Spatiotemporal Gradients of PAH Concentrations in Greek Cities and Associated Exposure Impacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Filter Sampling
2.2. Laboratory Analyses
2.3. Carcinogenic Risk
3. Results
3.1. Characterization of PAH Levels
3.2. Spatiotemporal Variability of PAH Groups
3.3. Diagnostic Ratios
3.4. Associations of PAHs with Carbonaceous Compounds
3.5. Aerosol Carcinogenic Risk
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krzyszczak, A.; Czech, B. Occurrence and Toxicity of Polycyclic Aromatic Hydrocarbons Derivatives in Environmental Matrices. Sci. Total Environ. 2021, 788, 147738. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, L.; Zhang, H.; Xing, W.; Wang, Y.; Bai, P.; Zhang, L.; Hayakawa, K.; Toriba, A.; Wei, Y.; et al. Assessing Approaches of Human Inhalation Exposure to Polycyclic Aromatic Hydrocarbons: A Review. Int. J. Environ. Res. Public Health 2021, 18, 3124. [Google Scholar] [CrossRef] [PubMed]
- Desler, C.; Johannessen, C.; Rasmussen, L.J. Repair of DNA Damage Induced by Anthanthrene, a Polycyclic Aromatic Hydrocarbon (PAH) without Bay or Fjord Regions. Chem. Biol. Interact. 2009, 177, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Munoz, B.; Albores, A. DNA Damage Caused by Polycyclic Aromatic Hydrocarbons: Mechanisms and Markers. Sel. Top. DNA Repair 2011, 201, 125–143. [Google Scholar] [CrossRef]
- Scheurer, M.E.; Danysh, H.E.; Follen, M.; Lupo, P.J. Association of Traffic-Related Hazardous Air Pollutants and Cervical Dysplasia in an Urban Multiethnic Population: A Cross-Sectional Study. Environ. Health Glob. Access Sci. Source 2014, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Baumann, K.; Wietzoreck, M.; Shahpoury, P.; Filippi, A.; Hildmann, S.; Lelieveld, S.; Berkemeier, T.; Tong, H.; Pöschl, U.; Lammel, G. Is the Oxidative Potential of Components of Fine Particulate Matter Surface-Mediated? Environ. Sci. Pollut. Res. 2023, 30, 16749–16755. [Google Scholar] [CrossRef] [PubMed]
- Marris, C.R.; Kompella, S.N.; Miller, M.R.; Incardona, J.P.; Brette, F.; Hancox, J.C.; Sørhus, E.; Shiels, H.A. Polyaromatic Hydrocarbons in Pollution: A Heart-Breaking Matter. J. Physiol. 2020, 598, 227–247. [Google Scholar] [CrossRef] [PubMed]
- Bollinger, C.E.; McCallister, M.; Clark, R.; Rhoades, R.; Maguire, M.; Savage, R.E.; Jiao, Y.; Harris, K.J.; Ramesh, A.; Lochotzki, H.; et al. Polycyclic Aromatic Hydrocarbons: Implications for Developmental, Molecular, and Behavioral Neurotoxicity. In Handbook of Toxicology of Chemical Warfare Agents; Gupta, R.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 279–297. ISBN 9780128190906. [Google Scholar]
- Geier, M.C.; Chlebowski, A.C.; Truong, L.; Massey Simonich, S.L.; Anderson, K.A.; Tanguay, R.L. Comparative Developmental Toxicity of a Comprehensive Suite of Polycyclic Aromatic Hydrocarbons. Arch. Toxicol. 2018, 92, 571–586. [Google Scholar] [CrossRef]
- Tartaglione, A.M.; Racca, A.; Ricceri, L. Developmental Exposure to Polycyclic Aromatic Hydrocarbons (PAHs): Focus on Benzo[a]Pyrene Neurotoxicity. Reprod. Toxicol. 2023, 119, 108394. [Google Scholar] [CrossRef]
- Zaragoza-Ojeda, M.; Eguía-Aguilar, P.; Perezpeña-Díazconti, M.; Arenas-Huertero, F. Benzo[Ghi]Perylene Activates the AHR Pathway to Exert Biological Effects on the NL-20 Human Bronchial Cell Line. Toxicol. Lett. 2016, 256, 64–76. [Google Scholar] [CrossRef]
- Zaragoza-Ojeda, M.; Torres-Flores, U.; Rodríguez-Leviz, A.; Arenas-Huertero, F. Benzo[Ghi]Perylene Induces Cellular Dormancy Signaling and Endoplasmic Reticulum Stress in NL-20 Human Bronchial Epithelial Cells. Toxicol. Appl. Pharmacol. 2022, 439, 115925. [Google Scholar] [CrossRef] [PubMed]
- Keith, L.H. The Source of U.S. EPA’s Sixteen PAH Priority Pollutants. Polycycl. Aromat. Compd. 2015, 35, 147–160. [Google Scholar] [CrossRef]
- European Commission. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 Relating to Arsenic, Cadmium, Mercury, Nickel and Polycyclic Aromatic Hydrocarbons in Ambient Air. Available online: https://eur-lex.europa.eu/eli/dir/2004/107/oj (accessed on 11 March 2024).
- Lammel, G. Polycyclic Aromatic Compounds in the Atmosphere—A Review Identifying Research Needs. Polycycl. Aromat. Compd. 2015, 35, 316–329. [Google Scholar] [CrossRef]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Tsiodra, I.; Grivas, G.; Tavernaraki, K.; Bougiatioti, A.; Apostolaki, M.; Paraskevopoulou, D.; Gogou, A.; Parinos, C.; Oikonomou, K.; Tsagkaraki, M.; et al. Annual Exposure to Polycyclic Aromatic Hydrocarbons in Urban Environments Linked to Wintertime Wood-Burning Episodes. Atmos. Chem. Phys. 2021, 21, 17865–17883. [Google Scholar] [CrossRef]
- van Pinxteren, D.; Engelhardt, V.; Mothes, F.; Poulain, L.; Fomba, K.W.; Spindler, G.; Cuesta-Mosquera, A.; Tuch, T.; Müller, T.; Wiedensohler, A.; et al. Residential Wood Combustion in Germany: A Twin-Site Study of Local Village Contributions to Particulate Pollutants and Their Potential Health Effects. ACS Environ. Au 2023, 4, 12–30. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Silvergren, S.; Spinicci, S.; Mashayekhy Rad, F.; Nilsson, U.; Westerholm, R.; Johansson, C. Contribution of Wood Burning to Exposures of PAHs and Oxy-PAHs in Eastern Sweden. Atmos. Chem. Phys. 2022, 22, 11359–11379. [Google Scholar] [CrossRef]
- Iakovides, M.; Apostolaki, M.; Stephanou, E.G. PAHs, PCBs and Organochlorine Pesticides in the Atmosphere of Eastern Mediterranean: Investigation of Their Occurrence, Sources and Gas-Particle Partitioning in Relation to Air Mass Transport Pathways. Atmos. Environ. 2021, 244, 117931. [Google Scholar] [CrossRef]
- Saffari, A.; Daher, N.; Samara, C.; Voutsa, D.; Kouras, A.; Manoli, E.; Karagkiozidou, O.; Vlachokostas, C.; Moussiopoulos, N.; Shafer, M.M.; et al. Increased Biomass Burning Due to the Economic Crisis in Greece and Its Adverse Impact on Wintertime Air Quality in Thessaloniki. Environ. Sci. Technol. 2013, 47, 13313–13320. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Grivas, G.; Stavroulas, I.; Bougiatioti, A.; Liakakou, E.; Dumka, U.C.; Gerasopoulos, E.; Mihalopoulos, N. Apportionment of Black and Brown Carbon Spectral Absorption Sources in the Urban Environment of Athens, Greece, during Winter. Sci. Total Environ. 2021, 801, 149739. [Google Scholar] [CrossRef] [PubMed]
- Kalkavouras, P.; Grivas, G.; Stavroulas, I.; Petrinoli, K. Science of the Total Environment Source Apportionment of Fine and Ultrafine Particle Number Concentrations in a Major City of the Eastern Mediterranean. Sci. Total Environ. 2024, 915, 170042. [Google Scholar] [CrossRef] [PubMed]
- EEA. Classification of Monitoring Stations and Criteria to Include Them in EEA’s Assessments Products. Available online: https://www.eea.europa.eu/themes/air/air-quality-concentrations/classification-of-monitoring-stations-and (accessed on 11 March 2024).
- Dimitriou, K.; Stavroulas, I.; Grivas, G.; Chatzidiakos, C.; Kosmopoulos, G.; Kazantzidis, A.; Kourtidis, K.; Karagioras, A.; Hatzianastassiou, N.; Pandis, S.; et al. Intra- and Inter-City Variability of PM2.5 Concentrations in Greece as Determined with a Low-Cost Sensor Network. Atmos. Environ. 2023, 301, 119713. [Google Scholar] [CrossRef]
- Stavroulas, I.; Bougiatioti, A.; Grivas, G.; Paraskevopoulou, D.; Tsagkaraki, M.; Zarmpas, P.; Liakakou, E.; Gerasopoulos, E.; Mihalopoulos, N. Sources and Processes That Control the Submicron Organic Aerosol Composition in an Urban Mediterranean Environment (Athens): A High Temporal-Resolution Chemical Composition Measurement Study. Atmos. Chem. Phys. 2019, 19, 901–919. [Google Scholar] [CrossRef]
- Liakakou, E.; Stavroulas, I.; Kaskaoutis, D.G.; Grivas, G.; Paraskevopoulou, D.; Dumka, U.C.; Tsagkaraki, M.; Bougiatioti, A.; Oikonomou, K.; Sciare, J.; et al. Long-Term Variability, Source Apportionment and Spectral Properties of Black Carbon at an Urban Background Site in Athens, Greece. Atmos. Environ. 2020, 222, 117137. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Grivas, G.; Oikonomou, K.; Tavernaraki, P.; Papoutsidaki, K.; Tsagkaraki, M.; Stavroulas, I.; Zarmpas, P.; Paraskevopoulou, D.; Bougiatioti, A.; et al. Impacts of Severe Residential Wood Burning on Atmospheric Processing, Water-Soluble Organic Aerosol and Light Absorption, in an Inland City of Southeastern Europe. Atmos. Environ. 2022, 280, 119139. [Google Scholar] [CrossRef]
- Paraskevopoulou, D.; Kaskaoutis, D.G.; Grivas, G.; Bikkina, S.; Tsagkaraki, M.; Vrettou, I.M.; Tavernaraki, K.; Papoutsidaki, K.; Stavroulas, I.; Liakakou, E.; et al. Brown Carbon Absorption and Radiative Effects under Intense Residential Wood Burning Conditions in Southeastern Europe: New Insights into the Abundance and Absorptivity of Methanol-Soluble Organic Aerosols. Sci. Total Environ. 2023, 860, 160434. [Google Scholar] [CrossRef] [PubMed]
- Stavroulas, I.; Grivas, G.; Liakakou, E.; Kalkavouras, P.; Bougiatioti, A.; Kaskaoutis, D.G.; Lianou, M.; Papoutsidaki, K.; Tsagkaraki, M.; Zarmpas, P.; et al. Online Chemical Characterization and Sources of Submicron Aerosol in the Major Mediterranean Port City of Piraeus, Greece. Atmosphere 2021, 12, 1686. [Google Scholar] [CrossRef]
- Emmanouil, C.; Drositi, E.; Vasilatou, V.; Diapouli, E.; Krikonis, K.; Eleftheriadis, K.; Kungolos, A. Study on Particulate Matter Air Pollution, Source Origin, and Human Health Risk Based of PM10 Metal Content in Volos City, Greece. Toxicol. Environ. Chem. 2017, 99, 691–709. [Google Scholar] [CrossRef]
- Gerasopoulos, E.; Kouvarakis, G.; Babasakalis, P.; Vrekoussis, M.; Putaud, J.P.; Mihalopoulos, N. Origin and Variability of Particulate Matter (PM10) Mass Concentrations over the Eastern Mediterranean. Atmos. Environ. 2006, 40, 4679–4690. [Google Scholar] [CrossRef]
- Khan, M.B.; Masiol, M.; Bruno, C.; Pasqualetto, A.; Formenton, G.M.; Agostinelli, C.; Pavoni, B. Potential Sources and Meteorological Factors Affecting PM2.5-Bound Polycyclic Aromatic Hydrocarbon Levels in Six Main Cities of Northeastern Italy: An Assessment of the Related Carcinogenic and Mutagenic Risks. Environ. Sci. Pollut. Res. 2018, 25, 31987–32000. [Google Scholar] [CrossRef] [PubMed]
- Eiguren-Fernandez, A.; Miguel, A.H.; Froines, J.R.; Thurairatnam, S.; Avol, E.L. Seasonal and Spatial Variation of Polycyclic Aromatic Hydrocarbons in Vapor-Phase and PM2.5 in Southern California Urban and Rural Communities. Aerosol Sci. Technol. 2004, 38, 447–455. [Google Scholar] [CrossRef]
- Chowdhury, Z.; Zheng, M.; Schauer, J.J.; Sheesley, R.J.; Salmon, L.G.; Cass, G.R.; Russell, A.G. Speciation of Ambient Fine Organic Carbon Particles and Source Apportionment of PM2.5 in Indian Cities. J. Geophys. Res. Atmos. 2007, 112, 1–14. [Google Scholar] [CrossRef]
- Godec, R.; Jakovljević, I.; Šega, K.; Čačković, M.; Bešlić, I.; Davila, S.; Pehnec, G. Carbon Species in PM10 Particle Fraction at Different Monitoring Sites. Environ. Pollut. 2016, 216, 700–710. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Criteria for EUROAIRNET-The EEA Air Quality Monitoringand Information Network; European Environment Agency: Copenhagen, Denmark, 1999.
- Garcia-Marlès, M.; Lara, R.; Reche, C.; Pérez, N.; Tobías, A.; Savadkoohi, M.; Beddows, D.; Salma, I.; Vörösmarty, M.; Weidinger, T.; et al. Inter-Annual Trends of Ultrafine Particles in Urban Europe. Environ. Int. 2024, 185, 108510. [Google Scholar] [CrossRef] [PubMed]
- Manoli, E.; Voutsa, D.; Samara, C. Chemical Characterization and Source Identification/Apportionment of Fine and Coarse Air Particles in Thessaloniki, Greece. Atmos. Environ. 2002, 36, 949–961. [Google Scholar] [CrossRef]
- Shen, R.; Wang, Y.; Gao, W.; Cong, X.; Cheng, L.; Li, X. Size-Segregated Particulate Matter Bound Polycyclic Aromatic Hydrocarbons (PAHs) over China: Size Distribution, Characteristics and Health Risk Assessment. Sci. Total Environ. 2019, 685, 116–123. [Google Scholar] [CrossRef]
- Manoli, E.; Kouras, A.; Karagkiozidou, O.; Argyropoulos, G.; Voutsa, D.; Samara, C. Polycyclic Aromatic Hydrocarbons (PAHs) at Traffic and Urban Background Sites of Northern Greece: Source Apportionment of Ambient PAH Levels and PAH-Induced Lung Cancer Risk. Environ. Sci. Pollut. Res. 2016, 23, 3556–3568. [Google Scholar] [CrossRef] [PubMed]
- Saarnio, K.; Sillanpää, M.; Hillamo, R.; Sandell, E.; Pennanen, A.S.; Salonen, R.O. Polycyclic Aromatic Hydrocarbons in Size-Segregated Particulate Matter from Six Urban Sites in Europe. Atmos. Environ. 2008, 42, 9087–9097. [Google Scholar] [CrossRef]
- Chrysikou, L.P.; Gemenetzis, P.G.; Samara, C.A. Wintertime Size Distribution of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs) and Organochlorine Pesticides (OCPs) in the Urban Environment: Street- vs Rooftop-Level Measurements. Atmos. Environ. 2009, 43, 290–300. [Google Scholar] [CrossRef]
- Chrysikou, L.P.; Samara, C.A. Seasonal Variation of the Size Distribution of Urban Particulate Matter and Associated Organic Pollutants in the Ambient Air. Atmos. Environ. 2009, 43, 4557–4569. [Google Scholar] [CrossRef]
- Besis, A.; Gallou, D.; Avgenikou, A.; Serafeim, E.; Samara, C. Size-Dependent In Vitro Inhalation Bioaccessibility of PAHs and O/N PAHs—Implications to Inhalation Risk Assessment. Environ. Pollut. 2022, 301, 119045. [Google Scholar] [CrossRef] [PubMed]
- Andreou, G.; Rapsomanikis, S. Polycyclic Aromatic Hydrocarbons and Their Oxygenated Derivatives in the Urban Atmosphere of Athens. J. Hazard. Mater. 2009, 172, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Kavouras, I.G.; Stephanou, E.G. Particle Size Distribution of Organic Primary and Secondary Aerosol Constituents in Urban, Background Marine, and Forest Atmosphere. J. Geophys. Res. Atmos. 2002, 107, AAC 7-1–AAC 7-12. [Google Scholar] [CrossRef]
- Parinos, C.; Skylaki, E.; Hatzianestis, I.; Gogou, A. Occurrence, Sources and Water Column Distribution Trends of Suspended Particle-Associated Aliphatic and Polycyclic Aromatic Hydrocarbons in the Open Northeastern Mediterranean Sea. Sci. Total Environ. 2024, 914, 169685. [Google Scholar] [CrossRef]
- Gogou, A.I.; Apostolaki, M.; Stephanou, E.G. Determination of Organic Molecular Markers in Marine Aerosols and Sediments: One-Step Flash Chromatography Compound Class Fractionation and Capillary Gas Chromatographic Analysis. J. Chromatogr. A 1998, 799, 215–231. [Google Scholar] [CrossRef]
- Parinos, C.; Gogou, A.; Bouloubassi, I.; Hatzianestis, I.; Rousakis, G. Occurrence, Sources and Transport Pathways of Natural and Anthropogenic Hydrocarbons in Deep-Sea Sediments of the Eastern Mediterranean Sea. Biogeosciences 2013, 10, 6069–6089. [Google Scholar] [CrossRef]
- Mandalakis, M.; Tsapakis, M.; Stephanou, E.G. Optimization and Application of High-Resolution Gas Chromatography with Ion Trap Tandem Mass Spectrometry to the Determination of Polychlorinated Biphenyls in Atmospheric Aerosols. J. Chromatogr. A 2001, 925, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Iakovides, M.; Iakovides, G.; Stephanou, E.G. Atmospheric Particle-Bound Polycyclic Aromatic Hydrocarbons, n-Alkanes, Hopanes, Steranes and Trace Metals: PM2.5 Source Identification, Individual and Cumulative Multi-Pathway Lifetime Cancer Risk Assessment in the Urban Environment. Sci. Total Environ. 2021, 752, 141834. [Google Scholar] [CrossRef]
- Cavalli, F.; Viana, M.; Yttri, K.E.; Genberg, J.; Putaud, J. Toward a Standardised Thermal-Optical Protocol for Measuring Atmospheric Organic and Elemental Carbon: The EUSAAR Protocol. Atmos. Meas. Tech. 2009, 2, 2321–2345. [Google Scholar] [CrossRef]
- Paraskevopoulou, D.; Liakakou, E.; Gerasopoulos, E.; Theodosi, C.; Mihalopoulos, N. Long-Term Characterization of Organic and Elemental Carbon in the PM2.5 Fraction: The Case of Athens, Greece. Atmos. Chem. Phys. 2014, 14, 13313–13325. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Bezes, A.; Koletsis, I.; Kopania, T.; Lykoudis, S.; Mazarakis, N.; Papagiannaki, K.; Vougioukas, S. The Automatic Weather Stations NOANN Network of the National Observatory of Athens: Operation and Database. Geosci. Data J. 2017, 4, 4–16. [Google Scholar] [CrossRef]
- Li, T.; Su, W.; Zhong, L.; Liang, W.; Feng, X.; Zhu, B.; Ruan, T. An Integrated Workflow Assisted by In Silico Predictions To Expand the List of Priority Polycyclic Aromatic Compounds. Environ. Sci. Technol. 2023, 57, 20854–20863. [Google Scholar] [CrossRef] [PubMed]
- Taghvaee, S.; Sowlat, M.H.; Hassanvand, M.S.; Yunesian, M.; Naddafi, K.; Sioutas, C. Source-Specific Lung Cancer Risk Assessment of Ambient PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs) in Central Tehran. Environ. Int. 2018, 120, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Nisbet, I.C.T.; LaGoy, P.K. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.A.; Vicente, A.M.; Custódio, D.; Cerqueira, M.; Nunes, T.; Pio, C.; Lucarelli, F.; Calzolai, G.; Nava, S.; Diapouli, E.; et al. Polycyclic Aromatic Hydrocarbons and Their Derivatives (Nitro-PAHs, Oxygenated PAHs, and Azaarenes) in PM2.5 from Southern European Cities. Sci. Total Environ. 2017, 595, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Sikalos, T.I.; Paleologos, E.K.; Karayannis, M.I. Monitoring of Time v Ariation and Effect of Some Meteorological Parameters in Polynuclear Aromatic Hydrocarbons in Ioannina, Greece with the Aid of HPLC-Fluorescence Analysis. Talanta 2002, 58, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Kozielska, B.; Klejnowski, K. Seasonal Variations in Health Hazards from Polycyclic Aromatic Hydrocarbons Bound to Submicrometer Particles at Three Characteristic Sites in the Heavily Polluted Polish Region. Atmosphere 2015, 6, 1–20. [Google Scholar] [CrossRef]
- Chen, P.; Kang, S.; Li, C.; Li, Q.; Yan, F.; Guo, J.; Ji, Z.; Zhang, Q.; Hu, Z.; Tripathee, L.; et al. Source Apportionment and Risk Assessment of Atmospheric Polycyclic Aromatic Hydrocarbons in Lhasa, Tibet, China. Aerosol Air Qual. Res. 2018, 18, 1294–1304. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zhang, T.; Kong, S.; Zhang, H.; Zhang, Q.; Niu, X.; Huang, S.; Xu, H.; Ho, K.F.; et al. A Comprehensive Evaluation of PM2.5-Bound PAHs and Their Derivative in Winter from Six Megacities in China: Insight the Source-Dependent Health Risk and Secondary Reactions. Environ. Int. 2022, 165, 107344. [Google Scholar] [CrossRef]
- Zhuo, S.; Du, W.; Shen, G.; Li, B.; Liu, J.; Cheng, H.; Xing, B.; Tao, S. Estimating Relative Contributions of Primary and Secondary Sources of Ambient Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbons. Atmos. Environ. 2017, 159, 126–134. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y.; Xu, X. Health Risk Assessment of PM2.5-Bound Components in Beijing, China during 2013–2015. Aerosol Air Qual. Res. 2020, 20, 1938–1949. [Google Scholar] [CrossRef]
- EEA. EEA Europe’s Air Quality Status 2023. Available online: https://www.eea.europa.eu/publications/europes-air-quality-status-2023 (accessed on 11 March 2024).
- Hristova, E.; Georgieva, E.; Veleva, B. Temporal Variations of Black Carbon in the Urban Air Particulate Matter of Sofia–Observed and Modelled; Dobrinkova, N., Nikolov, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; ISBN 9783031267536. [Google Scholar]
- Jakovljević, I.; Štrukil, Z.S.; Godec, R.; Bešlić, I.; Davila, S.; Lovrić, M.; Pehnec, G. Pollution Sources and Carcinogenic Risk of PAHs in Pm1 Particle Fraction in an Urban Area. Int. J. Environ. Res. Public Health 2020, 17, 9587. [Google Scholar] [CrossRef] [PubMed]
- Drventić, I.; Glumac, M.; Carev, I.; Kroflič, A. Seasonality of Polyaromatic Hydrocarbons (PAHs) and Their Derivatives in PM2.5 from Ljubljana, Combustion Aerosol Source Apportionment, and Cytotoxicity of Selected Nitrated Polyaromatic Hydrocarbons (NPAHs). Toxics 2023, 11, 518. [Google Scholar] [CrossRef] [PubMed]
- European Commission. EMODnet Map Viewer. Available online: https://emodnet.ec.europa.eu/geoviewer/# (accessed on 8 March 2024).
- Manoli, E.; Chelioti-Chatzidimitriou, A.; Karageorgou, K.; Kouras, A.; Voutsa, D.; Samara, C.; Kampanos, I. Polycyclic Aromatic Hydrocarbons and Trace Elements Bounded to Airborne PM10 in the Harbor of Volos, Greece: Implications for the Impact of Harbor Activities. Atmos. Environ. 2017, 167, 61–72. [Google Scholar] [CrossRef]
- Kanellopoulos, P.G.; Verouti, E.; Chrysochou, E.; Koukoulakis, K.; Bakeas, E. Primary and Secondary Organic Aerosol in an Urban/Industrial Site: Sources, Health Implications and the Role of Plastic Enriched Waste Burning. J. Environ. Sci. 2021, 99, 222–238. [Google Scholar] [CrossRef] [PubMed]
- Gregoris, E.; Barbaro, E.; Morabito, E.; Toscano, G.; Donateo, A.; Cesari, D.; Contini, D.; Gambaro, A. Impact of Maritime Traffic on Polycyclic Aromatic Hydrocarbons, Metals and Particulate Matter in Venice Air. Environ. Sci. Pollut. Res. 2016, 23, 6951–6959. [Google Scholar] [CrossRef] [PubMed]
- Donateo, A.; Gregoris, E.; Gambaro, A.; Merico, E.; Giua, R.; Nocioni, A.; Contini, D. Contribution of Harbour Activities and Ship Traffic to PM2.5, Particle Number Concentrations and PAHs in a Port City of the Mediterranean Sea (Italy). Environ. Sci. Pollut. Res. 2014, 21, 9415–9429. [Google Scholar] [CrossRef]
- Amodio, M.; Caselli, M.; de Gennaro, G.; Tutino, M. Particulate PAHs in Two Urban Areas of Southern Italy: Impact of the Sources, Meteorological and Background Conditions on Air Quality. Environ. Res. 2009, 109, 812–820. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Grivas, G.; Theodosi, C.; Tsagkaraki, M.; Paraskevopoulou, D.; Stavroulas, I.; Liakakou, E.; Gkikas, A.; Hatzianastassiou, N.; Wu, C.; et al. Carbonaceous Aerosols in Contrasting Atmospheric Environments in Greek Cities: Evaluation of the EC-Tracer Methods for Secondary Organic Carbon Estimation. Atmosphere 2020, 11, 161. [Google Scholar] [CrossRef]
- Iakovides, M.; Stephanou, E.G.; Apostolaki, M.; Hadjicharalambous, M.; Evans, J.S.; Koutrakis, P.; Achilleos, S. Study of the Occurrence of Airborne Polycyclic Aromatic Hydrocarbons Associated with Respirable Particles in Two Coastal Cities at Eastern Mediterranean: Levels, Source Apportionment, and Potential Risk for Human Health. Atmos. Environ. 2019, 213, 170–184. [Google Scholar] [CrossRef]
- Logothetis, I.; Antonopoulou, C.; Sfetsioris, K.; Mitsotakis, A.; Grammelis, P. Comparison Analysis of the Effect of High and Low Port Activity Seasons on Air Quality in the Port of Heraklion. Environ. Sci. Proc. 2021, 8, 3. [Google Scholar] [CrossRef]
- Pateraki, S.; Fameli, K.M.; Assimakopoulos, V.; Bougiatioti, A.; Maggos, T.; Mihalopoulos, N. Levels, Sources and Health Risk of PM2.5 and PM1-Bound PAHs across the Greater Athens Area: The Role of the Type of Environment and the Meteorology. Atmosphere 2019, 10, 622. [Google Scholar] [CrossRef]
- Jedynska, A.; Hoek, G.; Wang, M.; Eeftens, M.; Cyrys, J.; Keuken, M.; Ampe, C.; Beelen, R.; Cesaroni, G.; Forastiere, F.; et al. Development of Land Use Regression Models for Elemental, Organic Carbon, PAH, and Hopanes/Steranes in 10 ESCAPE/TRANSPHORM European Study Areas. Environ. Sci. Technol. 2014, 48, 14435–14444. [Google Scholar] [CrossRef] [PubMed]
- Karali, D.; Loupa, G.; Rapsomanikis, S. Origins of Regulated Semi-Volatile PAHs and Metals near an Industrial Area and a Highway in the Region of Alexandroupolis, Greece. Air Qual. Atmos. Health 2019, 12, 767–774. [Google Scholar] [CrossRef]
- Achten, C.; Andersson, J.T. Overview of Polycyclic Aromatic Compounds (PAC). Polycycl Aromat. Compd. 2015, 35, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Passig, J.; Schade, J.; Irsig, R.; Kroger-Badge, T.; Czech, H.; Adam, T.; Fallgren, H.; Moldanova, J.; Sklorz, M.; Streibel, T.; et al. Single-Particle Characterization of Polycyclic Aromatic Hydrocarbons in Background Air in Northern Europe. Atmos. Chem. Phys. 2022, 22, 1495–1514. [Google Scholar] [CrossRef]
- Callén, M.S.; López, J.M.; Iturmendi, A.; Mastral, A.M. Nature and Sources of Particle Associated Polycyclic Aromatic Hydrocarbons (PAH) in the Atmospheric Environment of an Urban Area. Environ. Pollut. 2013, 183, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Javed, W.; Iakovides, M.; Garaga, R.; Euripides, G.; Kota, S.H.; Ying, Q.; Wolfson, J.M.; Koutrakis, P.; Guo, B. Source Apportionment of Organic Pollutants in Fine and Coarse Atmospheric Particles in Doha, Qatar. J. Air Waste Manag. Assoc. 2019, 69, 1277–1292. [Google Scholar] [CrossRef] [PubMed]
- Vassura, I.; Venturini, E.; Marchetti, S.; Piazzalunga, A.; Bernardi, E.; Fermo, P.; Passarini, F. Markers and in Fl Uence of Open Biomass Burning on Atmospheric Particulate Size and Composition during a Major Bon Fi Re Event. Atmos. Environ. 2014, 82, 218–225. [Google Scholar] [CrossRef]
- de Souza, C.V.; Corrêa, S.M. Polycyclic Aromatic Hydrocarbons in Diesel Emission, Diesel Fuel and Lubricant Oil. Fuel 2016, 185, 925–931. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, Y.; Zhang, S.; Hu, J.; Zhang, K.M.; Li, Z.; He, L.; Hao, J. Characterizing Particulate Polycyclic Aromatic Hydrocarbon Emissions from Diesel Vehicles Using a Portable Emissions Measurement System. Sci. Rep. 2017, 7, 10058. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, X.; Wang, Y.; Bai, P.; Hayakawa, K.; Zhang, L.; Tang, N. Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review. Int. J. Environ. Res. Public Health 2022, 19, 3944. [Google Scholar] [CrossRef] [PubMed]
- Samburova, V.; Connolly, J.; Gyawali, M.; Yatavelli, R.L.N.; Watts, A.C.; Chakrabarty, R.K.; Zielinska, B.; Moosmüller, H.; Khlystov, A. Polycyclic Aromatic Hydrocarbons in Biomass-Burning Emissions and Their Contribution to Light Absorption and Aerosol Toxicity. Sci. Total Environ. 2016, 568, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ding, X.; Turap, Y.; Tursun, Y.; Abulizi, A.; Wang, X.; Shao, L.; Talifu, D.; An, J.; Zhang, X.; et al. Distribution, Sources, Risks, and Vitro DNA Oxidative Damage of PM2.5-Bound Atmospheric Polycyclic Aromatic Hydrocarbons in Urumqi, NW China. Sci. Total Environ. 2020, 739, 139518. [Google Scholar] [CrossRef] [PubMed]
- Forsey, S.P.; Thomson, N.R.; Barker, J.F. Oxidation Kinetics of Polycyclic Aromatic Hydrocarbons by Permanganate. Chemosphere 2010, 79, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Shahpoury, P.; Wnorowski, A.; Harner, T.; Saini, A.; Halappanavar, S. A Method for Measuring the Bioaccessibility of Polycyclic Aromatic Hydrocarbons in Cell Culture Media. Chemosphere 2024, 351, 141257. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Zhao, Q.; Shen, X.; Cao, X.; Feng, S.; Li, X.; Yao, X.; Wang, P.; Yao, Z. Emissions of PAHs From Crop Residues Burning in Domestic Stoves in Rural China. Front. Environ. Sci. 2022, 10, 883576. [Google Scholar] [CrossRef]
- Zhao, T.; Li, S.; Zhang, H.; Huang, Q.; Qi, A.; Zhang, W.; Gao, H.; Duan, S.; Yang, L.; Wang, W. Investigation of PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs) and Their Derivatives (Nitrated-PAHs and Oxygenated-PAHs) in the Roadside Environment at the Eastern Coastal Region of China: Characterization, Source Identification, and Toxicity Evalua. Air Qual. Atmos. Health 2023, 16, 1257–1270. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Wang, T.; Sun, L.; Yang, Z.; Lin, Y.; Chen, Y.; Mao, H. Characterization of PM2.5-Bound Polycyclic Aromatic Hydrocarbons and Their Derivatives (Nitro-and Oxy-PAHs) Emissions from Two Ship Engines under Different Operating Conditions. Chemosphere 2019, 225, 43–52. [Google Scholar] [CrossRef]
- Keyte, I.J.; Albinet, A.; Harrison, R.M. On-Road Traffic Emissions of Polycyclic Aromatic Hydrocarbons and Their Oxy- and Nitro- Derivative Compounds Measured in Road Tunnel Environments. Sci. Total Environ. 2016, 566–567, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, M.; Presto, A.A.; May, A.A.; Robinson, A.L. Temperature Dependence of Gasparticle Partitioningof Primary Organic Aerosol Emissions from a Small Diesel Engine. Aerosol Sci. Technol. 2012, 46, 13–21. [Google Scholar] [CrossRef]
- Romagnoli, P.; Balducci, C.; Perilli, M.; Perreca, E.; Cecinato, A. Particulate PAHs and N-Alkanes in the Air over Southern and Eastern Mediterranean Sea. Chemosphere 2016, 159, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Lin, T.; Syed, J.H.; Cheng, Z.; Xu, Y.; Li, K.; Zhang, G.; Li, J. Concentration, Source Identification, and Exposure Risk Assessment of PM2.5-Bound Parent PAHs and Nitro-PAHs in Atmosphere from Typical Chinese Cities. Sci. Rep. 2017, 7, 10398. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk, E.; Rogula-Kozłowska, W.; Klejnowski, K.; Fulara, I.; Mielżyńska-Švach, D. Polycyclic Aromatic Hydrocarbons Bound to Outdoor and Indoor Airborne Particles (PM2.5) and Their Mutagenicity and Carcinogenicity in Silesian Kindergartens, Poland. Air Qual. Atmos. Health 2017, 10, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Tolis, E.I.; Saraga, D.E.; Filiou, K.F.; Tziavos, N.I.; Tsiaousis, C.P.; Dinas, A.; Bartzis, J.G. One-Year Intensive Characterization on PM2.5 Nearby Port Area of Thessaloniki, Greece. Environ. Sci. Pollut. Res. 2015, 22, 6812–6826. [Google Scholar] [CrossRef] [PubMed]
- Karageorgou, K.; Manoli, E.; Kouras, A.; Samara, C. Commuter Exposure to Particle-Bound Polycyclic Aromatic Hydrocarbons in Thessaloniki, Greece. Environ. Sci. Pollut. Res. 2021, 28, 59119–59130. [Google Scholar] [CrossRef] [PubMed]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Katsoyiannis, A.; Sweetman, A.J.; Jones, K.C. PAH Molecular Diagnostic Ratios Applied to Atmospheric Sources: A Critical Evaluation Using Two Decades of Source Inventory and Air Concentration Data from the UK. Environ. Sci. Technol. 2011, 45, 8897–8906. [Google Scholar] [CrossRef]
- Yunker, M.B.; Perreault, A.; Lowe, C.J. Source Apportionment of Elevated PAH Concentrations in Sediments near Deep Marine Outfalls in Esquimalt and Victoria, BC, Canada: Is Coal from an 1891 Shipwreck the Source? Org. Geochem. 2012, 46, 12–37. [Google Scholar] [CrossRef]
- Rigas, F.; Sklavounos, S. Major Hazards Analysis for Populations Adjacent to Chemical Storage Facilities. Process. Saf. Environ. Prot. 2004, 82, 341–351. [Google Scholar] [CrossRef]
- Finardi, S.; Radice, P.; Cecinato, A.; Gariazzo, C.; Gherardi, M.; Romagnoli, P. Seasonal Variation of PAHs Concentration and Source Attribution through Diagnostic Ratios Analysis. Urban Clim. 2017, 22, 19–34. [Google Scholar] [CrossRef]
- Tomaz, S.; Shahpoury, P.; Jaffrezo, J.L.; Lammel, G.; Perraudin, E.; Villenave, E.; Albinet, A. One-Year Study of Polycyclic Aromatic Compounds at an Urban Site in Grenoble (France): Seasonal Variations, Gas/Particle Partitioning and Cancer Risk Estimation. Sci. Total Environ. 2016, 565, 1071–1083. [Google Scholar] [CrossRef] [PubMed]
- Dvorská, A.; Lammel, G.; Klánová, J. Use of Diagnostic Ratios for Studying Source Apportionment and Reactivity of Ambient Polycyclic Aromatic Hydrocarbons over Central Europe. Atmos. Environ. 2011, 45, 420–427. [Google Scholar] [CrossRef]
- Avagyan, R.; Nyström, R.; Lindgren, R.; Boman, C.; Westerholm, R. Particulate Hydroxy-PAH Emissions from a Residential Wood Log Stove Using Different Fuels and Burning Conditions. Atmos. Environ. 2016, 140, 1–9. [Google Scholar] [CrossRef]
- Keyte, I.J.; Harrison, R.M.; Lammel, G. Chemical Reactivity and Long-Range Transport Potential of Polycyclic Aromatic Hydrocarbons-a Review. Chem. Soc. Rev. 2013, 42, 9333–9391. [Google Scholar] [CrossRef] [PubMed]
- Tobiszewski, M.; Namie, J. PAH Diagnostic Ratios for the Identi Fi Cation of Pollution Emission Sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Desservettaz, M.; Pikridas, M.; Stavroulas, I.; Bougiatioti, A.; Liakakou, E.; Hatzianastassiou, N.; Sciare, J.; Mihalopoulos, N.; Bourtsoukidis, E. Emission of Volatile Organic Compounds from Residential Biomass Burning and Their Rapid Chemical Transformations. Sci. Total Environ. 2023, 903, 166592. [Google Scholar] [CrossRef] [PubMed]
- Fourtziou, L.; Liakakou, E.; Stavroulas, I.; Theodosi, C.; Zarmpas, P.; Psiloglou, B.; Sciare, J.; Maggos, T.; Bairachtari, K.; Bougiatioti, A.; et al. Multi-Tracer Approach to Characterize Domestic Wood Burning in Athens (Greece) during Wintertime. Atmos. Environ. 2017, 148, 89–101. [Google Scholar] [CrossRef]
- Kim, D.; Kumfer, B.M.; Anastasio, C.; Kennedy, I.M.; Young, T.M. Environmental Aging of Polycyclic Aromatic Hydrocarbons on Soot and Its Effect on Source Identification. Chemosphere 2009, 76, 1075–1081. [Google Scholar] [CrossRef]
- Pio, C.; Cerqueira, M.; Harrison, R.M.; Nunes, T.; Mirante, F.; Alves, C.; Oliveira, C.; Sanchez de la Campa, A.; Artíñano, B.; Matos, M. OC/EC Ratio Observations in Europe: Re-Thinking the Approach for Apportionment between Primary and Secondary Organic Carbon. Atmos. Environ. 2011, 45, 6121–6132. [Google Scholar] [CrossRef]
- Grivas, G.; Cheristanidis, S.; Chaloulakou, A. Elemental and Organic Carbon in the Urban Environment of Athens. Seasonal and Diurnal Variations and Estimates of Secondary Organic Carbon. Sci. Total Environ. 2012, 414, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Myriokefalitakis, S.; Karl, M.; Weiss, K.A.; Karagiannis, D.; Athanasopoulou, E.; Kakouri, A.; Bougiatioti, A.; Liakakou, E.; Stavroulas, I.; Papangelis, G.; et al. Analysis of Secondary Inorganic Aerosols over the Greater Area of Athens Using the EPISODE-CityChem Source Dispersion and Photochemistry Model. EGUsphere 2024, 2024, 1–29. [Google Scholar] [CrossRef]
- Samburova, V.; Zielinska, B.; Khlystov, A. Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity? Toxics 2017, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Exposure Factors Handbook 2011 Edition (Final Report); EPA/600/R-09/052F; U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- Bandowe, B.A.M.; Meusel, H.; Huang, R.J.; Ho, K.; Cao, J.; Hoffmann, T.; Wilcke, W. PM2.5-Bound Oxygenated PAHs, Nitro-PAHs and Parent-PAHs from the Atmosphere of a Chinese Megacity: Seasonal Variation, Sources and Cancer Risk Assessment. Sci. Total Environ. 2014, 473–474, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Li, R.J.; Kou, X.J.; Geng, H.; Dong, C.; Cai, Z.W. Pollution Characteristics of Ambient PM2.5-Bound PAHs and NPAHs in a Typical Winter Time Period in Taiyuan. Chin. Chem. Lett. 2014, 25, 663–666. [Google Scholar] [CrossRef]
- Pehnec, G.; Jakovljević, I.; Godec, R.; Štrukil, Z.S.; Žero, S.; Huremović, J.; Džepina, K. Carcinogenic Organic Content of Particulate Matter at Urban Locations with Different Pollution Sources. Sci. Total Environ. 2020, 734, 139414. [Google Scholar] [CrossRef]
- Flores, R.M.; Özdemir, H.; Ünal, A.; Tayanç, M. Distribution and Sources of SVOCs in Fine and Coarse Aerosols in the Megacity of Istanbul. Atmos. Res. 2022, 271, 106100. [Google Scholar] [CrossRef]
- Skalska, K.; Lewandowska, A.U.; Staniszewska, M.; Reindl, A.; Witkowska, A.; Falkowska, L. Sources, Deposition Flux and Carcinogenic Potential of PM2.5-Bound Polycyclic Aromatic Hydrocarbons in the Coastal Zone of the Baltic Sea (Gdynia, Poland). Air Qual. Atmos. Health 2019, 12, 1291–1301. [Google Scholar] [CrossRef]
- Nagy, A.S.; Szabó, J. Characterization of PM2.5-Bound Polycyclic Aromatic Hydrocarbons in the Ambient Air of Győr, Hungary. Polycycl Aromat. Compd. 2019, 39, 332–345. [Google Scholar] [CrossRef]
- Bari, M.A.; Baumbach, G.; Kuch, B.; Scheffknecht, G. Particle-Phase Concentrations of Polycyclic Aromatic Hydrocarbons in Ambient Air of Rural Residential Areas in Southern Germany. Air Qual. Atmos. Health 2010, 3, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Martellini, T.; Giannoni, M.; Lepri, L.; Katsoyiannis, A.; Cincinelli, A. One Year Intensive PM2.5 Bound Polycyclic Aromatic Hydrocarbons Monitoring in the Area of Tuscany, Italy. Concentrations, Source Understanding and Implications. Environ. Pollut. 2012, 164, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Arruti, A.; Fernández-Olmo, I.; Irabien, Á. Evaluation of the Urban/Rural Particle-Bound PAH and PCB Levels in the Northern Spain (Cantabria Region). Environ. Monit. Assess. 2012, 184, 6513–6526. [Google Scholar] [CrossRef] [PubMed]
Sampling Site | Type | Sampler Type | Model Type | Sampling Duration | Filter Samples | |
---|---|---|---|---|---|---|
Athens | 37.97° N, 23.72° E | Urban Background | Low volume (PM2.5) | 3.1 PNS 15, Comde Derenda GmbH, Stahnsdorf, DE, USA | 24 h | 71 |
Piraeus | 37.95° N, 23.64° E | Urban—Port | Low volume (PM2.5) | Derenda LVS-PNS-15; Comde-Derenda, Stahnsdorf, DE, USA | 24 h | 37 |
Ioannina | 39.65° N, 20.85° E | Urban Background | High volume (PM2.5) | Digitel High Volume Aerosol Sampler DH77 | 24 h | 81 |
Volos | 39.36° N, 22.95° E | Urban—Port | High volume (PM2.5) | High volume automatic air sampler CAV-A/MSb (MCV S.A.) | 24 h | 29 |
Xanthi | 41.15° N, 24.92° E | Rural Background | High volume (PM2.5) | Digitel High Volume Aerosol Sampler DH77 | 24 h | 62 |
Heraklion | 35.33° N, 25.14° E | Urban—Traffic | High volume (PM10) | Digitel High Volume Aerosol Sampler DH77 | 24 h | 25 |
Winter | Summer | |||||
---|---|---|---|---|---|---|
Temperature (°C) | Relative Humidity (%) | Wind Speed (m/s) | Temperature (°C) | Relative Humidity (%) | Wind Speed (m/s) | |
Athens | 11.4 ± 2.1 | 64.9 ± 7.6 | 1.8 ± 0.7 | 28.2 ± 4.5 | 44.0 ± 13.6 | 1.9 ± 0.7 |
Piraeus | 10.5 ± 2.2 | 68.2 ± 9.2 | 1.2 ± 1.0 | 28.8 ± 1.5 | 54.3 ± 9.8 | 1.3 ± 0.8 |
Ioannina | 7.4 ± 2.4 | 70.5 ± 20.4 | 0.8 ± 0.5 | 26.8 ± 2.6 | 52.2 ± 9.3 | 0.7 ± 0.2 |
Volos | 6.0 ± 1.5 | 68.2 ± 12.1 | 2.5 ± 1.1 | 27.5 ± 1.2 | 56.9 ± 4.3 | 2.3 ± 1.0 |
Xanthi | 6.7 ± 3.1 | 73.6 ± 10.6 | 0.7 ± 1.0 | 25.9 ± 2.5 | 62.3 ± 10.6 | 0.8 ± 0.5 |
Heraklion | 13.1 ± 2.6 | 77.3 ± 8.2 | 2.3 ± 1.2 | 26.0 ± 1.5 | 68.0 ± 8.6 | 2.1 ± 0.5 |
Molecular Weight (g/mole) | Molecular Weight Group * | PAH Name | PAH Abbreviation | TEF ** | IARC Classification | EU Air Quality Directive *** |
---|---|---|---|---|---|---|
128 | LMW | Naphthalene | Nap | 0.001 | 2B | x |
152 | LMW | Acenaphthylene | Acy | 0.001 | x | |
154 | LMW | Acenaphthene | Ace | 0.001 | 3 | x |
166 | LMW | Fluorene | Flu | 0.001 | 3 | x |
178 | LMW | Phenanthrene | Phe | 0.001 | 3 | x |
178 | LMW | Anthracene | Ant | 0.010 | 3 | x |
202 | MMW | Fluoranthene | Flt | 0.080 | 3 | x |
202 | MMW | Pyrene | Pyr | 0.001 | 3 | x |
228 | MMW | Benzo(a)anthracene | BaA | 0.200 | 2B | ✓ |
228 | MMW | Chrysene | Chr | 0.100 | 2B | x |
252 | HMW | Benzo(b+j)fluoranthene | BbjF | 0.800 | 2B | ✓ |
252 | HMW | Benzo(k)fluoranthene | BkF | 0.200 | 2B | ✓ |
252 | HMW | Benzo(a)pyrene | BaP | 1.000 | 1 | ✓ |
276 | HMW | Indeno(123cd)pyrene | IP | 0.100 | 2B | ✓ |
278 | HMW | Dibenzo(ah)anthracene | DBahA | 10.000 | 2A | ✓ |
276 | HMW | Benzo(ghi)perylene | BghiP | 0.009 | 3 | ✓ |
Sum of Σ16PAHs (ng m−3) | Benzo[a]pyrene (ng m−3) | |||
---|---|---|---|---|
Winter | Summer | Winter | Summer | |
Athens | 17.87 ± 21.37 | 0.87 ± 0.90 | 1.46 ± 2.33 | 0.05 ± 0.17 |
Piraeus | 13.95 ± 10.1 | 2.15 ± 2.25 | 1.20 ± 0.99 | 0.02 ± 0.02 |
Ioannina | 42.99 ± 35.08 | 0.44 ± 0.25 | 4.79 ± 3.92 | 0.01 ± 0.01 |
Volos | 16.41 ± 5.24 | 1.05 ± 0.56 | 1.43 ± 0.53 | 0.05 ± 0.04 |
Xanthi | 4.55 ± 3.37 | 0.45 ± 0.10 | 0.33 ± 0.26 | 0.01 ± 0.01 |
Heraklion | 4.55 ± 3.72 | 0.61 ± 0.17 | 0.47 ± 0.47 | 0.02 ± 0.004 |
OC (μg m−3) | EC (μg m−3) | |||||||
---|---|---|---|---|---|---|---|---|
Winter | r Σ16PAH | Summer | r Σ16PAH | Winter | r Σ16PAH | Summer | r Σ16PAH | |
Athens | 16.5 ± 17.2 | 0.94 | 4.2 ± 1.4 | 0.47 | 3.9 ± 2.8 | 0.67 | 1.5 ± 0.8 | 0.16 |
Piraeus | 9.8 ± 5.3 | 0.94 | 3.7 ± 0.8 | 0.25 | 3.2 ± 1.7 | 0.81 | 1.2 ± 0.5 | 0.63 |
Ioannina | 28.2 ± 19.0 | 0.94 | 2.8 ± 1.0 | 0.02 | 2.8 ± 1.9 | 0.57 | 0.4 ± 0.2 | 0.21 |
Volos | 11.9 ± 3.4 | 0.64 | 3.1 ± 0.7 | 0.30 | 1.5 ± 0.6 | 0.77 | 1.1 ± 0.6 | 0.32 |
Xanthi | 3.8 ± 1.8 | 0.67 | 2.8 ± 0.7 | 0.13 | 0.4 ± 0.2 | 0.74 | 0.2 ± 0.1 | 0.18 |
Heraklion | 4.4 ± 1.9 | 0.91 | 3.6 ± 0.7 | 0.31 | 1.3 ± 0.6 | 0.90 | 1.2 ± 1.1 | 0.73 |
Athens | Piraeus | Ioannina | Volos | Xanthi | Heraklion | |
---|---|---|---|---|---|---|
BaPeq * (ng m−3) | ||||||
Winter | 9.59 | 8.34 | 19.98 | 7.77 | 2.14 | 2.66 |
Summer | 0.22 | 0.24 | 0.26 | 0.29 | 0.09 | 0.56 |
Annual | 4.91 | 4.29 | 10.12 | 4.03 | 1.12 | 1.62 |
ILCR ** (×10−6) | ||||||
OEHHA *** | 5.4 | 4.7 | 11.1 | 4.4 | 1.2 | 1.8 |
WHO **** | 427 | 373 | 880 | 350 | 97 | 141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiodra, I.; Tavernaraki, K.; Grivas, G.; Parinos, C.; Papoutsidaki, K.; Paraskevopoulou, D.; Liakakou, E.; Gogou, A.; Bougiatioti, A.; Gerasopoulos, E.; et al. Spatiotemporal Gradients of PAH Concentrations in Greek Cities and Associated Exposure Impacts. Toxics 2024, 12, 293. https://doi.org/10.3390/toxics12040293
Tsiodra I, Tavernaraki K, Grivas G, Parinos C, Papoutsidaki K, Paraskevopoulou D, Liakakou E, Gogou A, Bougiatioti A, Gerasopoulos E, et al. Spatiotemporal Gradients of PAH Concentrations in Greek Cities and Associated Exposure Impacts. Toxics. 2024; 12(4):293. https://doi.org/10.3390/toxics12040293
Chicago/Turabian StyleTsiodra, Irini, Kalliopi Tavernaraki, Georgios Grivas, Constantine Parinos, Kyriaki Papoutsidaki, Despina Paraskevopoulou, Eleni Liakakou, Alexandra Gogou, Aikaterini Bougiatioti, Evangelos Gerasopoulos, and et al. 2024. "Spatiotemporal Gradients of PAH Concentrations in Greek Cities and Associated Exposure Impacts" Toxics 12, no. 4: 293. https://doi.org/10.3390/toxics12040293
APA StyleTsiodra, I., Tavernaraki, K., Grivas, G., Parinos, C., Papoutsidaki, K., Paraskevopoulou, D., Liakakou, E., Gogou, A., Bougiatioti, A., Gerasopoulos, E., Kanakidou, M., & Mihalopoulos, N. (2024). Spatiotemporal Gradients of PAH Concentrations in Greek Cities and Associated Exposure Impacts. Toxics, 12(4), 293. https://doi.org/10.3390/toxics12040293