Titanium Dioxide Nanoparticles-Induced Genotoxic Effects in Mosquito Culex quinquefaciatus
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of TiO2 Nanoparticles
- Solution X: Prepared by mixing titanium (IV) isopropoxide (TTIP, C12H28O4Ti, 97% Sigma Aldrich, Saint Louis, MO, USA) and ethanol (C2H5OH, Himedia 99.8%) in a ratio of 1:3 for 30 min on a magnetic stirrer (Ambala, Haryana, India).
- Solution Y: Prepared by mixing double-distilled water (DDW), ethanol and acetic acid glacial AR (CH3 COOH) in a ratio of 1:2:7 by stirring for the same time on a magnetic stirrer.
- Synthesis technique: A milky solution (sol) was obtained by adding, drop by drop, solution X to solution Y. Then, for the formation of gel, this sol was stirred at 25 °C for 10–12 h, maintaining the pH value of approximately 7 by adding ammonium hydro-oxide (NH4OH, Nice 30% NH3). The gel was dried in an oven maintained at 100 °C for 48–72 h to obtain the crystals. A fine powder was prepared by grinding these crystals using pastel mortar for 45 min. This fine powder was calcined at 450 °C for 2 h in the furnace to obtain titanium dioxide nanoparticles. These nanoparticles’ crystalline form is anatase, having a tetragonal structure, and its average crystallite size is about 10 nm.
2.2. Toxicity Assay for Determining LD20 of TiO2 NPs for Mosquito Culex quinquefasciatus
2.3. Selection of Dose for Genotoxic Assays
2.4. Genotoxic Assays
2.4.1. Mitotic Index Assay
2.4.2. Chromosomal Aberration Assay
2.4.3. Statistical Analysis
3. Results
3.1. Mitotic Index
3.2. Chromosomal Aberrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kohl, Y.E.; Rundén-Pran, E.; Mariussen, M.; Hesler, N.; El Yamani, E.M.; Longhin, M.; Dusinska, M. Genotoxicity of nanomaterials: Advanced in vitro models and high throughput methods for human hazard assessment—A review. Nanomaterials 2020, 10, 1911. [Google Scholar] [CrossRef] [PubMed]
- Weir, A.P.; Westerhoff, L.; Fabricius, K.; Hristovski, N.; Von Goetz, N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 2012, 46, 2242–2250. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Li, Z.; Xie, I.M.; Sokolova, L.; Song, W.J.; Peijnenburg, M.; Hu, M.; Wang, Y. Rethinking nano-TiO2 safety: Overview of toxic effects in humans and aquatic animals. Nano Micro Small 2020, 16, 2002019. [Google Scholar] [CrossRef] [PubMed]
- Contado, C. Nanomaterials in consumer products: A challenging analytical problem. Front. Chem. 2015, 3, 48. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, J.; Pławińska-Czarnak, J.; Zarzyńska, J. Nanoparticles of titanium and zinc oxides as novel agents in tumor treatment: A review. Nanoscale Res. Lett. 2017, 12, 1–15. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, R.K.; Gaur, K.; Cátala Torres, J.F.; Loza-Rosas, S.A.; Torres, A.; Saxena, M.; Julin, M.; Tinoco, A.D. Fueling a hot debate on the application of TiO2 nanoparticles in sunscreen. Materials 2019, 12, 2317. [Google Scholar] [CrossRef]
- Haider, A.J.; Jameel, Z.N.; Al-Hussaini, I.H. Review on: Titanium dioxide applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Wang, S.; Ding, Z.; Chang, X.; Xu, J.; Wang, D.H. Modified nano-TiO2 based composites for environmental photocatalytic applications. Catalysts 2020, 10, 759. [Google Scholar] [CrossRef]
- Cornu, R.; Béduneau, A.; Martin, H. Ingestion of titanium dioxide nanoparticles: A definite health risk for consumers and their progeny. Arch. Toxicol. 2022, 96, 2655–2686. [Google Scholar] [CrossRef]
- Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium dioxide nanoparticles: Prospects and applications in medicine. Nanomaterials 2020, 10, 387. [Google Scholar] [CrossRef]
- Jafari, S.; Mahyad, B.; Hashemzadeh, H.; Janfaza, S.; Gholikhani, T.; Tayebi, L. Biomedical applications of TiO2 nanostructures: Recent advances. Int. J. Nanomed. 2020, 14, 3447–3470. [Google Scholar] [CrossRef] [PubMed]
- Minetto, D.; Ghirardini, A.V.; Libralato, G. Saltwater ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C60 engineered nanoparticles: An overview. Environ. Int. 2016, 92, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Iavicoli, I.; Leso, V.; Fontana, L.; Bergamaschi, A. Toxicological effects of titanium dioxide nanoparticles: A review of in vitro mammalian studies. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 481–508. [Google Scholar] [PubMed]
- Khosravi-Katuli, K.; Prato, E.; Lofrano, G.; Guida, M.; Vale, G.; Libralato, G. Effects of nanoparticles in species of aquaculture interest. Environ. Sci. Pollut. Res. 2017, 24, 17326–17346. [Google Scholar] [CrossRef]
- Dar, G.I.; Saeed, M.; Wu, A. Toxicity of TiO2 nanoparticles. In TiO2 Nanoparticles; Wu, A., Ren, W., Eds.; Wiley-VCH Verlag GmbH and Co. KGaA: Hoboken, NJ, USA, 2020; pp. 67–103. [Google Scholar]
- Hu, R.; Gong, X.; Duan, Y.; Li, N.; Che, Y.; Cui, Y.; Hong, F. Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials 2010, 31, 8043–8050. [Google Scholar] [CrossRef]
- Ze, Y.; Hu, R.; Wang, X.; Sang, X.; Ze, X.; Li, B.; Su, J.; Wang, Y.; Guan, N.; Zhao, X.; et al. Neurotoxicity and gene-expressed profile in brain-injured mice caused by exposure to titanium dioxide nanoparticles. J. Biomed. Mater. Res. 2014, 102, 470–478. [Google Scholar] [CrossRef]
- Aijie, C.; Huimin, L.; Jia, L.; Lingling, O.; Limin, W.; Junrong, W.; Xuan, L.; Xue, H.; Longquan, S. Central neurotoxicity induced by the instillation of ZnO and TiO2 nanoparticles through the taste nerve pathway. Nanomedicine 2017, 12, 2453–2470. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, Z.; Zeng, W.; Yang, T.; Cao, Y.; Mei, C.; Kuang, Y. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol. Rev. 2017, 6, 279–289. [Google Scholar] [CrossRef]
- Gupta, R.; Xie, H. Nanoparticles in daily life: Applications, toxicity and regulations. J. Environ. Pathol. Toxicol. Oncol. 2018, 37, 209–230. [Google Scholar] [CrossRef]
- Garcia-Rodriguez, A.; Rubio, L.; Vila, L.; Xamena, N.; Velázquez, A.; Marcos, R.; Hernández, A. The comet assay as a tool to detect the genotoxic potential of nanomaterials. Nanomaterials 2019, 9, 1385. [Google Scholar] [CrossRef]
- Carriere, M.; Arnal, M.E.; Douki, T. TiO2 genotoxicity: An update of the results published over the last six years. Mutat. Res. Genet. Toxicol. Environ. Mutatgen. 2020, 854, 503198. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; An, H.; Li, L.; Wang, J.; Lu, T.; Wang, H.; Hu, Y.; Song, G.; Liu, S. Genotoxicity evaluation of titanium dioxide nanoparticles in vitro: A systematic review of the literature and meta-analysis. Biol. Trace Elem. Res. 2021, 199, 2057–2076. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Han, S.; Zhang, J.; Liu, Y.; Chen, Z.; Jia, G. Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NanoImpact 2022, 25, 100377. [Google Scholar] [CrossRef]
- Sharma, G.P.; Sobti, R.C.; Chaudhry, A.; Ahluwalia, K.K. Genotoxicity of two heavy metal compounds- lead acetate and mercuric chloride in the mosquito Anopheles stephensi Liston (Culicidae: Diptera). Cytologia 1988, 53, 263–267. [Google Scholar] [CrossRef]
- Sharma, G.P.; Sobti, R.C.; Chaudhry, A.; Ahluwalia, K.K. Chromosomal aberrations and dominant lethals in Culex fatigans due to mercuric chloride. Cytobios 1989, 59, 131–135. [Google Scholar] [PubMed]
- Sobti, R.; Sobti, A. An introduction to recent approaches underlying mechanistic insights harboring oncobiology. In Handbook of Oncobiology: From Basic to Clinical Sciences; Sobti, R.C., Ganguly, N.K., Kumar, R., Eds.; Springer: Singapore, 2024; pp. 3–47. [Google Scholar]
- Ahluwalia, K.K.; Chaudhary, S. Genotoxic potential of mercuric nitrate in Culex quinquefaciatus. Res. Bull. Panjab Univ. 1999, 49, 9–16. [Google Scholar]
- Sharma, G.P.; Chaudhry, A.; Sobti, R.C.; Dhar, M.; Ahluwalia, K.K. Effect of mitomycin-C on the genetics of Culex fatigans (Diptera: Culicidae). La Kromosomo II 1990, 58, 1949–1954. [Google Scholar]
- Marwaha, L. In vivo genotoxicity evaluation of carbaryl pesticides using polytene chromosomes of Anopheles culicifacies (Diptera: Culicidae). Toxicol. Int. 2016, 23, 4–11. [Google Scholar] [CrossRef]
- Mishra, P.; Balaji, A.P.B.; Dhal, P.K.; Kumar, R.S.; Magolassi, S.; Margulis, K.; Tyagi, B.K.; Mukherjee, A.; Chandrasekaran, N. Stability of nano-sized permethrin in its colloidal state and its effect on the physiological and biochemical profile of Culex tritaeniorhynchus larvae. Bull. Entomol. Res. 2017, 107, 676–688. [Google Scholar] [CrossRef]
- Ahluwalia, K.K.; Thakur, K.; Ahluwalia, A.S.; Hashem, A.; Avila-Quezada, G.D.; Abd_Allah, E.F.; Thakur, N. Assessment of genotoxicity of zinc oxide nanoparticles using mosquito as test model. Toxics 2023, 11, 887. [Google Scholar] [CrossRef]
- Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 2018, 13, 339. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Negi, P.; Konwar, R.J.; Kumar, H.; Devi, N.; Kaur, G.; Boruah, R.; Ranjan, M.; Sooraj, K.P.; Raval, N.; et al. Tweaking the structural, micro-structural, optical and dielectric properties of anatase titanium dioxide via doping of nitrogen ions. Ceram. Int. 2024, 50, 48138–48163. [Google Scholar] [CrossRef]
- Finney, D.J. A Statistical Treatment of the Sigmoid Response Curve, 3rd ed.; Cambridge University Press: London, UK, 1971; p. 333. [Google Scholar]
- Crozier, R.H. An acetic acid dissociation, air-drying technique for insect chromosomes, with aceto-lactic orcein staining. Stain Technol. 1968, 43, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ding, L.; Yao, C.; Li, C.; Xing, X.; Huang, Y.; Gu, T.; Wu, M. Toxic effects of metal oxide nanoparticles and their underlying mechanisms. Sci. China Mater. 2017, 60, 93–108. [Google Scholar] [CrossRef]
- Hou, J.; Wang, L.; Wang, C.; Zhang, S.; Liu, H.; Li, S.; Wang, X. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J. Environ. Sci. 2019, 75, 40–53. [Google Scholar] [CrossRef]
- Santos-Aguilar, P.; Bernal-Ramírez, J.; Vázquez-Garza, E.; Vélez-Escamilla, L.Y.; Lozano, O.; García-Rivas, G.D.J.; Contreras-Torres, F.F. Synthesis and Characterization of Rutile TiO2 Nanoparticles for the Toxicological Effect on the H9c2 Cell Line from Rats. ACS Omega 2023, 8, 19024–19036. [Google Scholar] [CrossRef]
- El Yamani, N.; Collins, A.R.; Rundén-Pran, E.; Fjellsbø, L.M.; Shaposhnikov, S.; Zienolddiny, S.; Dusinska, M. In vitro genotoxicity testing of four reference metal nanomaterials, titanium dioxide, zinc oxide, cerium oxide and silver: Towards reliable hazard assessment. Mutagenesis 2017, 32, 117–126. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Ba, T.; Li, Y.; Pu, J.; Chen, T.; Song, Y.; Jia, G. Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicol. Lett. 2014, 226, 314–319. [Google Scholar] [CrossRef]
- Demir, E.; Akça, H.; Turna, F.; Aksakal, S.; Burgucu, D.; Kaya, B.; Tokgun, O.; Vales, G.; Creus, S.; Marcos, R. Genotoxic and cell-transforming effects of titanium dioxide nanoparticles. Environ. Res. 2015, 136, 300–308. [Google Scholar] [CrossRef]
- Kazimirova, A.; El Yamani, N.; Rubio, L.; García-Rodríguez, A.; Barancokova, M.; Marcos, R.; Dusinska, M. Effects of titanium dioxide nanoparticles on the Hprt gene mutations in V79 hamster cells. Nanomaterials 2020, 10, 465. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, J.; Bian, Q.; Ning, J.; Yang, L.; Ou, T.; Sang, Y.; Wei, S. Genotoxicity evaluation of titanium dioxide nanoparticles in vivo and in vitro: A meta-analysis. Toxics 2023, 11, 882. [Google Scholar] [CrossRef] [PubMed]
- Donner, E.M.; Myhre, A.; Brown, S.C.; Boatman, R.; Warheit, D.B. In vivo micronucleus studies with 6 titanium dioxide materials (3 pigment-grade and 3 nanoscale) in orally-exposed rats. Regul. Toxicol. Pharmacol. 2016, 74, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Ze, Y.; Li, B.; Zhao, X.; Sang, X.; Zhang, T.; Sheng, L.; Hu, R.; Gui, S.; Sang, X.; et al. Ovarian dysfunction and gene-expressed characteristics of female mice caused by long term exposure to titanium dioxide nanoparticles. J. Hazard. Mater. 2012, 243, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Hong, F.; Ze, X.; Li, L.; Zhou, Y.; Ze, Y. Toxic effects of TiO2 nanoparticles in primary cultured rat sertoli cells are mediated via a dysregulated C a2+/PKC/p38 MAPK/NF-κ B cascade. J. Biomed. Mater. Res. A 2017, 105, 1374–1382. [Google Scholar] [CrossRef] [PubMed]
- Dorier, M.; Brun, E.; Veronesi, G.; Barreau, F.; Pernet-Gallay, K.; Desvergne, C.; Rabilloud, T.; Carapito, C.; Herlin-Boime, N.; Carrière, M. Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells. Nanoscale 2015, 7, 7352–7360. [Google Scholar] [CrossRef]
- Morgan, A.M.; Abd El-Hamid, M.I.; Noshy, P.A. Reproductive toxicity investigation of titanium dioxide nanoparticles in male albino rats. World J. Pharm. Pharm. Sci. 2015, 4, 34–49. [Google Scholar]
- Herrera-Rodriguez, M.A.; del Pilar Ramos-Godinez, M.; Cano-Martínez, A.; Segura, F.C.; Ruiz-Ramírez, A.; Pavón, N.; Lira-Silva, E.; Bautista-Pérez, R.; Thomas, R.S.; Delgado-Buenrostro, N.L.; et al. Food-grade titanium dioxide and zinc oxide nanoparticles induce toxicity and cardiac damage after oral exposure in rats. Part. Fibre Toxicol. 2023, 20, 43. [Google Scholar] [CrossRef]
- Bautista-Pérez, R.; Cano-Martínez, A.; Herrera-Rodriguez, M.A.; Ramos-Godinez, M.D.P.; Pérez Reyes, O.L.; Chirino, Y.I.; Serrano, Z.J.R.; López-Marure, R. Oral exposure to titanium dioxide E171 and zinc oxide nanoparticles induces multi-organ damage in rats: Role of Ceramide. Int. J. Mol. Sci. 2024, 25, 5881. [Google Scholar] [CrossRef]
- Rad, J.S.; Alfatemi, M.H.; Rad, M.S.; Rad, M.S.; Sen, D.J.; Mohsenzadeh, S. In-vivo titanium dioxide (TiO2) nanoparticles effects on chromosomal abnormalities and lactate dehydrogenase activity. Am. J. Adv. Drug Deliv. 2013, 1, 232–237. [Google Scholar]
- Rizk, M.Z.; Ali, S.A.; Hamed, M.A.; El-Rigal, N.S.; Aly, H.F.; Salah, H.H. Toxicity of titanium dioxide nanoparticles: Effect of dose and time on biochemical disturbance, oxidative stress and genotoxicity in mice. Biomed. Pharmacother. 2017, 90, 466–472. [Google Scholar] [CrossRef]
- Ali, S.A.; Rizk, M.Z.; Hamed, M.A.; Aboul-Ela, E.I.; El-Rigal, N.S.; Aly, H.F.; Abdel-Hamid, A.H.Z. Assessment of titanium dioxide nanoparticles toxicity via oral exposure in mice: Effect of dose and particle size. Biomarkers 2019, 24, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Salman, A.S.; Al-Shaikh, T.M.; Hamza, Z.K.; El-Nekeety, A.A.; Bawazir, S.S.; Hassan, N.S.; Abdel-Wahhab, M.A. Matlodextrin-cinnamon essential oil nanoformulation as a potent protective against titanium nanoparticles-induced oxidative stress, genotoxicity, and reproductive disturbances in male mice. Environ. Sci. Pollut. Res. 2021, 28, 39035–39051. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Patel, P.; Bakshi, S.R. Titanium dioxide nanoparticles: An in vitro study of DNA binding, chromosome aberration assay and comet assay. Cytotechnology 2017, 69, 245–263. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.A.; Havrilla, C.M.; Brady, T.C.; Abramo, K.H.; Levin, E.D. Oxidative stress in toxicology: Established mammalian and emerging piscine model systems. Environ. Health Perspect. 1998, 106, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Wang, S.; Zhou, L.; Sun, L. The potential liver, brain, and embryo toxicity of titanium dioxide nanoparticles on mice. Nanoscale Res. Lett. 2017, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Nagakannan, P.; Tabeshmehr, P.; Eftekharpour, E. Oxidative damage of lysosomes in regulated cell death systems: Pathophysiology and pharmacologic interventions. Free Radic. Biol. Med. 2020, 157, 94–127. [Google Scholar] [CrossRef]
- Sallam, M.F.; Ahmed, H.M.; Diab, K.A.; El-Nekeety, A.A.; Abdel-Aziem, S.H.; Sharaf, H.A.; Abdel-Wahhab, M.A. Improvement of the antioxidant activity of thyme essential oil against biosynthesized titanium dioxide nanoparticles-induced oxidative stress, DNA damage, and disturbances in gene expression in vivo. J. Trace Elem. Med. Biol. 2022, 73, 127024. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Flavourings (FAF); Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gundert-Remy, U.; Gürtler, R.; et al. Safety assessment of titanium dioxide (E171) as a food additive. EFSA J. 2021, 19, e06585. [Google Scholar]
- Warheit, D.B. Safety of titanium dioxide (E171) as a food additive for humans. Front. Toxicol. 2024, 6, 1333746. [Google Scholar] [CrossRef]
- Chang, H.; Wang, Q.; Meng, X.; Chen, X.; Deng, Y.; Li, L.; Yang, Y.; Song, G.; Jia, H. Effect of titanium dioxide nanoparticles on mammalian cell cycle in vitro: A systematic review and meta-analysis. Chem. Res. Toxicol. 2022, 35, 1435–1456. [Google Scholar] [CrossRef]
- Huang, S.; Chueh, P.J.; Lin, Y.W.; Shih, T.S.; Chuang, S.M. Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure. Toxicol. Appl. Pharmacol. 2009, 241, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, M.; Grasso, A.; Salemi, R.; Libra, M.; Tomasello, B.; Fiore, M.; Copat, C. DNA damage and apoptosis as in-vitro effect biomarkers of titanium dioxide nanoparticles (TiO2 NPs) and the food additive E171 toxicity in colon cancer cells: HCT-116 and Caco-2. Int. J. Environ. Res. Public Health 2023, 20, 2002. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Liu, H.; Ze, Y.; Zengli, Z.; Hu, Y.; Cheng, Z.; Cheng, J.; Hu, R.; Gao, G.; Wang, L.; et al. Gene expression in liver injury caused by long-term exposure to titanium dioxide nanoparticles in mice. Toxicol. Sci. 2012, 128, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Leroux, M.M.; Doumandji, Z.; Chézeau, L.; Gaté, L.; Nahle, S.; Hocquel, R.; Zhernovkov, V.; Migot, S.; Ghanbaja, J.; Bonnet, C.; et al. Toxicity of TiO2 nanoparticles: Validation of alternative models. Int. J. Mol. Sci. 2020, 21, 4855. [Google Scholar] [CrossRef]
- Magdolenova, Z.; Collins, A.; Kumar, A.; Dhawan, A.; Stone, V.; Dusinska, M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 2014, 8, 233–278. [Google Scholar] [CrossRef]
- Sarikhani, M.; Vaghefi Moghaddam, S.; Firouzamandi, M.; Hejazy, M.; Rahimi, B.; Moeini, H.; Alizadeh, E. Harnessing rat derived model cells to assess the toxicity of TiO2 nanoparticles. J. Mater. Sci. Mater. Med. 2022, 33, 41. [Google Scholar] [CrossRef]
- Li, N.; Duan, Y.; Hong, M.; Zheng, L.; Fei, M.; Zhao, X.; Wang, J.; Cui, Y.; Liu, H.; Cai, J.; et al. Spleen injury and apoptotic pathway in mice caused by titanium dioxide nanoparticules. Toxicol. Lett. 2010, 195, 161–168. [Google Scholar] [CrossRef]
- Tang, Y.; Cai, R.; Cao, D.; Kong, X.; Lu, Y. Photocatalytic production of hydroxyl radicals by commercial TiO2 nanoparticles and phototoxic hazard identification. Toxicology 2018, 406, 1–8. [Google Scholar] [CrossRef]
- Khan, M.; Naqvi, A.H.; Ahmad, M. Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles. Toxicol. Rep. 2015, 2, 765–774. [Google Scholar] [CrossRef]
- Ghosh, M.; Öner, D.; Duca, R.C.; Cokic, S.M.; Seys, S.; Kerkhofs, S.; Landuyt, K.V.; Hoet, P.; Godderis, L. Cyto-genotoxic and DNA methylation changes induced by different crystal phases of TiO2-np in bronchial epithelial (16-HBE) cells. Mutat. Res. Mol. Mech. Mutagen. 2017, 796, 1–12. [Google Scholar] [CrossRef]
- Gurr, J.R.; Wang, A.S.; Chen, C.H.; Jan, K.Y. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 2005, 213, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, W.; Jiang, X.; Lv, K.; Sun, S.; Zhang, F. Analysis of the cytotoxicity of differentially sized titanium dioxide nanoparticles in murine MC3T3-E1 preosteoblasts. J. Mater. Sci. Mater. Med. 2011, 22, 1933–1945. [Google Scholar] [CrossRef] [PubMed]
- Sycheva, L.P.; Zhurkov, V.S.; Iurchenko, V.V.; Daugel-Dauge, N.O.; Kovalenko, M.A.; Krivtsova, E.K.; Durnev, A.D. Investigation of genotoxic and cytotoxic effects of micro-and nanosized titanium dioxide in six organs of mice in vivo. Mutat. Res. Toxicol. Environ. Mutagen. 2011, 726, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Proquin, H.; Rodriguez-Ibarra, C.; Moonen, C.G.J.; Urrutia Ortega, I.M.; Briede, J.J.; deKok, T.M.; van Loveren, H.; Chirino, Y.I. Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: Contribution of micro and nano-sized fractions. Mutagenesis 2017, 32, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, J.; Liu, Y.; Nie, Y.; Si, B.; Wang, T.; Waqas, A.; Zhao, G.; Wang, M.; Xu, A. Aging-independent and size-dependent genotoxic response induced by titanium dioxide nanoparticles in mammalian cells. J. Environ. Sci. 2019, 85, 94–106. [Google Scholar] [CrossRef]
- Hanot-Roy, M.; Tubeuf, E.; Guilbert, A.; Bado-Nilles, A.; Vigneron, P.; Trouiller, B.; Lacroix, G. Oxidative stress pathways involved in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro. Toxicol. In Vitro 2016, 33, 125–135. [Google Scholar] [CrossRef]
- Nichols, C.E.; Shepherd, D.L.; Hathaway, Q.A.; Durr, A.J.; Thapa, D.; Abukabda, A.; Hollander, J.M. Reactive oxygen species damage drives cardiac and mitochondrial dysfunction following acute nano-titanium dioxide inhalation exposure. Nanotoxicology 2019, 12, 32–48. [Google Scholar] [CrossRef]
- Mancuso, F.; Arato, I.; Di Michele, A.; Antognelli, C.; Angelini, L.; Bellucci, C.; Lilli, C.; Boncompagni, S.; Fusella, A.; Bartolini, D.; et al. Effects of titanium dioxide nanoparticles on porcine prepubertal sertoli cells: An “in vitro” study. Front. Endocrinol. 2022, 12, 751915. [Google Scholar] [CrossRef]
Doses | Number of Larvae Treated (n) | Number of Larvae Killed (r) | Percentage Mortality (r/n × 100) | |
---|---|---|---|---|
(mg/mL) | (µg/mL) | |||
1.5 | 1500 | 40 | 36 | 90% |
1.0 | 1000 | 40 | 30 | 75% |
0.5 | 500 | 40 | 22 | 55% |
0.1 | 100 | 40 | 16 | 40% |
0.05 | 50 | 40 | 6 | 15% |
0.01 | 10 | 40 | 3 | 7.5% |
Control | 40 | 2 | 5% |
Treatment | Replicates | Total No. of Cells Observed | No. Of Dividing Cells | % Frequency of Dividing Cells | Percent Mitotic Index (Mean ± S.E.) | ‘t’-Value |
---|---|---|---|---|---|---|
TiO2 NPs | R1 | 788 | 290 | 36.80 | 52.05 ± 6.22 | −3.11 * |
R2 | 661 | 395 | 59.75 | |||
R3 | 785 | 468 | 59.61 | |||
Control | R1 | 814 | 720 | 88.45 | 83.63 ± 5.55 | |
R2 | 619 | 571 | 92.24 | |||
R3 | 715 | 502 | 70.20 |
Treatment | Chromosomal Aberrations | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Structural Aberrations (SA) | Numerical Aberrations (NA) | Total Structural Aberrations | Total Numerical Aberrations | Total Aberrations | ‘t’-Value | ||||||||
Aneuploids | |||||||||||||
Clumped Chromosomes | Fragments | Terminal Fusions | Breaks | Translocations | (2n + 1) | (2n + 2) | (2n − 1) | (2n − 2) | (SA) | (NA) | (SA + NA) | ||
TiO2 NPs | 4.38 ± 0.84 | 2.55 ± 0.55 | 3.52 ± 0.99 | 1.55 ± 0.47 | 3.17 ± 0.27 | 0.95 ± 0.46 | 1.90 ± 0.46 | 0.62 ± 0.25 | 0.62 ± 0.25 | 15.20 ± 1.21 | 4.12 ± 1.40 | 19.32 ± 2.61 | 2.63 * |
Control | 0.61 ± 0.25 | 0.32 ± 0.26 | 0.67 ± 0.54 | 0.00 | 0.28 ± 0.23 | 0.00 | 0.00 | 0.61 ± 0.25 | 0.00 | 1.90 ± 0.06 | 0.61 ± 0.25 | 2.52 ± 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saini, A.; Ahluwalia, K.K.; Ahluwalia, A.S.; Thakur, N.; Negi, P.; Hashem, A.; Almutairi, K.F.; Abd_Allah, E.F. Titanium Dioxide Nanoparticles-Induced Genotoxic Effects in Mosquito Culex quinquefaciatus. Toxics 2024, 12, 871. https://doi.org/10.3390/toxics12120871
Saini A, Ahluwalia KK, Ahluwalia AS, Thakur N, Negi P, Hashem A, Almutairi KF, Abd_Allah EF. Titanium Dioxide Nanoparticles-Induced Genotoxic Effects in Mosquito Culex quinquefaciatus. Toxics. 2024; 12(12):871. https://doi.org/10.3390/toxics12120871
Chicago/Turabian StyleSaini, Aastha, Kanwaljit Kaur Ahluwalia, Amrik Singh Ahluwalia, Neelam Thakur, Puneet Negi, Abeer Hashem, Khalid F. Almutairi, and Elsayed Fathi Abd_Allah. 2024. "Titanium Dioxide Nanoparticles-Induced Genotoxic Effects in Mosquito Culex quinquefaciatus" Toxics 12, no. 12: 871. https://doi.org/10.3390/toxics12120871
APA StyleSaini, A., Ahluwalia, K. K., Ahluwalia, A. S., Thakur, N., Negi, P., Hashem, A., Almutairi, K. F., & Abd_Allah, E. F. (2024). Titanium Dioxide Nanoparticles-Induced Genotoxic Effects in Mosquito Culex quinquefaciatus. Toxics, 12(12), 871. https://doi.org/10.3390/toxics12120871