Pb2+ Complex on Rat Kidney Cells. Asian J. Ecotoxicol. 2020, 15, 87–95. [Google Scholar]
- Korakaki, E.; Simos, Y.V.; Karouta, N.; Spyrou, K.; Zygouri, P.; Gournis, D.P.; Tsamis, K.I.; Stamatis, H.; Dounousi, E.; Vezyraki, P.; et al. Effect of Highly Hydrophilic Superparamagnetic Iron Oxide Nanoparticles on Macrophage Function and Survival. J. Funct. Biomater. 2023, 14, 514. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, M. Evaluation of Cytotoxicity of Pb2+ Ion-adsorbed Amino-functionalized Magnetic Mesoporous Silica Nanoparticles: An in Vitro Study. Front. Mater. 2022, 9, 914009. [Google Scholar]
- Injumpa, W.; Ritprajak, P.; Insin, N. Size-dependent Cytotoxicity and Inflammatory Responses of Pegylated Silica-iron Oxide Nanocomposite Size Series. J. Magn. Magn. Mater. 2017, 427, 60–66. [Google Scholar] [CrossRef]
- Shukla, R.K.; Badiye, A.; Vajpayee, K.; Kapoor, N. Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA. Front. Genet. 2021, 12, 728250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.L.; Liu, L.H.; Zhu, Z.; Ni, Y.N. Functionalization of Fe3O4/rGO Magnetic Nanoparticles with Resveratrol and in Vitro DNA Interaction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 273, 121032. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Siddique, I.M. Navigating the Nanoscale: Challenges and Opportunities in Nanomaterial Science. Eur. J. Adv. Eng. Technol. 2024, 11, 32–40. [Google Scholar]
- Ekeocha, J.; Ellingford, C.; Pan, M.; Wemyss, A.M.; Bowen, C.; Wan, C.Y. Challenges and Opportunities of Self-healing Polymers and Devices for Extreme and Hostile Environments. Adv. Mater. 2021, 33, 2008052. [Google Scholar] [CrossRef]
Core Properties | Derived Functions | Application Targets | Representative Examples |
---|---|---|---|
High Surface Area | Provide abundant adsorption sites; High contaminant uptake capacity | Efficient adsorption of heavy metal ions (e.g., Pb2+, Cd2+, Cu2+) | Porous MNMs achieve adsorption capacities of 100–500 mg/g for metals. |
Superparamagnetism | Enable rapid magnetic separation; Facilitate recovery and reuse; Prevent secondary release | Final separation step in all MNM-based applications | >99% recovery achieved within minutes under an external magnetic field. |
Easy Functionalization | 1. Introduce specific functional groups (-COOH, -NH2, -SH) 2. Enhance dispersion and stability 3. Improve selectivity for target contaminants | 1. Targeted removal of specific pollutants (e.g., As, Cr (VI) 2. Improved performance in complex water matrices | Magnetic Hemicellulosic Composite Microspheres for Cu2+; Chitosan coatings for enhanced biocompatibility. |
Catalytic Activity | Activate peroxydisulfate (PDS) or H2O2 to generate reactive oxygen species (ROS) | Catalytic degradation of organic pollutants (e.g., dyes, antibiotics, POPs) | MnFe2O4/PMS system degrades Bisphenol A; CuFe2O4 activates persulfate. |
Material (Configuration) | Target Pollutant | Optimal Conditions | Key Performance Metric | Primary Mechanism (s) | Ref. |
---|---|---|---|---|---|
Magnetic Hemicellulosic Composite Microspheres | Cu (II) | pH 5.0, initial Cu2+ concentration 80 mg/L | 149.25 mg/g | Adsorption (hybrid magnetic composite microspheres) | [17] |
Fe3O4-NPs (MAAC) | Cd (II) | 150 mg/L, pH = 6 | >90% removal 70 mg/g (Maximum adsorption capacity) | Adsorption | [32] |
Fe3O4 @DA-DMSA (FDDMs) | Pb (II) Cu (II) Cd (II) | 187.62 mg/g, 63.01 mg/g 49.46 mg/g (Maximum adsorption capacity) | Adsorption (Organic–inorganic hybrid) | [34] | |
Magnetic GO-Chitosan (Composite) | Hg (II) | - | 339.82 mg/g (in 8 min) | Adsorption (Amidation) | [37] |
Fe3O4@DABA | Congo red Eosin yellow | pH 3 25 °C. | 259 mg/g 282 mg/g | Adsorption (Organic-functionalized) | [42] |
Cu0.5Mn0.5Fe2O4 (Spinel Ferrite) | RhB | 20 mg/L, Vis Light, 60 min | >99% degradation | Photo-Fenton | [43] |
Fe3O4@CHC | RhB | 25 °C, pH 3.0, 0.5 g/L catalyst, 10 mmol /L H2O2 | 90.2% degradation <0.3 mg/L (iron leakage) | Photo-Fenton (·OH generation) | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, N.; Sun, Y.; Li, Y.; Liu, Z.; Wang, N.; Meng, T.; Luo, Y. A Review on the Application of Magnetic Nanomaterials for Environmental and Ecological Remediation. Toxics 2025, 13, 814. https://doi.org/10.3390/toxics13100814
Lu N, Sun Y, Li Y, Liu Z, Wang N, Meng T, Luo Y. A Review on the Application of Magnetic Nanomaterials for Environmental and Ecological Remediation. Toxics. 2025; 13(10):814. https://doi.org/10.3390/toxics13100814
Chicago/Turabian StyleLu, Nan, Yingying Sun, Yan Li, Zhe Liu, Na Wang, Tingting Meng, and Yuhu Luo. 2025. "A Review on the Application of Magnetic Nanomaterials for Environmental and Ecological Remediation" Toxics 13, no. 10: 814. https://doi.org/10.3390/toxics13100814
APA StyleLu, N., Sun, Y., Li, Y., Liu, Z., Wang, N., Meng, T., & Luo, Y. (2025). A Review on the Application of Magnetic Nanomaterials for Environmental and Ecological Remediation. Toxics, 13(10), 814. https://doi.org/10.3390/toxics13100814