Resuspended Nano-Minerals in Coal Ash: A Potential Factor in Elevated Lung Cancer Rates in Xuanwei and Fuyuan, Yunnan, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. SEM Observation
- (1)
- Sample Preparation: A section of approximately 1 cm2 was cut from each polycarbonate filter containing the collected ash particles. The cut filter segment was then mounted onto a sample holder using conductive carbon tape to secure the sample and ensure uniform contact.
- (2)
- Coating Process: The mounted samples were coated with a thin layer of platinum (Pt) using a sputter coater. This coating step was essential to enhance the electrical conductivity of the samples, which mitigates charging effects under the electron beam. The Pt coating also improved the clarity and resolution of the SEM images, enabling more precise morphological analysis.
- (3)
- SEM Analysis: The prepared samples were analyzed at an accelerating voltage of 20 kV. To ensure the representativeness of the analysis, several fields at low magnification were randomly selected in each sample, and all the particles within these fields were imaged at magnifications ranging from ×5000 to ×20,000. This range allowed for the identification of both overall particle morphology and fine structural details, facilitating a comprehensive analysis.
3. Results
3.1. Classification of Ash Particles
3.2. Relative Percentage of Ash Particles
4. Discussions and Health Implications
5. Conclusions
6. Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, R.; Liu, Y.; Wang, T.; Tang, J.; Xie, L.; Yao, Z.; Li, K.; Liao, Y.; Zhou, L.; Geng, Z.; et al. The characteristics of lung cancer in Xuanwei County: A review of differentially expressed genes and noncoding RNAs on cell proliferation and migration. Biomed. Pharmacother. 2019, 119, 109312. [Google Scholar] [CrossRef] [PubMed]
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Zheng, R.; Zeng, H.; Wang, S.; Sun, K.; Chen, R.; Li, L.; Wei, W.; He, J. Cancer incidence and mortality in China, 2022. J. Natl. Cancer Cent. 2024, 4, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Gil, G.F.; Reitsma, M.B.; Ahmad, N.S.; Anderson, J.A.; Bisignano, C.; Carr, S.; Feldman, R.; Hay, S.I.; He, J.; et al. Health effects associated with smoking: A Burden of Proof study. Nat. Med. 2022, 28, 2045–2055. [Google Scholar] [CrossRef]
- Berg, C.D.; Schiller, J.H.; Boffetta, P.; Cai, J.; Connolly, C.; Kerpel-Fronius, A.; Kitts, A.B.; Lam, D.C.L.; Mohan, A.; Myers, R.; et al. Air Pollution and Lung Cancer: A Review by International Association for the Study of Lung Cancer Early Detection and Screening Committee. J. Thorac. Oncol. 2023, 18, 1277–1289. [Google Scholar] [CrossRef]
- Niu, H.; Wu, Z.; Xue, F.; Liu, Z.; Hu, W.; Wang, J.; Fan, J.; Lu, Y. Seasonal variations and risk assessment of heavy metals in PM2.5 from Handan, China. World J. Eng. 2021, 18, 886–897. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Yuan, S.; Xie, W.; Liu, Y.; Xiang, Y.; Wu, N.; Wu, L.; Ma, X.; Cai, T.; et al. Genetic predisposition to lung cancer: Comprehensive literature integration, meta-analysis, and multiple evidence assessment of candidate-gene association studies. Sci. Rep. 2017, 7, 8371. [Google Scholar] [CrossRef]
- Lu, S.; Liu, J.; Hou, G.; Zhao, J.; Liu, X.; Xie, T.; Xiao, K.; Yonemochi, S.; Ebere, E.C.; Wang, W.; et al. Physicochemical Characterization and Oxidative Potential of Iron-Containing Particles Emitted from Xuanwei Coal Combustion. Toxics 2023, 11, 921. [Google Scholar] [CrossRef]
- Yang, R.; He, M.; Wang, D.; Ye, R.; Li, L.; Deng, R.; Shah, M.; Yeung, S.-C.J. Association of cancer screening and residing in a coal-polluted East Asian region with overall survival of lung cancer patients: A retrospective cohort study. Sci. Rep. 2020, 10, 17432. [Google Scholar] [CrossRef]
- Downward, G.S.; Hu, W.; Large, D.; Veld, H.; Xu, J.; Reiss, B.; Wu, G.; Wei, F.; Chapman, R.S.; Rothman, N.; et al. Heterogeneity in coal composition and implications for lung cancer risk in Xuanwei and Fuyuan counties, China. Environ. Int. 2014, 68, 94–104. [Google Scholar] [CrossRef]
- Shao, L.; Zhang, M.; Feng, X.; Jiao, W.; Wang, W.; Zhou, P. The toxicology of particulate matter emitted from coal combustion and the geological origin of lung cancer epidemic in Xuanwei City, Yunan Province, China. Coal Geol. Explor. 2023, 51, 14. [Google Scholar]
- Lu, S.; Tan, Z.; Liu, P.; Zhao, H.; Liu, D.; Yu, S.; Cheng, P.; Win, M.S.; Hu, J.; Tian, L.; et al. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China. Chemosphere 2017, 186, 278–286. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Ning, M.; Chen, Y. Research Progress of Family Lung Cancer in Xuanwei Area of Yunnan Province. J. Kunming Med. Univ. 2022, 43, 135–141, (In Chinese with English Abstract). [Google Scholar]
- Shao, L.; Hu, Y.; Wang, J.; Hou, C.; Yang, Y.; Wu, M. Particle-induced oxidative damage of indoor PM10 from coal burning homes in the lung cancer area of Xuan Wei, China. Atmos. Environ. 2013, 77, 959–967. [Google Scholar] [CrossRef]
- Lu, S.; Hao, X.; Liu, D.; Wang, Q.; Zhang, W.; Liu, P.; Zhang, R.; Yu, S.; Pan, R.; Wu, M.; et al. Mineralogical characterization of ambient fine/ultrafine particles emitted from Xuanwei C1 coal combustion. Atmos. Res. 2016, 169, 17–23. [Google Scholar] [CrossRef]
- Feng, X.L.; Shao, L.Y.; Xi, C.X.; Jones, T.; Zhang, D.Z.; BeruBe, K. Particle-induced oxidative damage by indoor size-segregated particulate matter from coal-burning homes in the Xuanwei lung cancer epidemic area, Yunnan Province, China. Chemosphere 2020, 256, 127058. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.; Li, L.; Feng, X.; Wang, Q.; Li, J.; Xu, S.; Wang, S.; Yang, Q.; Shen, Z.; et al. Genomic evidence of lung carcinogenesis associated with coal smoke in Xuanwei area, China. Natl. Sci. Rev. 2021, 8, nwab152. [Google Scholar] [CrossRef]
- Downward, G.S.; Hu, W.; Rothman, N.; Reiss, B.; Tromp, P.; Wu, G.; Wei, F.; Xu, J.; Seow, W.J.; Chapman, R.S.; et al. Quartz in ash, and air in a high lung cancer incidence area in China. Environ. Pollut. 2017, 221, 318–325. [Google Scholar] [CrossRef]
- Tian, L.; Dai, S.; Wang, J.; Huang, Y.; Ho, S.C.; Zhou, Y.; Lucas, D.; Koshland, C.P. Nanoquartz in Late Permian C1 coal and the high incidence of female lung cancer in the Pearl River Origin area: A retrospective cohort study. BMC Public Health 2008, 8, 398. [Google Scholar] [CrossRef]
- Zhang, M.; Shao, L.; Jones, T.P.; Feng, X.; Schnelle-Kreis, J.; Cao, Y.; BéruBé, K.A. Concentration, Source, and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons: A Pilot Study in the Xuanwei Lung Cancer Epidemic Area, Yunnan Province, China. Atmosphere 2022, 13, 1732. [Google Scholar] [CrossRef]
- Wang, W.; Shao, L.; Li, J.; Chang, L.; Zhang, D.; Zhang, C.; Jiang, J. Characteristics of Individual Particles Emitted from an Experimental Burning Chamber with Coal from the Lung Cancer Area of Xuanwei, China. Aerosol Air Qual. Res. 2019, 19, 355–363. [Google Scholar] [CrossRef]
- WHO. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. In Silica, Some Silicates, Coal Dust, and Para-Aramid Fibrils; International Agency for Research on Cancer: Lyon, France, 1997; Volume 68. [Google Scholar]
- Mielke, S.; Taeger, D.; Weitmann, K.; Brüning, T.; Hoffmann, W. Influence of quartz exposure on lung cancer types in cases of lymph node-only silicosis and lung silicosis in German uranium miners. Arch. Environ. Occup. Health 2018, 73, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Nakano-Narusawa, Y.; Yokohira, M.; Yamakawa, K.; Saoo, K.; Imaida, K.; Matsuda, Y. Single Intratracheal Quartz Instillation Induced Chronic Inflammation and Tumourigenesis in Rat Lungs. Sci. Rep. 2020, 10, 6647. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shen, H.-M.; Zhang, Q.-F.; Ong, C.-N. Involvement of Oxidative Stress in Crystalline Silica-Induced Cytotoxicity and Genotoxicity in Rat Alveolar Macrophages. Environ. Res. 2000, 82, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Wu, C.; Ma, X.; Ji, X.; Tian, Y.; Wang, J. Evaluation of single particle morphological characteristics and human health risks in different functional areas. World J. Eng. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Brostrøm, A.; Kling, K.I.; Hougaard, K.S.; Mølhave, K. Complex Aerosol Characterization by Scanning Electron Microscopy Coupled with Energy Dispersive X-ray Spectroscopy. Sci. Rep. 2020, 10, 9150. [Google Scholar] [CrossRef]
- Gubanova, D.; Sadovskaya, N.; Iordanskii, M.; Avilov, A.; Minashkin, V.M. Morphology of surface aerosol particles in Moscow via scanning electron microscopy. Bull. Russ. Acad. Sci. Phys. 2023, 87, 1411–1416. [Google Scholar] [CrossRef]
- Carabali, G.; Juarez-Sánchez, F.; Liñan-Abanto, R.N.; Estévez, H.; Valdés-Barrón, M.; Bonifaz-Alfonso, R.; Riveros-Rosas, D.; González-Cabrera, A. Characteristics of Absorbing Aerosols in Mexico City: A Study of Morphology and Columnar Microphysical Properties. Atmosphere 2024, 15, 108. [Google Scholar] [CrossRef]
- Zheng, K.X.; Wang, P.; Lou, X.M.; Zhou, Z.; Zhou, L.F.; Hu, Y.; Luan, Y.Q.; Quan, C.J.; Fang, J.Y.; Zou, H.; et al. A review of airborne micro- and nano-plastics: Sampling methods, analytical techniques, and exposure risks. Environ. Pollut. 2024, 363, 125074. [Google Scholar] [CrossRef]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef]
- Kutchko, B.G.; Kim, A.G. Fly ash characterization by SEM–EDS. Fuel 2006, 85, 2537–2544. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, J.; Wang, S.; Rumchev, K.; Mead-Hunter, R.; Morawska, L.; Hao, J. Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication. Sci. Total Environ. 2017, 576, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Fubini, B.; Hubbard, A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med. 2003, 34, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Galaris, D.; Barbouti, A.; Pantopoulos, K. Iron homeostasis and oxidative stress: An intimate relationship. Biochim. Biophys. Acta BBA Mol. Cell Res. 2019, 1866, 118535. [Google Scholar] [CrossRef]
- Turi, J.L.; Yang, F.; Garrick, M.D.; Piantadosi, C.A.; Ghio, A.J. The iron cycle and oxidative stress in the lung. Free Radic. Biol. Med. 2004, 36, 850–857. [Google Scholar] [CrossRef]
- Journet, E.; Desboeufs, K.V.; Caquineau, S.; Colin, J.-L. Mineralogy as a critical factor of dust iron solubility. Geophys. Res. Lett. 2008, 35, L07805. [Google Scholar] [CrossRef]
- Scanza, R.A.; Hamilton, D.S.; Perez Garcia-Pando, C.; Buck, C.; Baker, A.; Mahowald, N.M. Atmospheric processing of iron in mineral and combustion aerosols: Development of an intermediate-complexity mechanism suitable for Earth system models. Atmos. Chem. Phys. 2018, 18, 14175–14196. [Google Scholar] [CrossRef]




| Particle Types | Xuanwei | Fuyuan | Shanxi | Neimeng | Shandong | Unknown |
|---|---|---|---|---|---|---|
| Quartz | 22.2% | 13.7% | 7.3% | 5.2% | 0.9% | 5.1% |
| SiAl-rich | 39.3% | 67.5% | 33.7% | 34.9% | 1.0% | 9.3% |
| SiAl-dominant | 28.0% | 59.0% | 18.4% | 13.4% | -- | 2.5% |
| SiAl + Ca | 2.9% | 2.6% | 8.5% | 17.7% | 0.9% | 5.1% |
| SiAl + CaMg | -- | -- | 4.3% | 3.9% | -- | 1.7% |
| SiAl + Fe | 8.4% | 6.0% | 2.6% | -- | -- | -- |
| Ca-rich | 25.5% | 8.5% | 40.2% | 31.0% | 8.3% | 28.0% |
| Ca-dominant | 16.3% | 3.4% | 19.2% | 0.4% | 2.8% | 5.1% |
| Ca + Si/Al | 5.4% | 1.7% | 14.5% | 6.9% | 2.8% | 9.3% |
| Ca + S | 3.8% | 3.4% | 6.4% | 23.7% | 2.8% | 13.6% |
| CaMg-rich | 0.0% | 0.0% | 14.1% | 26.7% | 89.8% | 57.6% |
| CaMg-dominant | -- | -- | 4.3% | 1.7% | 53.7% | 6.8% |
| CaMg + Si/Al | -- | -- | 4.3% | 14.7% | 6.5% | 5.1% |
| CaMg + S | -- | -- | 5.6% | 10.3% | 29.6% | 45.8% |
| Fe-rich | 10.9% | 5.1% | 2.1% | 1.3% | 0.0% | 0.0% |
| Fe-dominant | -- | 0.9% | 0.4% | -- | -- | -- |
| Fe + Si/Al | 10.9% | 4.3% | 0.4% | 1.3% | -- | -- |
| Fe + Ca | -- | -- | 1.3% | -- | -- | -- |
| Others | 2.1% | 5.1% | 2.6% | 0.9% | 0.0% | 0.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Wang, M.; Shao, L.; Shao, J.; Liu, P. Resuspended Nano-Minerals in Coal Ash: A Potential Factor in Elevated Lung Cancer Rates in Xuanwei and Fuyuan, Yunnan, China. Toxics 2024, 12, 919. https://doi.org/10.3390/toxics12120919
Wang W, Wang M, Shao L, Shao J, Liu P. Resuspended Nano-Minerals in Coal Ash: A Potential Factor in Elevated Lung Cancer Rates in Xuanwei and Fuyuan, Yunnan, China. Toxics. 2024; 12(12):919. https://doi.org/10.3390/toxics12120919
Chicago/Turabian StyleWang, Wenhua, Mengyang Wang, Longyi Shao, Jiajia Shao, and Pengju Liu. 2024. "Resuspended Nano-Minerals in Coal Ash: A Potential Factor in Elevated Lung Cancer Rates in Xuanwei and Fuyuan, Yunnan, China" Toxics 12, no. 12: 919. https://doi.org/10.3390/toxics12120919
APA StyleWang, W., Wang, M., Shao, L., Shao, J., & Liu, P. (2024). Resuspended Nano-Minerals in Coal Ash: A Potential Factor in Elevated Lung Cancer Rates in Xuanwei and Fuyuan, Yunnan, China. Toxics, 12(12), 919. https://doi.org/10.3390/toxics12120919

