Proposing Effective Ecotoxicity Test Species for Chemical Safety Assessment in East Asia: A Review
Abstract
:1. Introduction
2. Method
2.1. Literature Searching Strategy
2.2. Selection Criteria for Freshwater Test Species of East Asia
3. Mining Promising Test Species
3.1. Life Cycle and Physiological Characteristics
3.2. Toxicity Study Status
Chemicals (Test Condition) | Alternative Test Method, Field/Lab., Target Tissue and Others | Sub-Organism Level Endpoints | Organism or Higher Level Endpoints | Reference |
---|---|---|---|---|
2-Methyl-4-chlorophenoxy acetic acid (MCPA) (10, 100, 500, 1000 μg/L of MCPA, 7 d exposure) | Laboratory test | Histological change (Purple colored leaves, plasmolyzed leaf cell increase); Pigment contents (e.g., total chlorophyll); oxidative stress (e.g., peroxidase (POD) activity) | Growth rate (e.g., ratio of length of dead zone/total leaf length) | [49] |
TiO2; (24 h exposure) | Laboratory test; TiO2 (Rutil, anatase, AEROXIDE P25 (20/80% rutile/anatase, bulk (<5 um rutile, a small amount of anatase) | Oxidative stress (e.g., H2O2 contents, CAT activity) | [19] | |
Perchlorate | Pigment contents (total chlorophyll, Carotene) | Morphological changes (e.g., leaf colour change, texture of leaf) | [48] | |
Fluoride (0, 10, 20, 40 mg/L, 28 d exposure) | Field species + laboratory test | Protein content, chlorophyll content, carbohydrates content, oxidative stress (e.g., guaiacol peroxidase (POD), GSH) | Growth rate | [16] |
Toluene, xylene, ethylbenzene (0.1, 1, 5, 10, 50, 100 mg/L, 7 d exposure) | Laboratory test | Photosynthetic pigment contents (e.g., Chlorophyll a/b/(a+b)); Oxidative stress (e.g., SOD) | [53] | |
Silver nanoparticle (500 μg/L of AgNPs, and Ag+; 90 d exposure) | Laboratory test; microcosms condition | Pigment contents (e.g., chlorophyll a/b content); in sediment ammonium nitrogen concentration | Nitrification; Amount of nitrospira; nitrosopumllus; At 90 d biomass | [56] |
Copper (100 μM Cu(NO3)2 treatment, 24 h exposure) | Laboratory test; omics analysis | Pigment contents change, Lipid composition changes, membrane permeability change | [52] | |
Nickel (5, 10, 15, 20, 40 μM, 21 d exposure) | Laboratory test; target tissues of stem, leaves | Oxdiative stress (e.g., MDA, POD, PAL, PPO); protein content change | Biomass change; | [54] |
Copper (0, 0.01, 0.05, 0.1 mg/L; 5 d exposure) | Laboratory test; omics analysis; 2D-page analysis; DNA methylation analysis | Oxidative stress (8-OHdG); DNA-methylation; Protein composition change; pigment content change | [55] | |
Copper (0, 0.01, 0.05, 0.1 mg/L Cu, 5 d exposure) | Laboratory test; difference analysis between mature and young leaves | Pigment content change in mature and young leaves; Histological change (e.g., Partially ruptured surface cuticle) | [57] | |
12 PFAAs: PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFOS, PFNA, PFDA, PFUnDA, PFDoDA, PFBS, PFHxS (0, 1, 10, 100 μg/L, 20 d exposure) | Laboratory test; leaves for analysis of oxidative stress and chlorophyll contents | Chlorophyll content, chlorophyll autofluorescence, oxidative stress (e.g., hydrogen peroxide contesnt) | Biomass, relative growth rate | [58] |
3.3. Characteristics Useful for Chemical Toxicity Tests
4. Applicability of 5 Species to ERA
5. Remaining Issues in the Study of Test Species
5.1. Alternative Testing Methods
5.2. Other Alternative Approaches
5.3. Traits Specific Issues to Given Species
5.4. Ecological Relevance
5.5. Standadization of Recommended Species
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Leeuwen, C.J.; Germens, J.L.M. Risk Assessment of Chemicals: An Introduction, 1st ed.; Springer: Dordrecht, The Netherlands, 1995; pp. 1–17. [Google Scholar]
- Lee, J.W.; Won, E.J.; Raisuddin, S.; Lee, J.S. Significance of adverse outcome pathways in biomarker-based environmental risk assessment in aquatic organisms. J. Environ. Sci. 2015, 35, 115–127. [Google Scholar] [CrossRef] [PubMed]
- ASTM. Standard Guide for Selection of Resident Species as Test Organisms for Aquatic and Sediment Toxicity Tests; Book of Standards Volume (11.06), Developed by Subcommittee (E50.47); ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar] [CrossRef]
- Van den Berg, S.J.P.; Baveco, H.; Butler, E.; Laender, D.; Focks, A.; Franco, A.; Rendal, C.; Van den Brink, P.J. Modeling the sensitivity of aquatic macroinvertebrates to chemicals using traits. Environ. Sci. Technol. 2019, 53, 6025–6034. [Google Scholar] [CrossRef] [PubMed]
- Cefic. The European Chemical Industry Facts and Figures, a Vital Part of Europe’s Future. Available online: https://cefic.org/a-pillar-of-the-european-economy/ (accessed on 13 March 2023).
- Kim, J.-S. A Study on Preparation of Domestic Institutional Improvement Plan through Comparison and Analysis of Domestic and Foreign Chemical Management Systems. Ph.D. Thesis, Department of Safety and Administrative Engineering, The Gradute School Hoseo University, Cheonan, Korea, 2021. [Google Scholar]
- US EPA. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, EPA-821-R-02-012. Available online: https://www.epa.gov/ (accessed on 22 June 2022).
- European Commission. echnical Guidance Document on Risk Assessment in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances and Directive 98/8/EC of the European Parliament and of the Council Concerning the Placing of Biocidal Products on the Market; EUR 20418 EN/2; European Commission: Brussels, Belgium, 2003; Available online: https://op.europa.eu (accessed on 22 October 2023).
- Ishaq, A.G.; Matias-Peralta, H.M.; Basri, H. Bioactive compounds from green microalga-Scenedesmus and its potential applications: A brief review. Pertanika J. Trop. Agric. Sci. 2016, 39, 1–16. [Google Scholar]
- Zhang, Y.; Ren, L.; Chu, H.; Zhou, X.; Yao, T.; Zhang, Y. Optimization for Scenedesmus obliquus cultivation: The effects of temperature, light intensity and pH on growth and biochemical composition. Microbiol. Biotechnol. Lett. 2019, 47, 614–620. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, T.; Shi, L.; Guo, X.; Si, X.; Yang, R.; Quan, X. The effects of humic acid on the toxicity of graphene oxide to Scenedesmus obliquus and Daphnia magna. Sci. Total Environ. 2019, 649, 163–171. [Google Scholar] [CrossRef]
- Ji, M.-K.; Yun, H.-S.; Park, Y.-T.; Kabra, A.N.; Oh, I.-H.; Coi, J. Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production. J. Environ. Manag. 2015, 159, 115–120. [Google Scholar] [CrossRef]
- Gris, B.; Morosinotto, T.; Giacometti, G.M.; Bertucco, A.; Sforza, E. Cultivation of Scenedesmus obliquus in photobioreactors: Effects of light intensities and light-dark cycles on growth, productivity, and biochemical composition. Appl. Biochem. Biotechnol. 2014, 172, 2377–2389. [Google Scholar] [CrossRef]
- Trainor, F.R. Reproduction in Scenedesmus. Algae 1996, 11, 183–201. [Google Scholar]
- Patrick, A.E.S.; Florentine, S. Factors affecting the global distribution of Hydrilla verticillata (L. fil.) Royle: A review. Weed Res. 2021, 61, 253–271. [Google Scholar] [CrossRef]
- Gao, J.; Liu, C.; Zhang, J.; Zhu, S.; Shen, Y.; Zhang, R. Effect of fluoride on photosynthetic pigment content and antioxidant system of Hydrilla verticillata. Int. J. Phytoremediat. 2018, 20, 1257–1263. [Google Scholar] [CrossRef]
- Rojas-Sandoval, J. Hydrilla verticillata (hydrilla). Invasive Species Compendium; CABI: Wallingford, UK, 2016. [Google Scholar] [CrossRef]
- Madeira, P.T.; Van, T.K.; Steward, K.K.; Schnell, R.J. Random amplified polymorphic DNA analysis of the phenetic relationships among world-wide accessions of Hydrilla verticillata. Aquat. Bot. 1997, 59, 217–236. [Google Scholar] [CrossRef]
- Okupnik, A.; Pflugmacher, S. Oxidative stress response of the aquatic macrophyte Hydrilla verticillata exposed to TiO2 nanoparticles. Environ. Toxicol. Chem. 2016, 35, 2859–2866. [Google Scholar] [CrossRef] [PubMed]
- Ceschin, S.; Bellini, A.; Scalici, M. Aquatic plants and ecotoxicological assessment in freshwater ecosystems: A review. Environ. Sci. Pollut. Res. 2021, 28, 4975–4988. [Google Scholar] [CrossRef] [PubMed]
- Nur, F.A.H.; Christianus, A. Breeding and life cycle of Neocaridina denticulata sinensis (Kemp, 1918). Asian J. Anim. Vet. Adv. 2013, 8, 108–115. [Google Scholar] [CrossRef]
- Oh, C.W.; Ma, C.W.; Hartnoll, R.G.; Suh, H.L. Reproduction and population dynamics of the temperate freshwater shrimp, Neocaridina denticulata denticulata (De Haan, 1844), in a Korean stream. Crustaceana 2003, 76, 993–1015. [Google Scholar]
- Mahmoud, H.H.A.; Sastranegara, M.H.; Kusmintarsh, E.S. The lifecycle of Neocaridina denticulata and N. palmata in aquariums. Biodivers. J. 2020, 21, 2396–2402. [Google Scholar]
- Mykles, D.L.; Hui, J.H.L. Neocaridina denticulata: A decapod crustacean model for functional genomics. Integr. comp. Biol. 2015, 55, 891–897. [Google Scholar] [CrossRef]
- Levitt-Barmats, Y.; Yanani, Z.; Cohen, T.M.; Shenkar, N. Life-history traits and ecological characteristics of the ornamental shrimp Neocaridina denticulta (De Haan, 1844), recently introduced into the freshwater systems of Israel. Aquat. Invasions 2019, 14, 684–702. [Google Scholar] [CrossRef]
- Onuki, K.; Fuke, Y. Rediscovery of a native freshwater shrimp, Neocaridina denticulata, and expansion of an invasive species in lake Biwa, Japan: Genetic and morphological approach. Research Square 1-22. Conserv. Genet. 2022, 23, 967–980. [Google Scholar] [CrossRef]
- Sung, H.-H.; Lin, Y.-H.; Hsiao, C.-Y. Differential immune responses of the green neon shrimp (Neocaridina denticulata) to dipropyl phthalate. Fish Shellfish Immunol. 2011, 31, 511–515. [Google Scholar] [CrossRef]
- Froese, R.; Pauly, D. (Eds.) Fishbase. World Wide Web Electronic Publication. Available online: http://www.fishbase.org/ (accessed on 1 October 2023).
- Kim, J.H.; Yeom, D.H. Population response of Pale Chub (Zacco platypus) exposed to wastewater effluents in Gap stream. Toxicol. Environ. Health Sci. 2009, 1, 169–175. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, M.; Yu, H. Biological control of vector mosquitoes by the use of fish predators, Moroco oxycephalus and Misgurnus anguillicaudatus in the laboratory and semi-field rice paddy. Korean J. Entomol. 1994, 24, 269–284. [Google Scholar]
- Lei, F.; Wang, B. Studies on the reproduction and growth of loach. Acta Hydrobiol. Sin. 1990, 14, 60–67. [Google Scholar]
- Suzuki, R. Multiple spawning of the cyprinid loach, Misgurnus anguillicaudatus. Aquaculture 1983, 31, 233–243. [Google Scholar] [CrossRef]
- Qin, T.; Li, X.; Yang, Y.; Li, Z.; Liang, Y.; Zhang, X.; Jiang, S. Toxic effects of copper sulfate on diploid and triploid fin cell lines in Misgurnus anguillicaudatus. Sci. Total Environ. 2018, 643, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, Q.; Zhou, J.; Masunaga, S. Reduction in toxicity of wastewater from three wastewater treatment plants to alga (Scenedesmus obliquus) in northeast China. Ecotox. Environ. Saf. 2015, 119, 132–139. [Google Scholar] [CrossRef]
- Cheng, C.; Huang, L.; Ma, R.; Zhou, Z.; Diao, J. Enantioselective toxicity of lactofen and its metabolites in Scenedesmus obliquus. Algal Res. 2015, 10, 72–79. [Google Scholar] [CrossRef]
- Li, Z.; Juneau, P.; Lian, Y.; Zhang, W.; Wang, S.; Wang, C.; Shu, L.; Yan, Q.; He, Z.; Xu, K. Effects of titanium dioxide nanoparticles on photosynthetic and antioxidative processes of Scenedesmus obliquus. Plants 2020, 9, 1748. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Wang, S.; Fang, H.; Ye, N.; Wang, D. Ecotoxicological effects on Scenedesmus obliquus and Danio rerio co-exposed to polystyrene nano-plastic particles and natural acidic organic polymer. Environ. Toxicol. Pharm. 2019, 67, 21–28. [Google Scholar] [CrossRef]
- Qing, C.; Zhang, H.; Chen, A.; Lin, Y.; Shao, J. Effects and possible mechanisms of sanguinarine on the competition between Raphidiopsis raciborskii (Cyanophyta) and Scenedesmus obliquus (Chlorophyta): A comparative toxicological study. Ecotox. Environ. Saf. 2020, 206, 111192. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Chen, J.; Jin, J.; Chen, H.; Liu, H. Metabolomic analysis of Scenedesmus obliquus reveals new insights into the phytotoxicity of imidazolium nitrate ionic liquids. Sci. Total Environ. 2021, 825, 154070. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Goswami, N.; Xie, J.; Zhang, B.; He, Y. Unraveling the molecular mechanism of photosynthetic toxicity of highly fluorescent silver nanoclusters to Scenedesmus obliquus. Sci. Rep. 2017, 7, 16432. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Liu, D.; Dong, Y.; Chen, J.; Liu, H. Effect of ionic liquids with different cations and anions on photosystem and cell structure of Scenedesmus obliquus. Chemosphere 2018, 195, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jin, M.; Mao, W.; Chen, C.; Fu, L.; Li, Z.; Du, S.; Liu, H. Photosynthetic toxicity of non-steroidal anti-inflammatory drugs (NSAIDs) on green algae Scenedesmus obliquus. Sci. Total Environ. 2020, 707, 136176. [Google Scholar] [CrossRef] [PubMed]
- Bhuvaneshwari, M.; Iswary, V.; Archanaa, S.; Madhu, G.M.; Suraish Kumar, G.K.; Nagarajan, R.; Chandrasekaran, N.; Mukherjee, A. Cytotoxicity of ZnO Nos towards fesh water algae Scenedemus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Aquat. Toxicol. 2015, 162, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, Y.-B.; Quan, X.; Jin, Y.-H.; Chen, S. Effect of perfluorooctane sulfonate on toxicity and cell uptake of other compounds with different hydrophobicity in green alga. Chemosphere 2009, 75, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, B.; Zhang, H.; He, Y.; Ong, C.N.; Yang, J. Metabolites change of Scenedesmus obliquus exerted by AgNPs. J. Environ. Sci. 2019, 76, 310–318. [Google Scholar] [CrossRef]
- Ma, S.; Li, D.; Yu, Y.; Li, D.; Yadav, R.S.; Feng, Y. Application of a microalga, Scenedesmus obliquus PF3, for the biological removal of nitric oxide (NO) and carbon dioxide. Environ. Pollut. 2019, 252, 344–351. [Google Scholar] [CrossRef]
- Chao, W.; Guanghua, L.; Zhuyun, T.; Xiaoling, G. Quantitative structure-activity relationships for joint toxicity of substituted phenols and anilines to Scenedesmus obliquus. J. Environ. Sci. 2008, 20, 115–119. [Google Scholar]
- Nadaraja, A.V.; Saraswathy, D.P.; Ravindran, S.C.; Mariya, A.; Russel, J.G.; Selvanesan, P.; Pereira, B.; Bhaskaran, K. Spatio-temporal distribution of percholarte and its toixicity in Hydrilla verticillata. Ecotox. Environ. Saf. 2017, 144, 490–497. [Google Scholar] [CrossRef]
- Weerakoon, H.P.A.T.; Atapaththu, K.S.S.; Asanthi, H.B. Toxicity evaluation and environmental risk assessment of 2-methyl-4-chlorophenoxy acetic acid (MCPA) on non-target aquatic macrophyte Hydrilla verticillata. Environ. Sci. Pollut. Res. 2018, 25, 30463–30474. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, L.-L.; Li, J.; Chen, M.; An, R.-D. Comparative study on the bioaccumulation of lead, cadmium and nickel and their toxic effects on the growth and enzyme defense strategies of a heavy metal accumulator, Hydrailla verticillata (L.F.) Royle. Environ. Sci. Pollut. Res. 2020, 27, 9853–9865. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Huang, S.; Luo, X.; Zhao, W.; Zheng, Z. Single and combined toxicity effects of nanoplastics and bisphenol F on submerged the macrophyte Hydrilla verticillata. Sci. Total Environ. 2023, 814, 152564. [Google Scholar] [CrossRef] [PubMed]
- Rozentsvet, O.A.; Nesterov, V.N.; Sinyutina, N.F. The effect of copper ions on the lipid composition of subcellular membranes in Hydrilla verticillata. Chemosphere 2012, 89, 108–113. [Google Scholar] [CrossRef]
- Yan, S.; Zhou, Q. Toxic effects of Hydrilla verticillate exposed to toluene, ethylbenzene and xylene and safety assessment for protecting aquatic macrophytes. Chemosphere 2011, 85, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; He, X.J.; Chen, M.; Zhang, L.L.; Li, J.; Deng, Y. Effects of pH on the submerged macrophyte Hydrilla verticillata. Rus. J. Plant Physiol. 2018, 65, 611–619. [Google Scholar] [CrossRef]
- Shi, D.; Kai, Z.; Yan, X.; Changhua, Z.; Chen, C.; Zhbing, H.; Zhenguo, S. Hydrilla verticillata employs two different ways to affect DNA methylation under excess copper stress. Aquat. Toxicol. 2017, 193, 97–104. [Google Scholar] [CrossRef]
- Jiang, H.S.; Yin, L.; Ren, N.N.; Xian, L.; Zhao, S.; Li, W.; Gontero, B. The effect of chronic silver nanoparticles on aquatic system in microcosms. Environ. Pollut. 2017, 223, 395–402. [Google Scholar] [CrossRef]
- Shi, D.; Zhuang, K.; Chen, Y.; Hu, Z.; Shen, Z. Phytotoxicity and accumulation of Cu in mature and young leaves of submerged macrophyte Hydrilla verticillata (L.F.) royle. Ecotox. Environ. Saf. 2021, 208, 111684. [Google Scholar] [CrossRef]
- Li, X.-Q.; Hua, Z.-L.; Zhang, J.-Y.; Gu, L. Ecotoxicological responses and removal of submerged macrophyte Hydrilla verticillate to multiple perfluoroalkyl acid (PFAA) pollutants in aquatic environments. Sci. Total Environ. 2022, 15, 153919. [Google Scholar] [CrossRef]
- Huang, D.-J.; Chen, H.-C. Effects of chlordane and lindane on testosterone and vitellogenin levels in Green neon shrimp (Neocaridina denticulata). Int. J. Toxicol. 2004, 23, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.-H.; Chiu, Y.-W.; Wang, S.-Y.; Chen, C.-M.; Huang, D.-J. Acute toxicity of mixture of acetaminophen and ibuprofen to green neon shrimp, Neocaridina denticulata. Environ. Toxicol. Pharm. 2014, 38, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.J.; Lee, J.W.; Kim, J.; Cho, J.; Kim, J.H.; Kang, M.; Kim, K.; Kim, P.J.; Park, K. Ring test as acute toxicity test with Korean Freshwater shrimp, Neocaridina denticulata using 3,4-Dichloroaniline. J. Environ. Health Sci. 2019, 45, 285–294. [Google Scholar]
- Liu, C.-L.; Sung, H.-H. Genes are differentially expressed at transcriptional level of Neocaridina denticulata following short-term exposure to nonylphenol. Bullet. Environ. Contam. Toxicol. 2011, 87, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Li, M.-H. Acute toxicity of 4-Nonylphenol to aquatic invertebrates in Taiwan. Bull. Environ. Contam. Toxicol. 2007, 78, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Siregar, P.; Suryanto, M.E.; Chen, K.H.-C.; Huang, J.-C.; Chen, H.-M.; Kurnia, K.A.; Santoso, F.; Hussain, A.; Hieu, B.T.N.; Saputra, F.; et al. Exploiting the freshwater shrimp Neocaridina denticulata as aquatic invertebrate model to evaluate nontargeted pesticide induced toxicity by investigating physiologic and biochemical parameters. Antioxidants 2021, 10, 391. [Google Scholar] [CrossRef] [PubMed]
- Li, Z. In vitro micro-tissue and -organ models for toxicity testing. In Comprehensive Biotechnology, 3rd ed.; Murray, M.-Y., Ed.; Elsevier Inc.: Berkeley, CA, USA, 2019; pp. 535–549. [Google Scholar]
- Wu, J.-P.; Li, M.-H. Inhibitory effects of pain relief drugs on neurological enzymes: Implications on their potential neurotoxicity to aquatic animals. Environ. Toxicol. Pharm. 2015, 39, 898–905. [Google Scholar] [CrossRef]
- Huang, D.-J.; Chen, H.-C.; Wu, J.-P.; Wang, S.-Y. Reproduction obstacles for the female green neon shrimp (Neocaridina denticulata) after exposure to chlordane and lindane. Chemosphere 2006, 64, 11–16. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.; Chen, F.; Yu, Q.; Sun, Y.; Zhang, J. Characterization of peroxiredoxin from Neocaridina denticulata sinensis and its antioxidant and DNA protection activity analysis. Fish Shellfish Immunol. 2022, 127, 211–218. [Google Scholar] [CrossRef]
- Xing, K.; Liu, Y.; Yan, C.; Zhou, Y.; Sun, Y.; Su, N.; Yang, F.; Xie, S.; Zhang, J. Transcriptome analysis of Neocaridina denticulate sinensis under copper exposure. Gene 2021, 764, 145098. [Google Scholar] [CrossRef]
- Xing, K.; Liu, Y.; Yan, C.; Zhou, Y.; Zhang, R.; Sun, Y.; Zhang, J. Transcriptomic analysis of Neocaridina denticulata sinensis hepatopancreas indicates immune changes after copper exposure. Fish Shellfish Immunol. 2022, 121, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Yeom, D.-H.; Kim, W.-K.; An, K.-G. Reginal ecological health or risk assessments of stream ecosystems using biomarkers and bioindicators of target species (Pale Chub). Wat. Air Soil Poll. 2016, 227, 469. [Google Scholar] [CrossRef]
- Kim, W.-K.; Jung, J. In situ impact assessment of wastewater effluents by integrating multi-level biomarker responses in the plae chub (Zacco platypus). Ecotox. Environ. Saf. 2016, 128, 246–251. [Google Scholar] [CrossRef]
- Jeon, H.-J.; Park, Y.-C.; Lee, W.-O.; Lee, J.-H.; Kim, J.-H. cDNA cloning and expression of a cytochrome P4501A(CYP1A) from the Pale chub, Zacco platypus. Korean J. Limnol. 2011, 44, 364–372. [Google Scholar]
- Samanta, P.; Im, H.; Yoo, J.; Lee, H.; Kim, N.-Y.; Kim, W.; Hwang, S.-J.; Kim, W.-K.; Jung, J. Comparative assessment of the adverse outcome of wastewater effluents by integrating oxidative stress and histopathological alterations in endemic fish. J. Hazard. Mater. 2018, 15, 81–89. [Google Scholar] [CrossRef]
- Kawabata, Z.; Yoshida, T.; Nakagawa, H. Effect of ammonia on the survival of Zacco platypus (Temminck and schlegel) at each developmental stage. Environ. Pollut. 1997, 95, 213–218. [Google Scholar] [CrossRef]
- Lee, S.; Kim, C.; Kim, J.; Kim, W.K.; Shin, H.S.; Lim, E.S.; Lee, J.W.; Kim, S.; Kim, K.T.; Lee, S.K.; et al. Cloning metallothionein gene in Zacco platypus and its potential as an exposure biomarker against cadmium. Environ. Monit. Assess. 2015, 187, 447. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, Y.H.; Yoon, S.; Lee, S.K. Cytochrome P450 system expression and DNA adduct formation in the liver of Zacco platypus following waterborne Benzo(a)pyrene exposure: Implications for biomarker determination. Environ. Toxicol. 2014, 29, 1032–1042. [Google Scholar] [CrossRef]
- Park, C.B.; Kim, G.-E.; Kim, D.-W.; Kim, S.; Yeom, D.-H. Biomonitoring the effects of urban-stream waters on the health status of pale chub (Zacco platypus): A comparative analysis of biological indexes and biomarker levels. Ecotox. Environ. Saf. 2021, 208, 111452. [Google Scholar] [CrossRef]
- Lee, J.W.; Yoon, H.G.; Lee, S.K. Benzo(a)pyrene-induced cytochrome p4501A expression of four freshwater fishes (Oryzias latipes, Danio rerio, Cyprinus carpio, and Zacco platypus). Environ. Toxicol. Pharm. 2015, 39, 1041–1050. [Google Scholar] [CrossRef]
- Kim, W.-S.; Park, K.; Park, J.-W.; Lee, S.-H.; Kim, J.-H.; Kim, Y.-J.; Oh, G.-H.; Ko, B.-S.; Park, J.-W.; Hong, C.; et al. Transcriptional responses of stress-related genes in pale chub (Zacco platypus) inhabiting different aquatic environments: Application for biomonitoring aquatic ecosystems. Int. J. Environ. Res. Public Health 2022, 19, 11471. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Ueda, T.; Uyeno, K.; Wada, K.; Kinae, N.; Saotome, K.; Tanaka, N.; Takai, A.; Sasaki, Y.F.; Asano, N.; et al. Development of genotoxicity assay systems that use aquatic organisms. Mutat. Res. 1998, 399, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, F.; Jiang, W.; Miao, J.; Wang, P.; Zhou, Z.; Liu, D. A full evaluation of chiral phenylpyrazole pesticide flufiprole and the metabolites to non-target organism in paddy field. Environ. Pollut. 2020, 264, 114808. [Google Scholar] [CrossRef] [PubMed]
- Xiaofei, Q.; Xijuan, X.; Yan, L.; Yaxian, Z.; Zhongzhi, Y.; Shan, F.; Mi, T.; Xingru, Z.; Zhanfen, Q.; Xiaobai, X.; et al. Ecotoxicological effects of mixed pollutants resulted from e-wastes recycling and bioaccumulation of polybrominated diphenyl ethers in Chinese loach (Misgurnus anguillicaudatus). J. Environ. Sci. 2009, 21, 1695–1701. [Google Scholar]
- Wang, X.-N.; Liu, Z.-T.; Yan, Z.-G.; Zhang, C.; Wang, W.-L.; Zhou, J.-L.; Pei, S.-W. Development of aquatic life criteria for triclosan and comparison of the sensitivity between native and non-native species. J. Hazard. Mater. 2013, 260, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Xia, X.; Huo, W.; Dong, H.; Zhang, L.; Chang, Z. Toxic effects of imidacloprid on adult loach (Misgurnus anguillicaudatus). Environ. Toxicol. Pharmcol. 2016, 45, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Nan, P.; Yan, S.; Li, L.; Chen, J.; Du, Q.; Chang, Z. Toxicity effect of dichlorvos on loach (Misgurnus anguillicaudatus) assessed by micronucleus test, hepatase activity analysis and comet assay. Toxicol. Ind. Health 2015, 31, 566–575. [Google Scholar] [CrossRef]
- Huo, W.; Wan, R.; Wang, P.; Zhang, L.; Xia, X. Molecular cloning, characterization of dax1 gene and its response to progesterone in Misgurnus anguillicaudatus. Drug Chem. Toxicol. 2019, 42, 624–633. [Google Scholar] [CrossRef]
- Qin, Y.; Li, X.; Xiang, Y.; Wu, D.; Bai, L.; Li, Z.; Liang, Y. Toxic effects of glyphosate on diploid and triploid fin cell lines from Misgurnus anguillicaudatus. Chemosphere 2017, 180, 356–364. [Google Scholar] [CrossRef]
- Wu, H.; An, P.; Wang, J.; Guan, R.; Yang, N.; Lei, X. Effects of phenanthrene stress on gonads and vitellogenin of Loach (Misgurnus anguillicaudatus). Bull. Environ. Contam. Toxicol. 2021, 106, 286–294. [Google Scholar] [CrossRef]
- Wu, M.; Nishimiya, O.; Nakamori, M.; Soyano, K.; Todo, T.; Hara, A.; Hiramatsu, N. Molecular cloning and characterization of the expression profiles of vitellogenin transcripts in the Dojo Loach (Misgurnus anguillicaudatus) in response to 17α-estradiol administration. Zool. Sci. 2014, 31, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Kang, M.; Sun, S.; Gao, J.; Jia, Z.; Cao, X. Cloning and expressions of chop in loach (Misgurnus anguillicaudatus) and its response to hydrogen peroxide (H2O2) stress. Fish Physiol. Biochem. 2022, 48, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Ajala, S.O.; Alexander, M.L. Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. Int. J. Energy Environ. Eng. 2020, 11, 311–326. [Google Scholar] [CrossRef]
- Pachés, M.; Martinez-Guijarro, R.; Gonzalez-Camejo, J.; Seco, A.; Barat, R. Selecting the most suitable microalgae species to treat the effluent from an anaerobic membrane bioreactor. Environ. Technol. 2020, 41, 267–276. [Google Scholar] [CrossRef]
- Jia, X.; Pan, Y.; Zhu, X. Salinization and heavy metal cadmium impair growth but have contrasting effects on defensive colony formation of Scenedesmus obliquus. Sci. Total Environ. 2023, 862, 160693. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-W.; Chu, P.-Y.; Wu, Y.-F.; Chan, W.-P.; Wang, Y.-H. Identification of functional SSR markers in freshwater ornamental shrimps Neocaridina denticulata using transcriptome sequencing. Mar. Biotechnol. 2020, 22, 772–785. [Google Scholar] [CrossRef] [PubMed]
- Sin, Y.W.; Kenny, N.J.; Qu, Z.; Chan, K.W.; Chan, K.W.S.; Cheong, S.P.S.; Leung, R.W.T.; Chan, T.F.; Bendena, W.G.; Chu, K.H.; et al. Identification of putative ecdysteroid and juvenile hormone pathway genes in the shrimp Neocaridina denticulata. Gen. Comp. Endocrinol. 2015, 214, 167–176. [Google Scholar] [CrossRef]
- Liang, M.; Ma, L.; Li, X.; Feng, D.; Zhang, J.; Sun, Y. Identification and characterization of two types of triacylglycerol lipase genes from Neocaridina denticulata sinensis. Fish Shellfish Immunol. 2022, 131, 980–990. [Google Scholar] [CrossRef]
- Baek, H.-M.; Song, H.-B.; Cho, D.-H. Reproductive ecology of the Pale chub, Zacco platypus in a tributary to the Han river. Korean J. Ichtyol. 2006, 18, 193–201. [Google Scholar]
- Fu, C.; Fu, S.-J.; Yuan, X.-Z.; Cao, Z.-D. Predator-driven intra-species variation in locomotion, metabolism and water velocity preference in pale chub (Zacco playptus) along a river. J. Exp. Biol. 2015, 218, 255–264. [Google Scholar]
- Hussein, M.N.A.; Cao, X.; Elokil, A.A.; Huang, S. Characterization of stem and proliferating cells on the retina and lens of loach Misgurnus anguillicaudatus. J. Fish Biol. 2020, 96, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Tsui, T.K.N.; Randoall, D.J.; Hanson, L.; Farrell, A.P.; Chew, S.F.; Ip, Y.K. Dogmas and controversies in the handling of nitrogenous wastes: Ammonia tolerance in the oriental watherloach Misgurnus anguillicaudatus. J. Exp. Biol. 2004, 207, 1977–1983. [Google Scholar] [CrossRef] [PubMed]
- ECHA. The Use of Alternatives to Testing on Animals for the REACH Regulation, Fourth Report Under Article 117(3) of the Reach Regulation; European Chemicals Agency: Helsinki, Finland, 2020; 85p. [Google Scholar]
- Madden, J.C.; Enoch, S.J.; Paini, A.; Cronin, M.T.D. A review of in Silico tools as alternatives to Animal testing: Principles, resources and applications. Altern. Lab. Anim. 2020, 48, 146–172. [Google Scholar] [CrossRef] [PubMed]
- Rehberger, K.; Kropf, C.; Segner, H. In vitro or not in vitro: A short journey through a long history. Environ. Sci. Eur. 2018, 30, 23. [Google Scholar] [CrossRef] [PubMed]
- UK Annual National Statistics Report, Annual Statistics of Scientific Procedures on Living Animals Great Britain 2021 Presented to Parliament Pursuant to Section 21(7) and 21A(1) of the Aniamls (Scientific Procedures) act 1986; Ordered by the House of Commons to be Printed 30, June 2022. Available online: http://www.understandinganimal;org.uk/files/9514/9993/4810/annual-statistics-scientific-procedures-living-animals-2016.pdf/ (accessed on 1 October 2022).
- Lee, J.W.; Park, S.; Jang, S.-W.; Lee, S.; Moon, S.; Kim, H.; Kim, P.; Yu, S.D.; Seong, C.H. Toxicity prediction using three quantitative structure-activity relationship (QSAR) programs (TOPKAT®, Derek®, OECD toolbox). J. Environ. Health Sci. 2019, 45, 457–464. [Google Scholar]
- Chatterjee, M.; Roy, K. Prediction of aquatic toxicity of chemical mixtures by the QSAR approach using 2D structural descriptors. J. Hazard. Mater. 2021, 408, 124936. [Google Scholar] [CrossRef]
- Lunghini, F.; Marcou, G.; Azam, P.; Enrici, M.H.; Van Miert, E.; Varnek, A. Consensus QSAR models estimating acute toxicity to aquatic organisms from different trophic levels: Algae, Daphnia and fish. SAR QSAR Environ. Res. 2020, 31, 655–675. [Google Scholar] [CrossRef]
- Krishna, G.; Krishna, P.A.; Goel, S.; Krishna, K.A. Alternative animal toxicity testing and biomarkers. In Biomarkers in Toxicology, 2nd ed.; Gupta, R.C., Ed.; Elsevier Inc.: Berkeley, CA, USA, 2019; pp. 143–161. [Google Scholar]
- Rosner, A.; Armengaud, J.; Ballarin, L.; Barnay-Verdier, S.; Cima, F.; Coelho, A.V.; Domart-Coulon, I.; Drobne, D.; Geneviere, A.-M.; Kokalj, A.J.; et al. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. Sci. Total Environ. 2021, 771, 144565. [Google Scholar] [CrossRef]
- Hamm, J.; Sullivan, K.; Clippinger, A.J.; Strickland, J.; Bell, S.; Bhhatarai, B.; Blaauboer, B.; Casey, W.; Dorman, D.; Forsby, A.; et al. Alternative approaches for identifying acute systemic toxicity: Moving from research to regulatory testing. Toxicol. In Vitro 2017, 41, 245–259. [Google Scholar] [CrossRef]
- Teixido, E.; Leuthold, D.; de Croze, N.; Leonard, M.; Scholz, S. Comparative assessment of the sensitivity of fish early-life stage, Daphnia, and algae tests to the chronic ecotoxicity of xenobiotics: Perspectives for alternatives to animal testing. Environ. Toxicol. Chem. 2020, 39, 30–41. [Google Scholar] [CrossRef]
- Sobanska, M.; Scholz, S.; Nyman, A.M.; Cesnaitis, R.; Gutierrez Alonso, S.; Kluver, N.; Kuhne, R.; Tyle, H.; de Knecht, J.; Dang, Z.; et al. Applicability of the fish embryo acute toxicity (FET) test (OECD 236) in the regulatory context of registration, evaluation, authorization, and restriction of chemicals (REACH). Environ. Toxicol. Chem. 2018, 37, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Krzykwa, J.C.; King, S.M.; Jeffries, M.K.S. Investigating the predictive power of three potential sublethal endpoints for the Fathead minnow fish embryo toxicity test: Snout-Vent length, eye size, and Pericardial edema. Environ. Sci. Technol. 2021, 55, 6907–6916. [Google Scholar] [CrossRef] [PubMed]
- Schirling, M.; Bohlen, A.; Triebskorn, R.; KÖhler, H.-R. An invertebrate embryo test with the apple snail Marisa cornuarietis to assess effects of potential developmental and endocrine disruptors. Chemosphere 2006, 64, 1730–1738. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Du, T.; Zhou, B. Evaluation of estrogenic activities and mechanism of action of perfluorinated chemicals determined by vitellogenin induction in primary cultured tilapia hepatocytes. Aquat. Toxicol. 2007, 85, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yu, K.; Shi, X.; Wang, J.; Lam, P.K.S.; Wu, R.S.S.; Zhou, B. Induction of oxidative stress and apoptosis by PFOS and PFOA in primary cultured hepatocytes of freshwater tilapia (Oreocromis niloticus). Aquat. Toxicol. 2007, 82, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Rymuszka, A.; Sieroslawska, A.; Adaszek, Ł. Cytotoxic and immunological responses of fish leukocytes to nodularin exposure in vitro. J. Appl. Toxicol. 2021, 41, 1660–1672. [Google Scholar] [CrossRef]
- Ladhar-Chaabouni, R.; Ayadi, W.; Sahli, E.; Mokdad-Gargouri, R. Establishment of primary cell culture of Ruditapes decussatus haemocytes for metal toxicity assessment. In Vitro Cell. Dev. Biol. Anim. 2021, 57, 477–484. [Google Scholar] [CrossRef]
- Tanneberger, K.; Knöbel, M.; Busser, F.J.M.; Sinnige, T.L.; Hermens, J.L.M.; Schirmer, K. Predicting fish acute toxicity using a fish gill cell line-based toxicity assay. Environ. Sci. Technol. 2013, 47, 1110–1119. [Google Scholar] [CrossRef]
- Lillicrap, A.; Belanger, S.; Burden, N.; Du Pasquier, D.; Embry, M.R.; Halder, M.; Lampi, M.A.; Lee, L.; Norberg-king, T.; Rattner, B.A.; et al. Alternative approaches to vertebrate ecotoxicity tests in the 21st century: A review of developments over the last 2 decades and current status. Environ. Toxicol. Chem. 2016, 35, 2635–2646. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 5, 18–83. [Google Scholar] [CrossRef]
- Likic, V.A.; McConville, M.J.; Lithgow, T.; Bacic, A. Systems biology: The next frontier for bioinformatics. Adv. Bioinform. 2010, 2010, 268925. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Sung, E.J.; Seo, S.; Min, E.K.; Lee, J.-Y.; Shim, I.; Kim, P.; Kim, T.-Y.; Lee, S.; Kim, K.-T. Integrated multi-omics analysis reveals the underlying molecular mechanism for developmental neurotoxicity of perfluorooctanesulfonic acid in zebrafish. Environ. Int. 2021, 157, 106802. [Google Scholar] [CrossRef] [PubMed]
- NCBI. National Library of Medicine, Genome. Available online: https://www.ncbi.nlm.nih.gov/datasets/genome/ (accessed on 22 December 2023).
- Loerracher, A.-K.; Braunbeck, T. Cytochrome P450 dependent biotransformation capacities in embryonic, juvenile and adult stages of zebrafish (Danio rerio)-a state of the art review. Arch. Toxicol. 2021, 95, 2299–2334. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Hernandez, N.; Veliz, D.; Vega-Retter, C. Selection of suitable reference genes for gene expression analysis in gills and liver of fish under field pollution conditions. Sci. Rep. 2019, 9, 3459. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Liu, F.; Huang, W.; Sun, Q.; Huang, X. Identification of reliable reference genes for qRT-PCR in the ephemeral plant Arabidopsis pumila based on full-length transcriptome data. Sci. Rep. 2019, 10, 8408. [Google Scholar] [CrossRef] [PubMed]
- Heckmann, L.-H.; Connon, R.; Hutchinson, T.H.; Maund, S.J.; Sibly, R.M.; Callaghan, A. Expression of target and reference genes in Daphnia magna exposed to ibupropen. BMC Genom. 2006, 7, 175. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1907/2006 of the European Parliamentand of the Council of 18 December 2006 Concerning the Registration Evaluation, Authorization and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, Amending Directive 1999/45/eC and Repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as Well as Council Directive 76/769/”EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/67/EEC, 93/105/EC and 200/21/EC; European Commission: Brussels, Belgium, 2021; Available online: https://op.europa.eu (accessed on 22 October 2023).
- Lee, J.W.; Won, E.-J.; Kang, H.-M.; Hwang, D.-S.; Kim, D.-H.; Kim, R.-K.; Lee, S.-J.; Lee, J.-S. Effects of multi-walled carbon nanotube (MWCNT) on antioxidant depletion, the ERK signaling pathway, and copper bioavailability in the copepod (Tigriopus japonicus). Aquat. Toxicol. 2016, 171, 9–19. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, J.-W.; Kim, K.; Shin, Y.J.; Kim, J.; Kim, S.; Kim, H.; Kim, P.; Park, K. PFOA-induced metabolism disturbance and multi-generational reproductive toxicity in Oryzias latipes. J. Hazard. Mater. 2017, 15, 231–240. [Google Scholar] [CrossRef]
- Kavlock, R.J.; Bahadori, T.; Barton-Maclaren, T.; Gwinn, M.R.; Rasenberg, M.; Thomas, R.S. Accelerating the pace of chemical risk assessment. Chem. Res. Toxicol. 2018, 31, 287–290. [Google Scholar] [CrossRef]
- OECD. Overview of Concepts and Available Guidance Related to Integrated Approaches to Testing and Assessment (IATA); OECD Series on Testing and Assessment No. 329. Environment, Health and Safety, Environment Directorate; OECD: Paris, France, 2020. [Google Scholar]
- Kim, B.; Moran, N.P.; Reinhold, K.; Sánchez-Tójar, A. Male size and reproductive performance in three species of livebearing fishes (Gambusia spp.): A systematic review and meta-analysis. J. Anim. Ecol. 2021, 90, 2431–2445. [Google Scholar] [CrossRef]
- Freitas, E.C.; Rocha, O. Acute toxicity tests with the tropical cladocerans Pseudosida ramosa: The importance of using native species as test organisms. Arch. Environ. Contam. Toxicol. 2021, 60, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Ng, Q.X.; Zhang, H.; Zhang, B.; Ong, C.N.; He, Y. Metabolite changes behind faster growth and less reproduction of Daphnia similis exposed to low-dose silver nanoparticles. Ecotox. Environ. Saf. 2018, 163, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Wu, Z.; Yin, J.; Chai, L. Responses of Hydrilla verticillata (L.F.) royle and Vallisneria natans (Lour.) Hara to glyphosate exposure. Chemosphere 2018, 193, 385–393. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guidelines for the Testing of Chemicals, Section 2, Effects on Biotic Systems. Available online: https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-2-effects-on-biotic-systems_20745761 (accessed on 22 December 2023).
- Lee, J.W.; Lee, J.-W.; Kim, K.; Shin, Y.-J.; Kim, J.; Kim, H.; Kim, H.; Min, S.-A.; Kim, P.; Choi, J.; et al. n-Butyl acrylate-induced antioxidant system alteration through two generations in Oryzias latipes. Fish Physiol. Biochem. 2019, 45, 873–883. [Google Scholar] [CrossRef]
- Lee, J.W.; Choi, K.; Park, K.; Seong, C.; Yu, S.D.; Kim, P. Adverse effects of perfluoroalkyl acids on fish and other aquatic organisms: A review. Sci. Total Environ. 2020, 707, 135334. [Google Scholar] [CrossRef]
- Ritschar, S.; Rabus, M.; Laforsch, C. Predator-specific inducible morphological defenses of a water flea against two freshwater predators. J. Morphol. 2019, 281, 653–661. [Google Scholar] [CrossRef]
- Rodgher, S.; Espindola, E.L.G.; Lombardi, A.T. Suitability of Daphnia similis as an alternative organism in ecotoxicological tests: Implications for metal toxicity. Ecotoxicology 2010, 19, 1027–1033. [Google Scholar] [CrossRef]
Chemicals (Test Condition) | Alternative Test Method, Field/Lab., Target Tissue and Others | Sub-Organism Level Endpoints | Organism or Higher Level Endpoints | Reference |
---|---|---|---|---|
ZnO (0.25, 0.5, 1 mg/L, 72 h exposure) | Laboratory test; toxicity under UV/dark/visible light | Cellular malformation (e.g., internalization into cell wall); pigment content; Oxidative stress (ROS contents); Cell membrane disruption (Lactate dehydrogenase contents) | Growth inhibition rate | [43] |
PFOS, and either Pentachlorophenol, trazine, or diuron/ (10–40 mg/L PFOS, 10–40 mg/L PFOS, 72 h exposure) | Laboratory test | Oxidative stress (ROS contents) | Growth inhibition; Uptake of pentachlorophenol, atrazine, diuron | [44] |
Graphene oxide (GO), humic acid (HA)/ (5, 10, 20, 40, 80 mg/L GO, 72 h exposure) | Laboratory test; mixture toxicity of GO with/without humic acid | Oxidative stress; cellular morphological change (e.g., cell agglomeration with GO in surface) | Growth rate inhibition of 72 h-LC50 | [11] |
AgNp/ (for a growth inhibition test, 0, 10, 50, 100, 1000, 2000 μg/L AgNP; 7 d exposure; for a metabolite analysis, 0, 1, 10, 100 μg/L AgNP, 7 d exposure) | Laboratory test; Omics analysis | metabolite contents change (e.g., d-galactose, sucrose) | Growth inhibition | [45] |
Ionic liquids (e.g., 1-hxyl-3-methylimidazolium nitrate)/ (0–20 mg/L for all Iionic liquids, 96 h exposure) | Laboratory test | 96 h—cell membrane permeability; Cell morphological change; Pigment contents; Photosynthesis rate (Fv/Fm, Y(II), NPQ) | [41] | |
Non-steroidal anti-inflammatory drugs (NSAIDs): Ibuprofen (rac-IBU, S-(+)-IBU), aspirin (ASA), ketoprofen (KEP)/ (for rac-IBU, S-(+)-IBU, ASA 1–300 mg/L; for KEP 0.01~12 mg/L; 96 h exposure) | Laboratory test; isomer toxicity analysis | Cell morphological change using TEM analysis (e.g., turgid, plasmolysis, irregular peaks); pigment content; photosynthesis activity; photosynthic-electron transport related gene expression level (e.g., PsaA, PsaB) | Growth inhibition; Photosynthetic rate; Respiratory rate | [42] |
Flue gas component (CO2, NO, SO2, NaHSO3, pH), temperature (for NO, 5, 10, 15% for 9 d, for SO2 0, 100, 200, 300, 500 ppm, 72 h, for NaHSO2: 0, 50, 100 ppm, 72 h) | Field species + laboratory test; Flue gas, pH, temperature effect analysis | Growth inhibition; removal efficiencies; recovery capability | [46] | |
Wastewater | Laboratory test; wastewater effect depending on treatment process | Pigment contents; cell morphological change (membrane integrity) | Growth inhibition | [34] |
21 substituted phenols and anilines | Laboratory test; QSAR estimation | QSAR estimation | [47] | |
Sanguinarine -10, 20, 40, 80 μg/L, 96 h exposure | Photosynthesis activity; oxidative stress | Growth rate inhibition | [38] | |
TiO2 (10, 50, 200 nm sizes of 10 mg/L of TiO2, 72 h exposure) | Laboratory test | Cellular morphological change (e.g., wrinkle outside of agal cell,); Photosynthesis activity (NPQ, Fv/Fm); oxidative stress (ROS contents); Pigment content | Growth inhibition; oxygen evaluation; oxygen respiration | [36] |
Lactofen, desethyl lactofen, Acifluorfen (3, 2.5, 2, 1.5, 1, 0.5, 1 μg/L of S-lactofen, 3, 2, 1.5, 1, 0.7, 0.5 μg/L of rac-lactofen, 2, 1.5, 1, 0.7, 0.5, 0.3 μg/L of R-lactofen, 3, 1.5, 0.75, 0.5, 0.25, 0.1 μg/L of desethyl lactofen, 1, 0.5, 0.25, 0.15, 0.075, 0.04, 0.02 μg/L of acifluorfen) | Laboratory test; isomer toxicity analysis | Oxidative stress; pigment contents | Growth inhibition of 96 h-EC50 | [35] |
Silver nanocluster, Silver ion, L-cystein (0, 33.75, 67.5, 135, 270, 540 μg/L (silver atom based), L-cystein used to chelate Ag+, 5, 10, 20 μg/L of Ag+; AgNC (0, 135 μg/L) + L-cysteine (0.5 mM), 96 h exposure) | Laboratory test; Omics analysis (transcriptome analysis) | Photosynthesis-electron transport related gene expression level (e.g., PsaA); pigment contents; RNA-sequencing (calvin cycle, light reaction of photosynthesis related gene significantly disrupted) | [40] | |
1-decyl-3-methylimidazolium nitrate ([C10min]NO3), 1-dodecyl-3-methylimidazolium nitrate ([C12min]NO3) (0.01, 0.5 mg/L for NO3 and 0.0005, 0.001, 0.005, 0.01, 0.02, 0.08, 0.3, 0.5, 0.,8 mg/L for NO3) | Laboratory test, omics (metabolomics) | Oxidative stress (e.g., ROS contents), metaolomic analysis using GC-MS, light quantum yield (Y(II)), electron transfer rate (ETR) | Growth inhibition | [39] |
Chemicals (Test Condition) | Alternative Test Method, Field/Lab., Target Tissue and Others | Sub-Organism Level Endpoints | Organism or Higher Level Endpoints | Reference |
---|---|---|---|---|
4-Nonylphenol (4-NP) (0.001, 0.01, 0.1, 0.5 mg/L) | Laboratory test; omics analysis; analysis of expressed sequence tags; semi-quantitative mRNA; flow-through exposure | Transcription level (levels, Hemocyanin, elongation factor 1-alpha) | [62] | |
4-Nonylphenol (4-NP) | Field species + Laboratory test; interspecies difference test (Dugesia japonica, Physa acuta, Ceridaphnia cornuta, Caridina pseudodenticulata, Mona macrocopa) | Mortality (96 h-LC50, NOAEL) | [63] | |
3,4-Dichloroaniline (0.625, 1.25, 2.5, 5, 10 mg/L; 96 h exposure) | Field organism + laboratory test | Mortality of 96-LC50 | [61] | |
Dipropyl phthalate (DPrP) (1, 5, 10, 50 mg/L, 10 d exposure) | Laboratory test | Immune toxicity (acid phosphatase activity, α-naphthyl acetate esterase, β-glucuronidaseactivity, phenoloxidase activity, superoxide dismutase activity, haemocyanin mRNA | [27] | |
Acetaminophen(APAP), Ibuprofen (IBU) (0.2, 0.6, 1, 1.5, 2, 4, 8 mg/L) | Laboratory test; mixture toxicity of APAP and IBU in 3 combinations | Mortality of 96 h-LC50 | [60] | |
Imidacloprid (IMI) (0.03125, 0.0625, 0.125, 0.25, 0.5, 1 mg/L, 96 h exposure) | Laboratory test; target organ: heart, gills; locomotive activity change according to co exposure of acetylcholine or not | Organ toxicity (e.g., heart beat rate, gill ventilation rate); Oxidative stress (e.g., ROS content, 4-hydroxynonenal); energy metabolism (e.g., Glucose contents) | by IMI only 72 h-Locomotor activity-; by IMI with acetylcholine locomotor activity+ | [64] |
10 biocides (e.g., methylisothiazolinone | Laboratory test; 10 chemical toxicity difference | Mortality of 96 h-LC50 | [65] | |
Acetaminophen (ACE), Aspirin (ASP), Diclofena (DIC), Ibuprofen (IBU), Mefenamic acid (MFA), Naproxen (NAP) (0, 0.001, 0.01, 0.1, 1, 10, 100 mg/L ACE; 0, 0.0001, 0.001, 0.01, 1, 10 mg/L for ASP, DIC, IBU, MFA, NAP) | Laboratory test | Neuronal system disruption (e.g., Cholinesterase activity); Energy prifile (ATPase activity) | [66] | |
Chlordane, Lindane, 17β-estradiol (for Chlordane: 0.005, 0.01 0.03, 0., 0.3 μg/L, for Lindane, 0, 1, 3, 5, 10, 20, 30 μg/L) | Field species + laboratory test | Endocrine disruption (testosterone level) | [59] | |
Chlordane, Lindane, 17β-estradiol (for Chlordane: 1 and 10 ng/L; for Lindane, 0.1 and 1 μg/L, 28 d exposure) | Field species + laboratory test | Endocrine disruption (estradiol level) | [67] | |
Mn2+, Ba2+, Cu2+, Mg2+, Ca2+, Zn2+, K+ (10 mM or 1 mM for each chemical) | Laboratory test, target tissue (Intestine, hepatopancreas, muscle, testis, ovary, gill, epidermis, heart, eyestalk) | Peroxiredoxin gene expression, enzyme activity | [68] | |
Cu2+ (2.5 μmol/L, 48 h exposure) | Laboratory test; target tissue (cephalothorax), omics analysis for transcriptome | Gene expression change of transglutaminase 2, programed cell death protein 7-like and others | [69] |
Chemicals (Test Condition) | Alternative Test Method, Field/Lab., Target Tissue and Others | Sub-Organism Level Endpoints | Organism or Higher Level Endpoints | Reference |
---|---|---|---|---|
Field water | Field test; target tissue/organ: liver, blood, spleen, gonad, | Biotransformation activity (EROD); genetic toxicity (DNA strand breakage); neuronal system disruption (AChE activity), endocrine disruption (VTG expression), liver toxicity (alanine aminotransferase), serum macromolecule content (total cholesterol, protein content, creatine) | Gross indices (CF=, LSI+, VSI(viscera somatic index)+, SSI (spleen somatic index)+, Population health responses; reproductive toxicity (e.g., fecundity, oocyte diameter) | [71] |
Contaminant containing metal (Cr, Cu, Zn, Cd, Pb, Hg) | Field test | Oxidative stress (e.g., CAT); stress protein (metallothionein) | Gorss indices (e.g., CF, LSI) | [72] |
β-naphthoflavone (β-naphthoflavone 1 μM, 96 h exposure) | Field species + laboratory test; target tissue/organ: liver, gills, kidney, intestine, brain, gonad, muscle, skin, eye, heart; CYP1A cDNA sequencing | Biotransformation (CYP1A) | [73] | |
Environmental contaminants | Field test; target tissue/organ of liver, kidney, gill | Histological analysis (Degree of tissue change); Oxidative stress | IBR (integrated biomarker response) | [74] |
Ammonium Chloride (10, 50, 100, 200, 500 mg/L) | Field species + laboratory test | Survival rate; Reproductive toxicity(hatching rate); Deformed alevins | [75] | |
Cadmium chloride (3, 30, 300 μg/L, 49 h exposure) | Laboratory test | Stress protein (metallothionein) | [76] | |
Benzo(a)pyrene (4, 20, 100 μg/L, 14 d exposure) | Laboratory test; target tissue/organ of liver | Genetic toxicity (DNA adduct Content); biotransformation (CYP1A expression) | Gross indices (HSI, GSI, CF) | [77] |
Field water | Field test; analysis of seasonal marker changes in field | Relative to up-stream, Hormone level at may Endocrine disruption (intersex) Biotranformation (EROD); neuronal system disruption (AChE) | Gross indices Relative to up-stream, Size distribution | [78] |
Benzo(a)pyrene (4, 20, 100 μg/L, 14 d exposure) | Laboratory test; target tissue/organ of liver, gills; interspecies difference analysis (Zacco platypus, O. latipes, D. rerio, C. carpio) | Biotransformation (CYP1A expression in gills and liver) | Gross indices (CF, LSI, GSI) | [79] |
Environmental pollutants from municipal region | Field test; target tissue/organ of liver, gills; | Gene and protein expression of HSP 70/90, SOD, CAT and stress protein (e.g., metallothionein) | [80] | |
Environmental pollutant (mitomycin C (0, 0.2, 2.0, 20, 200 μg/L); Trichloroethylene (0~3000 μg/L)) | Field/in housed species + Laboratory test; interspecies difference analysis (Zacco platypus, Carassius sp., Misgurnus anguillicaudatus, Odontobutis obscura obscura, C. carpio, R. ocellatus ocellatus, Leiognathus nuchalis, Ditrema temminchki) | Genetic toxicity marker (e.g., chromosomal aberrations) | [81] |
Chemicals (Test Condition) | Alternative Test Method, Field/Lab., Target Tissue and Others | Sub-Organism Level Endpoints | Organism or Higher Level Endpoints | Reference |
---|---|---|---|---|
Imidacloprid (for acute test, 115, 132.25, 152.09, 174.90, 201.12 mg/L 96 h exposure; for biomarker 43, 67, 91, 115 mg/L, 6 d exposure) | Field species + laboratory test; target tissue/organ of liver testis, blood | Histopathological change (e.g., testis:disorganization) genetic toxicity (e.g., erythrocyte micronuclei assay) Liver toxicity | Mortality: LC50-96 h | [85] |
Dichlorvos (DDVP) (for an acute toxicity test 0, 4.56, 5.76, 7.12, 8.96 μg/L, 96 h exposure; for an transaminase test: 0.64, 1.28, 1.92, 2.56, 3.2 μg/L, 6 d exposure) | Field species + laboratory test; target tissue/organ of liver, serum | Liver toxicity (Transaminase activity); Genetic toxicity (e.g., erythrocyte micronuclei rate, DNA strand breakage) | mortality of 96 h-LC50 | [86]. |
Progesterone (P4) (0, 10, 100, 1000 ng/L, 28 d exposure) | Field species + laboratory test; target tissue/organ of liver, kidney, heart, brain, gonad | Dax1 gene transcription level in each organ | [87] | |
Glyphosate (0, 80, 240, 400, 560 mg/L, 24 h exposure) | Laboratory test; cellular system application; diploid and triploid fin cell lines | Cellular viability test (MTT assay); oxidative stress (SOD activity); neuronal system change (AchE activity); genetic toxicity (micronucleus assay) | [88] | |
Mitomycin C, Trichloroethylene (mitomycin C (0, 0.2, 2.0, 20, 200 μg/L); Trichloroethylene (0–3000 μg/L)) | Field species + laboratory test; interspecies test (Carassius sp., Zacco platypus, Misgurnus anguillicaudatus, Odontobutis obscura obscura;); target organ of gills and serum | Genetic toxicity marker (e.g., chromosomal aberrations) | [81] | |
Flufiprole, flufiprole isomer and 6 metabolites (20, 40, 80 μg/L, 96 h exposure) | Laboratory test; toxicity comparison with isomer and metabolites; target organ of liver, gills, blood | Oxidative stress | Mortality of 96 h-LC50 | [82] |
Phenanthrene (1.26, 1.58, 2, 2.51 mg/L) | Laboratory test; target organ: test organ of liver, testes, ovary, serum; sexual difference to VTG expression | Endocrine disruption (VTG expression) | GSI | [89] |
Triclosan (for an acute test, 96 h exposure, 0, 0.02, 0.03, 0.044, 0.067, 0.1, 0.15, 0.225 mg/L; for an chronic test, 30 d exposure, test con. 0, 0.003, 0.005, 0.007, 0.01, 0.015, 0.023 mg/L) | Laboratory test; interspecies difference (P. parva, C. auratus, M. anguillicaudatus, T. albonubes, D. magna, n. denticulata sinensis, C. pumosus, L. hoffmeisteri, R. limnocharis) | Mortality(96 h-LC50); Fry Growth rate | [84] | |
Copper sulfate (for MTT assay 0, 100, 200, 300, 400, 500, 600, 700, 800 μmol/L; for oxdative stress, 0, 100, 200, 300, 400 μmol/L; for Comet assay, 0, 100, 200,400, 800 μmol/L; for 24 h exposure) | Laboratory test; cellular test | Cellular malformation (e.g., indistinct nuclear boundaries loose ribosomes in the cytoplasm); oxidative stress (e.g., SOD activity) Cellular viability | [33] | |
Waste including PBDE, metal, and so on | Field study using caged fish; target organ of liver | Histopathological change (e.g., swelled shape); PBDE accumulation, | Survival rate; | [83] |
17α-ethinylestradiol (EE2), 17β-estradiol (E2) (0, 1, 10, 100, 1000 ng/L) | Laboratory test | Endocrine disruption | [90] |
Species | Distribution (Indigenous Region) | Habitat | Ecological Traits | Traits/Suitability to Laboratory Test | Others |
---|---|---|---|---|---|
Hydrilla verticillata | Africa, south Asia, Southeast Asia including Egypt, China, Korea, Japan | temperate and tropical regions such as are spring, leks, marshes, ditches, rivers, tidal zones channels, quarries, shallow reservoirs, and ditches | producer in a tropic level/abundant individual/role as a habitat to small organisms | Submerged plant/well-studied life cycle/phytoremediation capacity absorbing metals/habitat provider to small organism/long growth cycle/large contact surface/tolerant to temp., pH, salinity | Suitable to absorbing/precipitating chemicals |
Scenedesmus obliquus | world-wide distribution including Egypt, China, Korea, Japan | Wastewater/nutrient-rich water of freshwater or brackishwater | Producer in a tropic level/abundant individual | Rapid growth/easy of culture/capacity of removing metal/tolerant to harsh environment/reproduction with sexual and asexual pattern/well-studied life cycle/euryhalinity | Suitable to environmental monitoring in wastewater and diverse stressful environment /Whole genome sequence |
Neocaridina denticulata | Korea, China, Taiwan, Vietnam, Japan | Freshwater/lentic and lotic waters | 1st consumer in a tropic level/abundant individual | Diverse color/small size (total length < 3 cm)/easy to manipulate/short life cycle/well-studied life cycle/transparent body suitable to observing phenotypes/resistant to bacterial infection pH, temperature, oxygen contents, ammonia, nitrate)/Omnivores | Suitable to genetic study using lots of individuals under a laboratory condition |
Zacco platypus | Korea, Japan, China, Northern Vietnam | Freshwater/Subtropical region, stream and river having a rapid flow | Benthopelagic species/2st consumer in a tropic level/abundant individual | well-studied life cycle/sexual traits (e.g., nuptial organ, brilliant body color)/Omnivores | Balanced research status between lab. and field/ |
Misgurnus anguillicaudatus | Korea, Japan, China, India, Thailand, Laos, Tugur and amur drainages, Vietnam, Taiwan, Cambodia | Freshwater/subtropical region/Ditches, rice paddy fields, streams, mud places, ponds | Benthic species/2st consumer in a tropic level/abundant individual | Persistent to drought, ammonia/diverse polyploidy population/well-studied life cycle/Omnivores | Suitable to absorbing/precipitating chemicals/Whole genome sequence |
Classification | Species | Genome Information | Guideline | Reference |
---|---|---|---|---|
Vertebrate (Fish) | Danio rerio | GRCz11(reference genome) and 17 other assemblies | OECD | [125,139] |
Vertebrate (Fish) | Oncorhynchus mykiss | USDA_OmykA_1.1(reference genome) and 5 other assemblies | OECD, EPA | [7,125,139] |
Vertebrate (Fish) | Cyprinus carpio | ASM1834038v1 (reference genome) and 7 other assemblies | OECD | [125,139] |
Vertebrate (Fish) | Oryzias latipes | ASM223467v1(reference genome) and 31 other assemblies | OECD | [125,139] |
Vertebrate (Fish) | Pimephales promelas | EPA_FHM_2.0 and 2 other assemblies | OECD, EPA | [7,125,139] |
Vertebrate (Fish) | Salvelinus fontinalis | ASM2944872v1 (reference genome) | EPA | [7,125] |
Vertebrate (Fish) | Cyprinodon variegatus | C_variegatus-1.0 (reference genome) | EPA | [7,125] |
Vertebrate (Fish) | Mendia beryllina | ASM1336337v1 (reference genome) | EPA | [7,125] |
Vertebrate (Fish) | Menidia menidia | Menidia_menidia_GA_1.0 (reference genome) and 2 other assemblies | EPA | [7,125] |
Vertebrate (Fish) | Menidia Peninsulae | - | EPA | [7,125] |
Vertebrate(Amphibians) | Xenopus laevis | Xenopus_laevis_v10.1 (reference genome) and 1 other assembly | OECD | [125,139] |
Invertebrate | Ceriodaphnia dubia | CSIRO_AGI_Cdub_v0.2 (reference genome) | EPA | [7,125] |
Invertebrate | Mysidopsis bahia | - | EPA | [7,125] |
Invertebrate | Holmesimysis costata | - | EPA | [7,125] |
Invertebrate | Daphnia magna | ASM2063170v1.1 (reference genome) and 5 other assemblies | OECD, EPA | [7,125,139] |
Invertebrate | Daphnia pulex | ASM2113471v1 (reference genome) and 6 other assemblies | OECD, EPA | [7,125,139] |
Invertebrate | Chironomus, riparius | PGI_CHIRRI_v4 (reference genome) and 7 other assemblies | OECD | [125,139] |
Invertebrate | Chironomus, tentans | idChiTent1.1 (reference genome) and 7 other assemblies | OECD | [125,139] |
Invertebrate | Artemia salina | - | EPA | [7,125] |
algae | Pseudokirchneriella subcapitata | - | OECD | [125,139] |
algae | Desmodesmus subspicatus | - | OECD | [125,139] |
Diatoms | Navicula pelliculosa | Fpelliculosa_ONT_v02(reference genome) and 1 other assembly | OECD | [125,139] |
Cyanobacteria | Anabaena flos-aquae | ASM1251639v1 | OECD | [125,139] |
Cyanobacteria | Synechococcus leopoliensis | - | OECD | [125,139] |
Plant | genus Lemna(Lemna minuta) | Salk_lm5633_a03 (reference genome) | OECD | [125,139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.W.; Shim, I.; Park, K. Proposing Effective Ecotoxicity Test Species for Chemical Safety Assessment in East Asia: A Review. Toxics 2024, 12, 30. https://doi.org/10.3390/toxics12010030
Lee JW, Shim I, Park K. Proposing Effective Ecotoxicity Test Species for Chemical Safety Assessment in East Asia: A Review. Toxics. 2024; 12(1):30. https://doi.org/10.3390/toxics12010030
Chicago/Turabian StyleLee, Jin Wuk, Ilseob Shim, and Kyunghwa Park. 2024. "Proposing Effective Ecotoxicity Test Species for Chemical Safety Assessment in East Asia: A Review" Toxics 12, no. 1: 30. https://doi.org/10.3390/toxics12010030
APA StyleLee, J. W., Shim, I., & Park, K. (2024). Proposing Effective Ecotoxicity Test Species for Chemical Safety Assessment in East Asia: A Review. Toxics, 12(1), 30. https://doi.org/10.3390/toxics12010030