Association between Ambient Particulate Air Pollution and Soluble Biomarkers of Endothelial Function: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection Criteria
2.3. Data Extraction
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Main Findings and Differences Compared with Other Similar Reviews
4.2. Underlying Mechanisms Related to Targeted Molecules
4.3. Main Findings from Subgroup Analysis
4.4. Perspectives for Future Research and Policy
4.5. Limitations of This Review and Meta-Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fiordelisi, A.; Piscitelli, P.; Trimarco, B.; Coscioni, E.; Iaccarino, G.; Sorriento, D. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail. Rev. 2017, 22, 337–347. [Google Scholar] [CrossRef]
- Hamanaka, R.B.; Mutlu, G.M. Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front. Endocrinol. 2018, 9, 680. [Google Scholar] [CrossRef] [PubMed]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest 2019, 155, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Rider, C.F.; Carlsten, C. Air pollution and DNA methylation: Effects of exposure in humans. Clin. Epigenet. 2019, 11, 131. [Google Scholar] [CrossRef]
- Cesaroni, G.; Forastiere, F.; Stafoggia, M.; Andersen, Z.J.; Badaloni, C.; Beelen, R.; Caracciolo, B.; de Faire, U.; Erbel, R.; Eriksen, K.T.; et al. Long term exposure to ambient air pollution and incidence of acute coronary events: Prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ 2014, 348, f7412. [Google Scholar] [CrossRef] [PubMed]
- Schikowski, T.; Sugiri, D.; Ranft, U.; Gehring, U.; Heinrich, J.; Wichmann, H.E.; Krämer, U. Does respiratory health contribute to the effects of long-term air pollution exposure on cardiovascular mortality? Respir. Res. 2007, 8, 20. [Google Scholar] [CrossRef]
- Lan, Y.; Wu, S. Impacts of Environmental Insults on Cardiovascular Aging. Curr. Environ. Health Rep. 2022, 9, 11–28. [Google Scholar] [CrossRef]
- Ain, N.U.; Qamar, S.U.R. Particulate Matter-Induced Cardiovasc. Dysfunction: A Mechanistic Insight. Cardiovasc. Toxicol. 2021, 21, 505–516. [Google Scholar] [CrossRef]
- Polichetti, G.; Cocco, S.; Spinali, A.; Trimarco, V.; Nunziata, A. Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology 2009, 261, 1–8. [Google Scholar] [CrossRef]
- Seeni, I.; Ha, S.; Nobles, C.; Liu, D.; Sherman, S.; Mendola, P. Air pollution exposure during pregnancy: Maternal asthma and neonatal respiratory outcomes. Ann. Epidemiol. 2018, 28, 612–618.e4. [Google Scholar] [CrossRef]
- Kuhlbusch, T.A.; John, A.C.; Quass, U. Sources and source contributions to fine particles. Biomarkers 2009, 14 (Suppl. S1), 23–28. [Google Scholar] [CrossRef]
- Park, M.; Joo, H.S.; Lee, K.; Jang, M.; Kim, S.D.; Kim, I.; Borlaza, L.J.S.; Lim, H.; Shin, H.; Chung, K.H.; et al. Differential toxicities of fine particulate matters from various sources. Sci. Rep. 2018, 8, 17007. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Xu, X.; Chu, M.; Guo, Y.; Wang, J. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J. Thorac. Dis. 2016, 8, E8–E19. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., 3rd; Bhatnagar, A.; McCracken, J.P.; Abplanalp, W.; Conklin, D.J.; O’Toole, T. Exposure to Fine Particulate Air Pollution Is Associated With Endothelial Injury and Systemic Inflammation. Circ. Res. 2016, 119, 1204–1214. [Google Scholar] [CrossRef]
- Hajat, A.; Allison, M.; Diez-Roux, A.V.; Jenny, N.S.; Jorgensen, N.W.; Szpiro, A.A.; Vedal, S.; Kaufman, J.D. Long-term exposure to air pollution and markers of inflammation, coagulation, and endothelial activation: A repeat-measures analysis in the Multi-Ethnic Study of Atherosclerosis (MESA). Epidemiology 2015, 26, 310–320. [Google Scholar] [CrossRef]
- Xie, W.; You, J.; Zhi, C.; Li, L. The toxicity of ambient fine particulate matter (PM2.5) to vascular endothelial cells. J. Appl. Toxicol. 2021, 41, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, R.M.; Sheppard, L.; Peskind, E.R.; Zhang, J.; Adar, S.D.; Li, G. Fine Particulate Matter Exposure and Cerebrospinal Fluid Markers of Vascular Injury. J. Alzheimers Dis. 2019, 71, 1015–1025. [Google Scholar] [CrossRef]
- Pate, M.; Damarla, V.; Chi, D.S.; Negi, S.; Krishnaswamy, G. Endothelial cell biology: Role in the inflammatory response. Adv. Clin. Chem. 2010, 52, 109–130. [Google Scholar]
- Daiber, A.; Steven, S.; Weber, A.; Shuvaev, V.V.; Muzykantov, V.R.; Laher, I.; Li, H.; Lamas, S.; Münzel, T. Targeting vascular (endothelial) dysfunction. Br. J. Pharmacol. 2017, 174, 1591–1619. [Google Scholar] [CrossRef]
- Rückerl, R.; Ibald-Mulli, A.; Koenig, W.; Schneider, A.; Woelke, G.; Cyrys, J.; Heinrich, J.; Marder, V.; Frampton, M.; Wichmann, H.E.; et al. Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Am. J. Respir. Crit. Care Med. 2006, 173, 432–441. [Google Scholar] [CrossRef]
- O’Neill, M.S.; Veves, A.; Sarnat, J.A.; Zanobetti, A.; Gold, D.R.; Economides, P.A.; Horton, E.S.; Schwartz, J. Air pollution and inflammation in type 2 diabetes: A mechanism for susceptibility. Occup. Environ. Med. 2007, 64, 373–379. [Google Scholar] [CrossRef]
- Giles, L.V.; Tebbutt, S.J.; Carlsten, C.; Koehle, M.S. Effects of low-intensity and high-intensity cycling with diesel exhaust exposure on soluble P-selectin, E-selectin, I-CAM-1, VCAM-1 and complete blood count. BMJ Open Sport Exerc. Med. 2019, 5, e000625. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, C.M.; Entman, M.L. Soluble adhesion molecules and the search for biomarkers for atherosclerosis. Circulation 2002, 106, 766–767. [Google Scholar] [CrossRef]
- Rui, W.; Guan, L.; Zhang, F.; Zhang, W.; Ding, W. PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-κB-dependent pathway. J. Appl. Toxicol. 2016, 36, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Madrigano, J.; Baccarelli, A.; Wright, R.O.; Suh, H.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Air pollution, obesity, genes and cellular adhesion molecules. Occup. Environ. Med. 2010, 67, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, I.; Zhang, S.; Kirkbride, J.B.; Osborn, D.P.J.; Hayes, J.F. Air Pollution (Particulate Matter) Exposure and Associations with Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2019, 127, 126002. [Google Scholar] [CrossRef]
- Yang, T.H.; Masumi, S.; Weng, S.P.; Chen, H.W.; Chuang, H.C.; Chuang, K.J. Personal exposure to particulate matter and inflammation among patients with periodontal disease. Sci. Total Environ. 2015, 502, 585–589. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Kiran, A.; Crespillo, A.P.; Rahimi, K. Graphics and Statistics for Cardiology: Data visualisation for meta-analysis. Heart 2017, 103, 19–23. [Google Scholar] [CrossRef]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Peters, J.L.; Sutton, A.J.; Jones, D.R.; Abrams, K.R.; Rushton, L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiol. 2008, 61, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Bind, M.A.; Koutrakis, P.; Coull, B.A.; Sparrow, D.; Vokonas, P.S.; Schwartz, J.D. Fine particles, genetic pathways, and markers of inflammation and endothelial dysfunction: Analysis on particulate species and sources. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Liu, C.; Yi, T.; Song, X.; Wang, Y.; Liu, S.; Chen, J.; Zhao, Q.; Zhang, Y.; Wang, T.; et al. Perturbation of amino acid metabolism mediates air pollution associated vascular dysfunction in healthy adults. Environ. Res. 2021, 201, 111512. [Google Scholar] [CrossRef]
- Feng, D.; Cao, K.; He, Z.Z.; Knibbs, L.D.; Jalaludin, B.; Leskinen, A.; Roponen, M.; Komppula, M.; Jalava, P.; Guo, P.Y.; et al. Short-Term Effects of Particle Sizes and Constituents on Blood Biomarkers among Healthy Young Adults in Guangzhou, China. Environ. Sci. Technol. 2021, 55, 5636–5647. [Google Scholar] [CrossRef] [PubMed]
- Finch, J.; Riggs, D.W.; O’Toole, T.E.; Pope, C.A., 3rd; Bhatnagar, A.; Conklin, D.J. Acute exposure to air pollution is associated with novel changes in blood levels of endothelin-1 and circulating angiogenic cells in young, healthy adults. AIMS Environ. Sci. 2019, 6, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Jia, X.; Cui, L.; Liu, J.; Chen, J.; Wang, Y.; Niu, W.; Xu, J.; Miller, M.R.; Loh, M.; et al. Exposure to fine particulate matter promotes platelet activation and thrombosis via obesity-related inflammation. J. Hazard. Mater. 2021, 413, 125341. [Google Scholar] [CrossRef]
- Li, H.; Zhou, L.; Wang, C.; Chen, R.; Ma, X.; Xu, B.; Xiong, L.; Ding, Z.; Chen, X.; Zhou, Y.; et al. Associations Between Air Quality Changes and Biomarkers of Systemic Inflammation During the 2014 Nanjing Youth Olympics: A Quasi-Experimental Study. Am. J. Epidemiol. 2017, 185, 1290–1296. [Google Scholar] [CrossRef]
- Liu, C.; Cai, J.; Qiao, L.; Wang, H.; Xu, W.; Li, H.; Zhao, Z.; Chen, R.; Kan, H. The Acute Effects of Fine Particulate Matter Constituents on Blood Inflammation and Coagulation. Environ. Sci. Technol. 2017, 51, 8128–8137. [Google Scholar] [CrossRef]
- Riggs, D.W.; Zafar, N.; Krishnasamy, S.; Yeager, R.; Rai, S.N.; Bhatnagar, A.; O’Toole, T.E. Exposure to airborne fine particulate matter is associated with impaired endothelial function and biomarkers of oxidative stress and inflammation. Environ. Res. 2020, 180, 108890. [Google Scholar] [CrossRef]
- Tong, H.; Rappold, A.G.; Caughey, M.; Hinderliter, A.L.; Bassett, M.; Montilla, T.; Case, M.W.; Berntsen, J.; Bromberg, P.A.; Cascio, W.E.; et al. Dietary Supplementation with Olive Oil or Fish Oil and Vascular Effects of Concentrated Ambient Particulate Matter Exposure in Human Volunteers. Environ. Health Perspect. 2015, 123, 1173–1179. [Google Scholar] [CrossRef]
- Wang, C.; Chen, R.; Zhao, Z.; Cai, J.; Lu, J.; Ha, S.; Xu, X.; Chen, X.; Kan, H. Particulate air pollution and circulating biomarkers among type 2 diabetic mellitus patients: The roles of particle size and time windows of exposure. Environ. Res. 2015, 140, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yang, D.; Pan, L.; Shan, J.; Li, H.; Wei, H.; Wang, B.; Huang, J.; Baccarelli, A.A.; Shima, M.; et al. Chemical constituents and sources of ambient particulate air pollution and biomarkers of endothelial function in a panel of healthy adults in Beijing, China. Sci. Total Environ. 2016, 560–561, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, L.H.; Devlin, R.B.; Rappold, A.G.; Case, M.W.; Diaz-Sanchez, D. Low levels of fine particulate matter increase vascular damage and reduce pulmonary function in young healthy adults. Part. Fibre Toxicol. 2020, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Niu, Y.; Xia, Y.; Lei, X.; Wang, W.; Huo, J.; Zhao, Q.; Zhang, Y.; Duan, Y.; Cai, J.; et al. The acute effects of fine particulate matter constituents on circulating inflammatory biomarkers in healthy adults. Sci. Total Environ. 2020, 707, 135989. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, S.; Shen, W.; Salazar, C.; Schneider, A.; Wyatt, L.H.; Rappold, A.G.; Diaz-Sanchez, D.; Devlin, R.B.; Samet, J.M.; et al. Omega-3 fatty acids attenuate cardiovascular effects of short-term exposure to ambient air pollution. Part. Fibre Toxicol. 2022, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Chen, R.; Jiang, Y.; Xia, Y.; Niu, Y.; Wang, C.; Liu, C.; Chen, C.; Ge, Y.; Wang, W.; et al. Cardiovascular Benefits of Fish-Oil Supplementation Against Fine Particulate Air Pollution in China. J. Am. Coll. Cardiol. 2019, 73, 2076–2085. [Google Scholar] [CrossRef]
- Mozzoni, P.; Iodice, S.; Persico, N.; Ferrari, L.; Pinelli, S.; Corradi, M.; Rossi, S.; Miragoli, M.; Bergamaschi, E.; Bollati, V. Maternal air pollution exposure during the first trimester of pregnancy and markers of inflammation and endothelial dysfunction. Environ. Res. 2022, 212 Pt A, 113216. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Liang, F.; Yang, Y.; Lu, X.; Gu, D. Air pollution exposure and vascular endothelial function: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. Int. 2023, 30, 28525–28549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Rev. Cardiovasc. Med. 2022, 23, 73. [Google Scholar] [CrossRef]
- Gimbrone, M.A., Jr.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef]
- Benincasa, G.; Coscioni, E.; Napoli, C. Cardiovascular risk factors and molecular routes underlying endothelial dysfunction: Novel opportunities for primary prevention. Biochem. Pharmacol. 2022, 202, 115108. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Liang, Q.; Ma, Y.; Wang, F.; Lin, L.; Li, T.; Sun, Z.; Duan, J. Particulate matter exposure and biomarkers associated with blood coagulation: A meta-analysis. Ecotoxicol. Environ. Saf. 2020, 206, 111417. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Brook, J.R.; Urch, B.; Vincent, R.; Rajagopalan, S.; Silverman, F. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation 2002, 105, 1534–1536. [Google Scholar] [CrossRef]
- Prunicki, M.; Cauwenberghs, N.; Ataam, J.A.; Movassagh, H.; Kim, J.B.; Kuznetsova, T.; Wu, J.C.; Maecker, H.; Haddad, F.; Nadeau, K. Immune biomarkers link air pollution exposure to blood pressure in adolescents. Environ. Health 2020, 19, 108. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, S.; Landrigan, P.J. Pollution and the Heart. N. Engl. J. Med. 2021, 385, 1881–1892. [Google Scholar] [CrossRef]
- Münzel, T.; Gori, T.; Al-Kindi, S.; Deanfield, J.; Lelieveld, J.; Daiber, A.; Rajagopalan, S. Effects of gaseous and solid constituents of air pollution on endothelial function. Eur. Heart J. 2018, 39, 3543–3550. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Zhang, J.; Ning, R.; Du, Z.; Liu, J.; Batibawa, J.W.; Duan, J.; Sun, Z. The critical role of endothelial function in fine particulate matter-induced atherosclerosis. Part. Fibre Toxicol. 2020, 17, 61. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A. Cardiovascular Effects of Particulate Air Pollution. Annu. Rev. Med. 2022, 73, 393–406. [Google Scholar] [CrossRef]
- Miller, M.R.; Newby, D.E. Air pollution and cardiovascular disease: Car sick. Cardiovasc. Res. 2020, 116, 279–294. [Google Scholar] [CrossRef]
- Simkhovich, B.Z.; Kleinman, M.T.; Kloner, R.A. Air pollution and cardiovascular injury epidemiology, toxicology, and mechanisms. J. Am. Coll. Cardiol. 2008, 52, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Franklin, B.A.; Brook, R.; Arden Pope, C., 3rd. Air pollution and cardiovascular disease. Curr. Probl. Cardiol. 2015, 40, 207–238. [Google Scholar] [CrossRef]
- Al-Kindi, S.G.; Brook, R.D.; Biswal, S.; Rajagopalan, S. Environmental determinants of cardiovascular disease: Lessons learned from air pollution. Nat. Rev. Cardiol. 2020, 17, 656–672. [Google Scholar] [CrossRef] [PubMed]
- Mian, M.O.; Idris-Khodja, N.; Li, M.W.; Leibowitz, A.; Paradis, P.; Rautureau, Y.; Schiffrin, E.L. Preservation of endothelium-dependent relaxation in atherosclerotic mice with endothelium-restricted endothelin-1 overexpression. J. Pharmacol. Exp. Ther. 2013, 347, 30–37. [Google Scholar] [CrossRef]
- Little, P.J.; Ivey, M.E.; Osman, N. Endothelin-1 actions on vascular smooth muscle cell functions as a target for the prevention of atherosclerosis. Curr. Vasc. Pharmacol. 2008, 6, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Lüscher, T.F.; Barton, M. Endothelins and endothelin receptor antagonists: Therapeutic considerations for a novel class of cardiovascular drugs. Circulation 2000, 102, 2434–2440. [Google Scholar] [CrossRef] [PubMed]
- Kedzierski, R.M.; Yanagisawa, M. Endothelin system: The double-edged sword in health and disease. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 851–876. [Google Scholar] [CrossRef]
- Guddeti, R.R.; Prasad, A.; Matsuzawa, Y.; Aoki, T.; Rihal, C.; Holmes, D.; Best, P.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Role of endothelin in microvascular dysfunction following percutaneous coronary intervention for non-ST elevation acute coronary syndromes: A single-centre randomised controlled trial. Open Heart 2016, 3, e000428. [Google Scholar] [CrossRef]
- Finch, J.; Conklin, D.J. Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System. Cardiovasc. Toxicol. 2016, 16, 260–275. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, X.; Ku, T.; Sang, N. Inflammatory response and endothelial dysfunction in the hearts of mice co-exposed to SO2, NO2, and PM2.5. Environ. Toxicol. 2016, 31, 1996–2005. [Google Scholar] [CrossRef] [PubMed]
- Deanfield, J.E.; Halcox, J.P.; Rabelink, T.J. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007, 115, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.A.; Buckley, B.; Farraj, A.K.; Thompson, L.C. The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction. Pharmacol. Ther. 2016, 165, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Xiong, L.; Wu, T.; Wei, T.; Liu, N.; Bai, C.; Huang, X.; Hu, Y.; Xue, Y.; Zhang, T.; et al. NADPH oxidases regulate endothelial inflammatory injury induced by PM2.5 via AKT/eNOS/NO axis. J. Appl. Toxicol. 2021, 42, 738–749. [Google Scholar] [CrossRef]
- Shih, M.F.; Chen, L.C.; Cherng, J.Y. Chlorella 11-peptide inhibits the production of macrophage-induced adhesion molecules and reduces endothelin-1 expression and endothelial permeability. Mar. Drugs 2013, 11, 3861–3874. [Google Scholar] [CrossRef] [PubMed]
- Shalini, V.; Pushpan, C.K.; Sindhu, G.; Jayalekshmy, A.; Helen, A. Tricin, flavonoid from Njavara reduces inflammatory responses in hPBMCs by modulating the p38MAPK and PI3K/Akt pathways and prevents inflammation associated endothelial dysfunction in HUVECs. Immunobiology 2016, 221, 137–144. [Google Scholar] [CrossRef] [PubMed]
- van Eeden, S.F.; Yeung, A.; Quinlam, K.; Hogg, J.C. Systemic response to ambient particulate matter: Relevance to chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2005, 2, 61–67. [Google Scholar] [CrossRef]
- Wang, S.; Wang, F.; Yang, L.; Li, Q.; Huang, Y.; Cheng, Z.; Chu, H.; Song, Y.; Shang, L.; Hao, W.; et al. Effects of coal-fired PM2.5 on the expression levels of atherosclerosis-related proteins and the phosphorylation level of MAPK in ApoE(−/−) mice. BMC Pharmacol. Toxicol. 2020, 21, 34. [Google Scholar] [CrossRef]
- Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Inoue, A.; Ishikawa, T.; Kasuya, Y.; Kimura, S.; Kumagaye, S.; Nakajima, K.; Watanabe, T.X.; Sakakibara, S.; Goto, K.; et al. Primary structure, synthesis, and biological activity of rat endothelin, an endothelium-derived vasoconstrictor peptide. Proc. Natl. Acad. Sci. USA 1988, 85, 6964–6967. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988, 332, 411–415. [Google Scholar] [CrossRef]
- Sacks, J.D.; Stanek, L.W.; Luben, T.J.; Johns, D.O.; Buckley, B.J.; Brown, J.S.; Ross, M. Particulate matter-induced health effects: Who is susceptible? Environ. Health Perspect. 2011, 119, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Neas, L.; Herbst, M.C.; Case, M.; Williams, R.W.; Cascio, W.; Hinderliter, A.; Holguin, F.; Buse, J.B.; Dungan, K.; et al. Endothelial dysfunction: Associations with exposure to ambient fine particles in diabetic individuals. Environ. Health Perspect. 2008, 116, 1666–1674. [Google Scholar] [CrossRef] [PubMed]
- Chilian-Herrera, O.L.; Tamayo-Ortiz, M.; Texcalac-Sangrador, J.L.; Rothenberg, S.J.; López-Ridaura, R.; Romero-Martínez, M.; Wright, R.O.; Just, A.C.; Kloog, I.; Bautista-Arredondo, L.F.; et al. PM2.5 exposure as a risk factor for type 2 diabetes mellitus in the Mexico City metropolitan area. BMC Public. Health 2021, 21, 2087. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Sutton, A.J.; Riley, R.D. Assessment of publication bias, selection bias, and unavailable data in meta-analyses using individual participant data: A database survey. BMJ 2012, 344, d7762. [Google Scholar] [CrossRef]
Author | Study Duration | Location | Sample Size | Mean/Median Age | Female | Study Population | Exposure Assessment | Study Design | Outcome | Study Quality |
---|---|---|---|---|---|---|---|---|---|---|
Chen et al. (2022) [45] | 2016–2019 | USA | 28 | 37 | 18 | Healthy participants | Fixed monitoring site | Panel | ICAM-1, VCAM-1 | High |
Dai et al. (2016) [32] | 1999–2010 | USA | 1565 | 74.9 | 0 | Elderly | Fixed monitoring site | Cohort | ICAM-1, VCAM-1 | High |
Feng et al. (2021) [33] | 2014–2016 | China | 73 | 23.3 | 48 | Nonsmoking healthy adults | Fixed monitoring site | Panel | ICAM-1 | High |
Feng et al. (2021) [34] | 2017–2018 | China | 88 | 21.1 | 54 | Healthy college students | Fixed monitoring site | Panel | VCAM-1, ET-1 | High |
Finch et al. (2019) [35] | 2019 | USA | 16 | 22 | Unknown | Young healthy nonsmokers | Fixed monitoring site | Cohort | ET-1 | High |
Hajat et al. (2015) [15] | 2000–2012 | USA | 7071 | 62 | 3740 | Healthy adults | Model estimation | Cohort | ICAM-1, E-selectin, | High |
Hu et al. (2021) [36] | 2017–2018 | China | 44 | 23.3 | 14 | Obese subjects and normal-weight subjects | Estimated individual exposure | Panel | ICAM-1 | High |
Li et al. (2017) [37] | 2014 | China | 31 | 46 | Unknown | Healthy nonsmoking participants | Fixed monitoring site | Quasi-experimental | ICAM-1, VCAM-1 | High |
Lin et al. (2019) [46] | 2017–2018 | China | 31 | 22.87 | 18 | Healthy college students | Fixed monitoring site | Randomized, double-blinded, and placebo-controlled trial | ET-1, E-selectin | High |
Liu et al. (2017) [38] | 2014 | China | 28 | 64 | 22 | Elderly patients with COPD | Fixed monitoring site | Panel | ICAM-1, VCAM-1, | High |
Mozzoni et al. (2022) [47] | 2014–2016 | Italy | 295 | 34 | 295 | Pregnant women | Model estimation | Cross-sectional | ICAM-1, VCAM-1 | Moderate |
O’Neill et al. (2007) [21] | 1998–2002 | USA | 92 | 56.6 | 37 | Type 2 diabetes | Fixed monitoring site | Cross-sectional | ICAM-1, VCAM-1 | Moderate |
Riggs et al. (2020) [39] | 2011–2013 | USA | 100 | 48.1 | 56 | General population | Fixed monitoring site | Cross-sectional | ICAM-1, VCAM-1, E-selectin | Moderate |
Tong et al. (2015) [40] | 2009–2010 | USA | 13 | 57.8 | 11 | Healthy middle-aged human volunteers | Fixed monitoring site | Randomized controlled exposure study | ICAM-1, VCAM-1, ET-1 | High |
Wang et al. (2015) [41] | 2013 | China | 36 | 66 | Unknown | Healthy, nonsmoking college students | Fixed monitoring site | Panel | VCAM-1, ET-1 | High |
Wu et al. (2016) [42] | 2010–2011 | China | 40 | 20.1 | 0 | Healthy adults | Fixed monitoring site | Panel | ICAM-1, VCAM-1, ET-1, E-selectin | High |
Wyatt et al. (2020) [43] | 2017 | USA | 20 | 25.3 | 7 | Healthy young volunteers | Fixed monitoring site | Randomized double-blind crossover study | ICAM-1, VCAM-1 | Moderate |
Zhang et al. (2020) [44] | 2016 | China | 40 | 24.5 | 30 | Healthy young college students | Fixed monitoring site | Panel | ICAM-1, VCAM-1 | High |
Subgroup | Grouping Criteria | No. of Studies | Pooled %-Changes (95% CI) | p-Value | I-Squared | p for Heterogeneity | p-Value for Subgroup Difference |
---|---|---|---|---|---|---|---|
Study Area | North America | 7 | 1.37 (0.03, 2.72) | 0.046 | 54.74% | 0.039 | 0.728 |
Asia | 7 | 1.66 (0.84, 2.48) | <0.001 | 45.34% | 0.089 | ||
Europe | 1 | −0.70 (−6.94, 5.54) | 0.825 | — | — | ||
Participant | General population | 12 | 1.27 (0.75, 1.79) | <0.001 | 40.00% | 0.074 | 0.200 |
Patients | 3 | 2.80 (0.52, 5.08) | 0.016 | 32.78% | 0.226 | ||
Sample Size | <1000 | 13 | 1.60 (0.90, 2.31) | <0.001 | 45.04% | 0.039 | 0.795 |
>1000 | 2 | 1.30 (−0.89, 3.49) | 0.245 | 60.89% | 0.110 | ||
Age | <60 | 12 | 1.32 (0.79, 1.85) | <0.001 | 31.08% | 0.143 | 0.442 |
>60 | 3 | 2.22 (−0.01, 4.44) | 0.051 | 74.81% | 0.019 | ||
Female Proportion | >50 | 8 | 1.33 (0.14, 2.52) | 0.028 | 57.69% | 0.021 | 0.180 |
>50 | 6 | 1.65 (0.77, 2.53) | <0.001 | 0.00% | 0.504 | ||
Unknown | 1 | 8.29 (0.98, 15.59) | 0.026 | — | — | ||
Study Design | Panel | 7 | 1.35 (0.79, 1.91) | <0.001 | 45.60% | 0.087 | 0.700 |
Others | 5 | 1.77 (0.42, 3.11) | 0.010 | 54.98% | 0.064 | ||
Cross-sectional | 3 | 4.38 (−4.83, 13.58) | 0.351 | 55.78% | 0.104 | ||
Exposure Assessment | Fixed monitoring site | 11 | 1.95 (1.05, 2.84) | <0.001 | 52.12% | 0.022 | 0.143 |
Model estimation | 2 | 0.25 (−1.31, 1.81) | 0.753 | 0.00% | 0.757 | ||
Estimated individual exposure | 2 | 1.06 (0.01, 2.12) | 0.048 | 0.00% | 0.586 | ||
Study Quality | High | 11 | 1.30 (0.81, 1.80) | <0.001 | 42.97% | 0.063 | 0.113 |
Moderate | 4 | 2.70 (1.05, 4.35) | 0.001 | 35.18% | 0.201 |
Subgroup | Grouping Criteria | No. of Studies | Pooled %-Changes (95% CI) | p-Value | I-Squared | p for Heterogeneity | p-Value for Subgroup Difference |
---|---|---|---|---|---|---|---|
Area | North America | 6 | 1.74 (0.65, 2.83) | 0.002 | 63.86% | 0.017 | 0.627 |
Asia | 6 | 2.26 (0.55, 3.96) | 0.009 | 93.75% | <0.001 | ||
Europe | 1 | 0.00 (−4.40, 4.40) | 1.000 | — | — | ||
Participant | General population | 11 | 1.45 (0.50, 2.41) | 0.003 | 87.27% | <0.001 | 0.183 |
Patients | 2 | 8.20 (−1.70, 18.09) | 0.104 | 74.36% | 0.048 | ||
Sample Size | <1000 | 12 | 1.91 (0.73, 3.09) | 0.001 | 88.33% | <0.001 | 0.591 |
>1000 | 1 | 2.76 (−0.20, 5.73) | 0.068 | — | — | ||
Age | <60 | 10 | 1.73 (0.38, 3.07) | 0.012 | 89.31% | <0.001 | 0.552 |
>60 | 3 | 2.48 (0.39, 4.57) | 0.020 | 80.43% | 0.006 | ||
Sex | >50 | 7 | 2.34 (1.06, 3.61) | <0.001 | 54.84% | 0.039 | 0.824 |
>50 | 4 | 1.96 (−0.57, 4.48) | 0.128 | 83.41% | <0.001 | ||
Unknown | 2 | 4.81 (−3.98, 13.60) | 0.283 | 83.12% | 0.015 | ||
Design | Panel | 6 | 1.96 (0.44, 3.47) | 0.011 | 93.35% | <0.001 | 0.965 |
Others | 4 | 1.80 (0.71, 2.90) | 0.001 | 53.75% | 0.090 | ||
Cross-sectional | 3 | −0.01 (−16.87, 16.86) | 0.999 | 83.61% | 0.002 | ||
Exposure Assessment | Fixed monitoring site | 12 | 2.07 (0.91, 3.22) | <0.001 | 88.45% | <0.001 | 0.373 |
Model estimation | 1 | 0.00 (−4.40, 4.40) | 1.000 | — | — | ||
Study Quality | High | 9 | 2.08 (0.79, 3.36) | 0.002 | 90.30% | <0.001 | 0.826 |
Moderate | 4 | 0.90 (−9.52, 11.33) | 0.865 | 75.56% | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Lei, L.; Li, G.; Lan, Y.; Wang, W.; Zhu, J.; Liu, Q.; Ren, L.; Wu, S. Association between Ambient Particulate Air Pollution and Soluble Biomarkers of Endothelial Function: A Meta-Analysis. Toxics 2024, 12, 76. https://doi.org/10.3390/toxics12010076
Wang K, Lei L, Li G, Lan Y, Wang W, Zhu J, Liu Q, Ren L, Wu S. Association between Ambient Particulate Air Pollution and Soluble Biomarkers of Endothelial Function: A Meta-Analysis. Toxics. 2024; 12(1):76. https://doi.org/10.3390/toxics12010076
Chicago/Turabian StyleWang, Kai, Lei Lei, Ge Li, Yang Lan, Wanzhou Wang, Jiaqi Zhu, Qisijing Liu, Lihua Ren, and Shaowei Wu. 2024. "Association between Ambient Particulate Air Pollution and Soluble Biomarkers of Endothelial Function: A Meta-Analysis" Toxics 12, no. 1: 76. https://doi.org/10.3390/toxics12010076