Giant Duckweed (Spirodela polyrhiza) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Maintenance
2.2. Toxicity Testing
2.3. Measurement Methods
2.4. Statistical Analysis
3. Results and Discussion
3.1. Silver Toxicity
3.2. Cadmium Toxicity
3.3. Chromium Toxicity
3.4. Copper Toxicity
3.5. Applications for Wastewater Management
3.6. Predicted No-Effect Concentrations for Four Metals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, H.; Kim, G.; Depuydt, S.; Shin, K.; Han, T.; Park, J. Metal toxicity across different thallus sections of the green macroalga, Ulva australis. Toxics 2023, 11, 548. [Google Scholar] [CrossRef]
- Lewis, M.; Thursby, G. Aquatic plants: Test species sensitivity and minimum data requirement evaluations for chemical risk assessments and aquatic life criteria development for the USA. Environ. Pollut. 2018, 238, 270–280. [Google Scholar] [CrossRef]
- Cowgill, U.; Milazzo, D.; Landenberger, B. A comparison of the effect of triclopyr triethylamine salt on two species of duckweed (Lemna) examined for a 7-and 14-day test period. Water Res. 1989, 23, 617–623. [Google Scholar] [CrossRef]
- Mkandawire, M.; Dudel, E.G. Are Lemna spp. effective phytoremediation agents. Bioremediat. Biodivers. Bioavailab. 2007, 1, 56–71. [Google Scholar]
- Pagliuso, D.; Grandis, A.; Fortirer, J.S.; Camargo, P.; Floh, E.I.S.; Buckeridge, M.S. Duckweeds as promising food feedstocks globally. Agronomy 2022, 12, 796. [Google Scholar] [CrossRef]
- Les, D.H.; Crawford, D.J.; Landolt, E.; Gabel, J.D.; Kimball, R.T. Phylogeny and systematics of Lemnaceae, the duckweed family. Syst. Bot. 2002, 27, 221–240. [Google Scholar]
- Drost, W.; Matzke, M.; Backhaus, T. Heavy metal toxicity to Lemna minor: Studies on the time dependence of growth inhibition and the recovery after exposure. Chemosphere 2007, 67, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Organization for Economic Co-operation and Development (OECD). Guidelines for the Testing of Chemicals Test No. 221: Lemna sp. Growth Inhibition Test. OECD Guidel. Test. Chem. Sect. 2006, 2, 1–22. [Google Scholar]
- ISO 20079:2005; Water Quality—Determination of the Toxic Effect of Water Constituents and Waste Water on Duckweed (Lemna minor)—Duckweed Growth Inhibition Test. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- Samardakiewicz, S.; Woźny, A. The distribution of lead in duckweed (Lemna minor L.) root tip. Plant Soil 2000, 226, 107–111. [Google Scholar] [CrossRef]
- Perrino, E.V.; Signorile, G.; Marvulli, M. A first checklist of the vascular flora of the “Polignano a Mare” coast (Apulia, southern Italy). Nat. Croat. 2013, 22, 295–318. [Google Scholar]
- Senevirathna, K.M.; Crisfield, V.E.; Gazeley, I.; Laird, R.A.; Burg, T.M. Population genetic structure of two cryptic duckweed species (Lemna minor & L. turionifera) in Alberta using a genotyping-by-sequencing approach. Aquat. Bot. 2023, 189, 103687. [Google Scholar] [CrossRef]
- Kuehdorf, K.; Appenroth, K.-J. Influence of salinity and high temperature on turion formation in the duckweed Spirodela polyrhiza. Aquat. Bot. 2012, 97, 69–72. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, S.; Huang, M.; Peng, M.; Bog, M.; Sree, K.S.; Appenroth, K.-J.; Zhang, J. Species distribution, genetic diversity and barcoding in the duckweed family (Lemnaceae). Hydrobiologia 2015, 743, 75–87. [Google Scholar] [CrossRef]
- Jacobs, D.L. An ecological life-history of Spirodela polyrhiza (greater duckweed) with emphasis on the turion phase. Ecol. Monogr. 1947, 17, 437–469. [Google Scholar] [CrossRef]
- De Lange, L. Gibbosity in the complex Lemna gibba/Lemna minor: Literature survey and ecological aspects. Aquat. Bot. 1975, 1, 327–332. [Google Scholar] [CrossRef]
- Oláh, V.; Hepp, A.; Mészáros, I. Comparative study on the sensitivity of turions and active fronds of giant duckweed (Spirodela polyrhiza (L.) Schleiden) to heavy metal treatments. Chemosphere 2015, 132, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Appenroth, K.J.; Nickel, G. Turion formation in Spirodela polyrhiza: The environmental signals that induce the developmental process in nature. Physiol. Plant. 2010, 138, 312–320. [Google Scholar] [CrossRef]
- Baudo, R.; Foudoulakis, M.; Arapis, G.; Perdaen, K.; Lanneau, W.; Paxinou, A.-C.; Kouvdou, S.; Persoone, G. History and sensitivity comparison of the Spirodela polyrhiza microbiotest and Lemna toxicity tests. Knowl. Manag. Aquat. Ecosyst. 2015, 416, 23. [Google Scholar] [CrossRef]
- ISO 20227:2017; Water Quality—Determination of the Growth Inhibition Effects of Waste Waters, Natural Waters and Chemicals on the Duckweed Spirodela polyrhiza—Method Using a Stock Culture Independent Microbiotest. International Organization for Standardization (ISO): Geneva, Switzerland, 2017.
- Appenroth, K.-J.; Krech, K.; Keresztes, A.; Fischer, W.; Koloczek, H. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Chemosphere 2010, 78, 216–223. [Google Scholar] [CrossRef]
- Gopalapillai, Y.; Hale, B.; Vigneault, B. Effect of major cations (Ca2+, Mg2+, Na+, K+) and anions (SO, Cl−, NO) on Ni accumulation and toxicity in aquatic plant (Lemna minor L.): Implications for Ni risk assessment. Environ. Toxicol. Chem. 2013, 32, 810–821. [Google Scholar] [CrossRef]
- Park, J.; Brown, M.T.; Depuydt, S.; Kim, J.K.; Won, D.-S.; Han, T. Comparing the acute sensitivity of growth and photosynthetic endpoints in three Lemna species exposed to four herbicides. Environ. Pollut. 2017, 220, 818–827. [Google Scholar] [CrossRef]
- Park, J.; Yoo, E.-J.; Shin, K.; Depuydt, S.; Li, W.; Appenroth, K.-J.; Lillicrap, A.D.; Xie, L.; Lee, H.; Kim, G. Interlaboratory validation of toxicity testing using the duckweed Lemna minor root-regrowth test. Biology 2021, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Perrino, E.V.; Brunetti, G.; Farrag, K. Plant communities of multi-metal contaminated soils: A case study in National Park of Alta Murgia (Apulia Region-Southern Italy). Int. J. Phytoremediat. 2014, 16, 871–888. [Google Scholar] [CrossRef] [PubMed]
- Korea Legislation Research Institute. Water Environment Conservation Act—Article 34 (Permission to Install Wastewater Non-Discharge Facilities); Korea Legislation Research Institute: Seoul, Republic of Korea, 2013. [Google Scholar]
- Steinberg, R.A. Mineral requirements of Lemna minor. Plant Physiol. 1946, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Park, J. Evaluation of Freshwater Lemna spp. and Spirodela polyrhiza, Higher Plant Lactuca sativa and Marine Macroalga Ulva pertusa as Potential Phytotoxicity Test Model Organisms. Ph.D. Thesis, Incheon National University, Incheon, Republic of Korea, 17 February 2017. [Google Scholar]
- Nagai, T. Sensitivity differences among seven algal species to 12 herbicides with various modes of action. J. Pestic. Sci. 2019, 44, 225–232. [Google Scholar] [CrossRef]
- Zounková, R.; Klimešová, Z.; Nepejchalová, L.; Hilscherová, K.; Bláha, L. Complex evaluation of ecotoxicity and genotoxicity of antimicrobials oxytetracycline and flumequine used in aquaculture. Environ. Toxicol. Chem. 2011, 30, 1184–1189. [Google Scholar] [CrossRef] [PubMed]
- Park, A.; Kim, Y.-J.; Choi, E.-M.; Brown, M.T.; Han, T. A novel bioassay using root re-growth in Lemna. Aquat. Toxicol. 2013, 140, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Nasu, Y.; Kugimoto, M. Lemna (duckweed) as an indicator of water pollution. I. The sensitivity of Lemna paucicostata to heavy metals. Arch. Environ. Contam. Toxicol. 1981, 10, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Topp, C.; Henke, R.; Keresztes, Á.; Fischer, W.; Eberius, M.; Appenroth, K.J. A novel mechanism of abscission in fronds of Lemna minor L. and the effect of silver ions. Plant Biol. 2011, 13, 517–523. [Google Scholar] [CrossRef]
- Naumann, B.; Eberius, M.; Appenroth, K.-J. Growth rate based dose–response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. J. Plant Physiol. 2007, 164, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Kwan, M.K. Use of aquatic macrophytes as a bioassay method to assess relative toxicity, uptake kinetics and accumulated forms of trace metals. In Environmental Bioassay Techniques and Their Application; Springer: Berlin/Heidelberg, Germany, 1989; pp. 345–351. [Google Scholar]
- Mohan, B.; Hosetti, B. Potential phytotoxicity of lead and cadmium to Lemna minor grown in sewage stabilization ponds. Environ. Pollut. 1997, 98, 233–238. [Google Scholar] [CrossRef]
- Megateli, S.; Semsari, S.; Couderchet, M. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicol. Environ. Saf. 2009, 72, 1774–1780. [Google Scholar] [CrossRef] [PubMed]
- Malec, P.; Maleva, M.G.; Prasad, M.; Strzałka, K. Responses of Lemna trisulca L. (Duckweed) exposed to low doses of cadmium: Thiols, metal binding complexes, and photosynthetic pigments as sensitive biomarkers of ecotoxicity. Protoplasma 2010, 240, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Landolt, E.; Kandeler, R. Biosystematic investigations in the family of duckweeds (Lemnaceae). IV: The family of Lemnaceae: A monographic study. 2: Phytochemistry; physiology; application; bibliography. Veröff. Geobot. Inst. Der ETH Stift. Rübel Zür. 1987, 4, 95. [Google Scholar]
Species Name | Parameters | Toxicity Values | Ag | Cd | Cr | Cu |
---|---|---|---|---|---|---|
S. polyrhiza | FA | EC50 (95% CI) | 23.2 (18.8–25.9) | 204.9 (113.3–292.5) | 507.1 (261.5–818.4) | 630.2 (227.0–1162.1) |
EC10 (95% CI) | 7.9 (3.7–17.6) | 81.2 (17.4–143.0) | 61.3 (22.8–373.3) | 45.6 (20.1–154.2) | ||
NOEC | 15.6 | 125 | 312.5 | 125 | ||
LOEC | 31.25 | 250 | 625 | 250 | ||
RL | EC50 (95% CI) | 23.4 (13.2–31.6) | 121.9 (98.4–151.3) | 219.2 (123.3–289.6) | 365.4 (222.9–462.8) | |
EC10 (95% CI) | 4.4 (2.6–17.5) | 17.5 (10.0–65.5) | 37.3 (18.6–114.4) | 155.0 (50.9–174.8) | ||
NOEC | 15.6 | 31.25 | 156.25 | 125 | ||
LOEC | 31.25 | 62.5 | 312.5 | 250 | ||
L. minor | FA | EC50 (95% CI) | 166.2 | >100 | 1756.1 | >100 |
EC10 (95% CI) | 14.8 (5.4–33.6) | 54.4 (23.1–195.7) | 50.1 (32.7–145.9) | 26.4 (17.8–80.2) | ||
NOEC | 25 | 125 | <125 | <62.5 | ||
LOEC | 50 | 250 | 125 | 62.5 | ||
RL | EC50 (95% CI) | 40.8 (11.1–63.1) | 155.1 (48.3–318.4) | 109.2 (92.3–488.3) | 145.3 (58.8–181.4) | |
EC10 (95% CI) | 3.4 (2.2–18.9) | 13.5 (9.7–43.6) | 21.8 (18.5–27.6) | 15.7 (11.8–64.4) | ||
NOEC | 25 | 125 | <125 | 125 | ||
LOEC | 50 | 250 | 125 | 250 |
HC05 | PNEC | NPSRW | |
---|---|---|---|
Ag | 0.0007 | 0.0001 | NA |
Cd | 0.0678 | 0.0068 | <5 |
Cr | 0.1301 | 0.0130 | <50 |
Cu | 0.0441 | 0.0044 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; De Saeger, J.; Bae, S.; Kim, M.; Depuydt, S.; Heynderickx, P.M.; Wu, D.; Han, T.; Park, J. Giant Duckweed (Spirodela polyrhiza) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination. Toxics 2023, 11, 788. https://doi.org/10.3390/toxics11090788
Lee H, De Saeger J, Bae S, Kim M, Depuydt S, Heynderickx PM, Wu D, Han T, Park J. Giant Duckweed (Spirodela polyrhiza) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination. Toxics. 2023; 11(9):788. https://doi.org/10.3390/toxics11090788
Chicago/Turabian StyleLee, Hojun, Jonas De Saeger, Sunwoo Bae, Mirae Kim, Stephen Depuydt, Philippe M. Heynderickx, Di Wu, Taejun Han, and Jihae Park. 2023. "Giant Duckweed (Spirodela polyrhiza) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination" Toxics 11, no. 9: 788. https://doi.org/10.3390/toxics11090788