A Three-Year Analysis of Toxic Benzene Levels and Associated Impact in Ploieşti City, Romania
Abstract
:1. Introduction
- Differences between various locations of the city and its suburbs based on monitoring stations’ data acquisition;
- Differences between the years based on aggregated time series (2019–2021);
- Differences in concentrations during the COVID-19 lockdown in 2020;
- Relationships with other pollutants and meteorological factors;
- Existing benzene patterns and the potential impact on health in the Ploieşti area.
2. Materials and Methods
2.1. Study Area and Environmental Impact
2.2. Climate and Meteorological Data
2.3. Monitoring Network and Data Analysis
- -
- To constantly evaluate, know and inform the public, other authorities, and interested institutions, about air quality status and trends;
- -
- To take, in proper time, prompt measures to reduce or eliminate pollution episodes;
- -
- To prevent accidental pollution;
- -
- To warn and protect the population in case of emergency.
2.4. Exposure Assessment and Environmental Burden of Disease (EBD)
2.5. Statistical Analysis and Geospatial Modeling
3. Results
3.1. Differences between Various Locations of the City and Its Suburbs
3.2. Differences between the Years Based on Aggregated Time Series (2019–2021)
3.3. Differences in Concentrations during COVID-19 Lockdown in 2020
3.4. Relationships with Other Pollutants and Meteorological Factors
3.5. Benzene Patterns and the Potential Impact on Health in Ploieşti Area
4. Discussion
5. Conclusions
- -
- Initiation of a public register with data regarding the cases with diagnostics related to air pollution;
- -
- Application of the best measures and technologies to reduce air pollution and protect the health of the population in areas with increased industrial pollution;
- -
- Informing the population about air quality and individual protection measures;
- -
- Reducing the level of pollution generated by road traffic and encouraging green technologies.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Bank. The Global Health Cost of Ambient PM2.5 Air Pollution. World Bank, Washington, DC. License: CC BY 3.0 IGO. 2020. Available online: https://openknowledge.worldbank.org/handle/10986/35721 (accessed on 5 February 2023).
- Carlsen, L.; Bruggemann, R.; Kenessov, B. Use of partial order in environmental pollution studies demonstrated by urban BTEX air pollution in 20 major cities worldwide. Sci. Total Environ. 2018, 610–611, 234–243. [Google Scholar] [CrossRef]
- EPA. An Introduction to Indoor Air Quality (IAQ); U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2010; p. 27711. [Google Scholar]
- Yu, B.; Yuan, Z.; Yu, Z.; Xue-song, F. BTEX in the environment: An update on sources, fate, distribution, pretreatment, analysis, and removal techniques. Chem. Eng. J. 2022, 435, 134825. [Google Scholar] [CrossRef]
- WHO/Europe. Chapter 5.2 Benzene. 2023. Available online: https://www.euro.who.int/__data/assets/pdf_file/0017/123056/AQG2ndEd_5_2benzene.pdf (accessed on 5 February 2023).
- Buczynska, A.J.; Krata, A.; Stranger, M.; Locateli Godoi, A.F.; Kontozova-Deutsch, V.; Bencs, L.; Naveau, I.; Roekens, E.; Van Grieken, R. Atmospheric BTEX-concentrations in an area with intensive street traffic. Atmos. Environ. 2009, 43, 311–318. [Google Scholar] [CrossRef]
- Sekar, A.; Varghese, G.K.; Ravi Varma, M.K. Analysis of benzene air quality standards, monitoring methods and concentrations in indoor and outdoor environment. Heliyon 2019, 5, e02918. [Google Scholar] [CrossRef]
- ATSDR—Agency for Toxic Substances and Disease Registry. 2023. Benzene. Available online: https://www.atsdr.cdc.gov/sites/toxzine/benzene_toxzine.html (accessed on 5 February 2023).
- Begou, P.; Kassomenos, P. One-year measurements of toxic benzene concentrations in the ambient air of Greece: An estimation of public health risk. Atmos. Pollut. Res. 2020, 11, 1829–1838. [Google Scholar] [CrossRef]
- Costa-Gómez, I.; Caracena, A.B.; Durán-Amor, M.; Banon, D. BTEX proportions as an indicator of benzene hotspots and dispersion tends in cities where sea and land breezes dominate. Air Qual. Atmos. Health 2023, 16, 733–744. [Google Scholar] [CrossRef]
- Harrison, R.M.; Alam, M.S.; Dang, J.; Basahi, J.; Alghamdi, M.A.; Ismail, I.M.; Khoder, M.; Hassan, I.A. Influence of petrochemical installations upon PAH concentrations at sites in Western Saudi Arabia. Atmos. Pollut. Res. 2016, 7, 954–960. [Google Scholar] [CrossRef]
- Dunea, D.; Liu, H.-Y.; Iordache, S.; Buruleanu, L.; Pohoata, A. Liaison between exposure to sub-micrometric particulate matter and allergic response in children from a petrochemical industry city. Sci. Total Environ. 2020, 745, 141170. [Google Scholar] [CrossRef]
- Kang, S.; Kim, J.-A.; Lee, M.; Park, J.; Jeon, E.; Shim, M.; Shin, Y. An analysis of the temporal variability in volatile organic compounds (VOCs) within megacity Seoul and an identification of their sources. Atmos. Pollut. Res. 2022, 13, 101338. [Google Scholar] [CrossRef]
- Lv, D.; Lu, S.; Tan, X.; Shao, M.; Xie, S.; Wang, L. Source profiles, emission factors and associated contributions to secondary pollution of volatile organic compounds (VOCs) emitted from a local petroleum refinery in Shandong. Environ. Pollut. 2021, 274, 116589. [Google Scholar] [CrossRef]
- Romanian National Monitoring Network of Air Quality. 2023. Available online: https://calitateaer.ro/public/home-page/?__locale=en (accessed on 14 May 2023).
- Barbulescu, A.; Barbes, L. Statistical assessment and modeling of benzene level in atmosphere in Timis County, Romania. Int. J. Environ. Sci. Technol. 2022, 19, 817–828. [Google Scholar] [CrossRef]
- Popitanu, C.; Cioca, G.; Copolovici, L.; Iosif, D.; Munteanu, F.-D.; Copolovici, D. The Seasonality Impact of the BTEX Pollution on the Atmosphere of Arad City, Romania. Int. J. Environ. Res. Public Health 2021, 18, 4858. [Google Scholar] [CrossRef]
- Bodor, K.; Szép, R.; Bodor, Z. Time series analysis of the air pollution around Ploieşti oil refining complex, one of the most polluted regions in Romania. Sci. Rep. 2022, 12, 11817. [Google Scholar] [CrossRef] [PubMed]
- Dunea, D.; Iordache, S.; Ianache, C. Relationship between airborne particulate matter and weather conditions in Targoviste urban area during cold months. Rev. Roum. Chim. 2015, 60, 595–601. [Google Scholar]
- Iordache, S.; Dunea, D.; Lungu, E.; Predescu, L.; Dumitru, D.; Ianache, C.; Ianache, R. A cyberinfrastructure for air quality monitoring and early warnings to protect children with respiratory disorders. In Proceedings of the 2015 20th International Conference on Control Systems and Computer Science, Bucharest, Romania, 27–29 May 2015; pp. 789–796. [Google Scholar]
- Mahler, B.; Băiceanu, D.; Panciu, T.C.; Florea, R.M.; Iorga, A.L.; Gnat, M.; German, C.F.; Pârvu, S.; Paraschiv, D.; Manea, D.; et al. Air Pollutants and Their Impact on Chronic Diseases—A Retrospective Study in Bucharest, Romania. Atmosphere 2023, 14, 867. [Google Scholar] [CrossRef]
- Nakai, J.S.; Chu, I.; Li-Muller, A.; Aucoin, R. Effect of environmental conditions on the penetration of benzene through human skin. J. Toxicol. Environ. Health 1997, 51, 447–462. [Google Scholar] [CrossRef]
- EPA. ExpoFIRST Documentation. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=322489 (accessed on 27 July 2023).
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Sanda, M.; Dunea, D.; Iordache, S.; Predescu, L.; Predescu, M.; Pohoata, A.; Onutu, I. Recent Urban Issues Related to Particulate Matter in Ploieşti City, Romania. Atmosphere 2023, 14, 746. [Google Scholar] [CrossRef]
- Lingham, G.; Yazar, S.; Lucas, R.M.; Milne, E.; Hewitt, A.W.; Hammond, C.J.; MacGregor, S.; Rose, K.A.; Chen, F.K.; He, M.; et al. Time spent outdoors in childhood is associated with reduced risk of myopia as an adult. Sci. Rep. 2021, 11, 6337. [Google Scholar] [CrossRef]
- Diffey, B.L. An overview analysis of the time people spend outdoors. Br. J. Dermatol. 2011, 164, 848–854. [Google Scholar] [CrossRef]
- Monod, A.; Sive, B.C.; Avino, P.; Chen, T.; Blake, D.R.; Sherwood Rowland, F. Monoaromatic compounds in ambient air of various cities: A focus on correlations between the xylenes and ethylbenzene. Atmos. Environ. 2001, 35, 135–149. [Google Scholar] [CrossRef]
- Jia, C.; Mao, X.; Huang, T.; Liang, X.; Wang, Y.; Shen, Y.; Jiang, W.; Wang, H.; Bai, Z.; Ma, M.; et al. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China. Atmos. Res. 2016, 169, 225–236. [Google Scholar] [CrossRef]
- Lyu, X.P.; Chen, N.; Guo, H.; Zhang, W.H.; Wang, N.; Wang, Y.; Liu, M. Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China. Sci. Total Environ. 2016, 541, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shao, M.; Lu, S.; Chang, C.; Wang, J.; Chen, G. Volatile Organic Compound (VOC) measurements in the Pearl River Delta (PRD) region, China. Atmos. Chem. Phys. 2008, 8, 1531–1545. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, R.; Fu, H.; Zhou, D.; Chen, J. Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China. J. Environ. Sci. 2018, 71, 233–248. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, Y.; Duan, X.; Chai, J.; Li, R.; Xu, Y.; Li, Z.; Peng, L. Sources and Seasonal Variance of Ambient Volatile Organic Compounds in the Typical Industrial City of Changzhi, Northern China. Atmosphere 2022, 13, 393. [Google Scholar] [CrossRef]
- Jobson, B.T.; Berkowitz, C.M.; Kuster, W.C.; Goldan, P.D.; Williams, E.J.; Fesenfeld, F.C.; Apel, E.C.; Karl, T.; Lonneman, W.A.; Riemer, D. Hydrocarbon source signatures in Houston, Texas: Influence of the petrochemical industry. J. Geophys. Res. Atmos. 2004, 109, 1–26. [Google Scholar] [CrossRef]
- Iovino, P.; Polverino, R.; Salvestrini, S.; Capasso, S. Temporal and spatial distribution of BTEX pollutants in the atmosphere of metropolitan areas and neighbouring towns. Environ. Monit. Assess. 2009, 150, 437–444. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Miino, M.C. Lockdown for COVID-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef]
- Kalabokas, P.D.; Hatzianestis, J.; Bartzis, J.G.; Papagiannakopoulos, P. Atmospheric concentrations of saturated and aromatic hydrocarbons around a Greek oil refinery. Atmos. Environ. 2001, 35, 2545–2555. [Google Scholar] [CrossRef]
- Na, K.; Kim, Y.P.; Moon, K.; Moon, I.; Fung, K. Concentrations of volatile organic compounds in an industrial area of Korea. Atmos. Environ. 2001, 35, 2747–2756. [Google Scholar] [CrossRef]
- Xiong, Y.; Bari, M.A.; Xing, Z.; Du, K. Ambient volatile organic compounds (VOCs) in two coastal cities in western Canada: Spatiotemporal variation, source apportionment, and health risk assessment. Sci. Total Environ. 2020, 706, 135970. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Chang, Y.T.; Lin, C.J. How a winding-down oil refinery park impacts air quality nearby? Environ. Int. 2022, 169, 107533. [Google Scholar] [CrossRef] [PubMed]
- Pakkattil, A.; Muhsin, M.; Ravi Varma, M.K. COVID-19 lockdown: Effects on selected volatile organic compound (VOC) emissions over the major Indian metro cities. Urban Clim. 2021, 37, 100838. [Google Scholar] [CrossRef]
- Latif, M.T.; Abd Hamid, H.H.; Ahamad, F.; Khan, M.F.; Mohd Nadzir, M.S.; Othman, M.; Sahani, M.; Abdul Wahab, M.I.; Mohamad, N.; Uning, R.; et al. BTEX compositions and its potential health impacts in Malaysia. Chemosphere 2019, 237, 124451. [Google Scholar] [CrossRef] [PubMed]
- EEA (European Environmental Agency). Air Quality in Europe—2015 Report; Publications Office of the European Union: Luxembourg, 2015; Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2015 (accessed on 8 August 2020).
- Iordache, S.; Dunea, D.; Radulescu, C.; Dulama, I.D.; Ianache, R.; Dumitru, D.; Predescu, M. Investigation of Heavy Metals Content in Airborne Particles from Ploesti, Romania. Rev. Chim. 2017, 68, 879–885. [Google Scholar] [CrossRef]
- Oprea, M.; Dunea, D. SBC-MEDIU: A multi-expert system for environmental diagnosis. Environ. Eng. Manag. J. 2010, 9, 205–213. [Google Scholar] [CrossRef]
- Oprea, M.; Dunea, D.; Liu, H.-Y. Development of a knowledge based system for analyzing particulate matter air pollution effects on human health. Environ. Eng. Manag. J. 2017, 16, 669–676. [Google Scholar] [CrossRef]
- Ghosh, B.; De, M.; Rout, T.K.; Padhy, P.K. Study on spatiotemporal distribution and health risk assessment of BTEX in urban ambient air of Kolkata and Howrah, West Bengal, India: Evaluation of carcinogenic, non-carcinogenic and additional leukaemia cases. Atmos. Pollut. Res. 2023, 14, 101878. [Google Scholar] [CrossRef]
- Dayan, U.; Koch, J.; Agami, S. Atmospheric conditions leading to buildup of benzene concentrations in urban areas in Israel. Atmos. Environ. 2023, 300, 119678. [Google Scholar] [CrossRef]
- INSSE. Romanian National Institute of Statistics. Available online: https://insse.ro/cms/en (accessed on 19 February 2023).
- Gariazzo, C.; Pelliccioni, A.; Di Filippo, P.; Sallusti, F.; Cecinato, A. Monitoring and Analysis of Volatile Organic Compounds Around an Oil Refinery. Water Air Soil Pollut. 2005, 167, 17–38. [Google Scholar] [CrossRef]
- INSP—National Institute for Public Health. Available online: https://insp.gov.ro/download/mortalitatea-generala-2020/?wpdmdl=103374&refresh=6490144022d6a1687163968 (accessed on 27 July 2023).
- Romanian Parliament Law No. 293 of November 3, 2022, for the Prevention and Fight against Cancer. Monitorul Oficial Nr. 1,077 of November 8, 2022. Available online: https://www.anm.ro/_/LEGI%20ORDONANTE/Lege%20293-2022.pdf (accessed on 27 July 2023).
- Cordiano, R.; Papa, V.; Cicero, N.; Spatari, G.; Allegra, A.; Gangemi, S. Effects of Benzene: Hematological and Hypersensitivity Manifestations in Resident Living in Oil Refinery Areas. Toxics 2022, 10, 678. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, X.; Guo, C.; Zhang, X.; Zhang, Y.; Deng, N.; Lai, G.; Yang, A.; Huang, Y.; Dang, S.; et al. Hematological Effects and Benchmark Doses of Long-Term Co-Exposure to Benzene, Toluene, and Xylenes in a Follow-Up Study on Petrochemical Workers. Toxics 2022, 10, 502. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Sohrab, S.S.; Athar, M.; Alandijany, T.A.; Kumari, S.; Nair, A.; Kumari, S.; Mehra, K.; Chowdhary, K.; Rahman, S.; et al. Substantial Changes in Selected Volatile Organic Compounds (VOCs) and Associations with Health Risk Assessments in Industrial Areas during the COVID-19 Pandemic. Toxics 2023, 11, 165. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yue, H.; Cui, S.; Zhang, Y.; Li, H.; Wang, J.; Ge, X. Chemical Characteristics and Source-Specific Health Risks of the Volatile Organic Compounds in Urban Nanjing, China. Toxics 2022, 10, 722. [Google Scholar] [CrossRef] [PubMed]
Indicator | Annual Average | Minimum | Maximum | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | 2019 | 2020 | 2021 | Multiannual | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 |
PH-1 | 3.34 | 3.63 | 3.42 | 3.46 | 0.32 | 0.09 | 0.41 | 33.57 | 41.54 | 31.06 |
PH-2 | 4.15 | 3.45 | 3.34 | 3.65 | 0.21 | 0.6 | 0.47 | 64.82 | 43.88 | 38.37 |
PH-3 * | 4.11 | 3.37 | 2.91 | 3.46 | 0.03 | 0.19 | 0.01 | 34.1 | 36.8 | 37.88 |
PH-4 * | 3.76 | 4.01 | 6.14 | 4.64 | 0.5 | 0.29 | 0.01 | 69.94 | 145.97 | 190.29 |
PH-5 | 3.46 | 3.32 | 3.54 | 3.44 | 0.48 | 0.59 | 0.31 | 103.15 | 42.57 | 37.91 |
PH-6 | 1.96 | 2.65 | 2.41 | 2.34 | 0.10 | 0.26 | 0.14 | 76.01 | 53.06 | 38.86 |
Average | 3.46 | 3.41 | 3.63 | 3.50 | 0.31 | 0.35 | 0.24 | 63.60 | 60.64 | 62.40 |
N | Data Capture (%) | Average | Median | Minimum | Maximum | Std.Dev. | Coef.Var. (%) | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|---|---|
PH-1 | 1509 | 98.6 | 2.4 | 1.96 | 0.3 | 12.45 | 1.52 | 63.13 | 2.02 | 5.72 |
PH-2 | 1510 | 98.6 | 2.62 | 1.98 | 0.8 | 30.18 | 1.96 | 74.82 | 4.49 | 38.98 |
PH-3 * | 1056 | 69 | 3.34 | 2.91 | 0.19 | 13.32 | 1.99 | 59.63 | 1.19 | 1.67 |
PH-4 * | 1473 | 96.2 | 3.04 | 1.93 | 0.49 | 90.03 | 4.23 | 139.35 | 9.27 | 147.2 |
PH-5 | 1512 | 98.8 | 3.14 | 2.31 | 0.64 | 30.31 | 2.68 | 85.41 | 3.57 | 20.19 |
PH-6 | 1055 | 68.9 | 1.48 | 1.02 | 0.27 | 53.06 | 2.01 | 135.71 | 16.84 | 415.04 |
Indicator | ADD (mg/kg-Day) | LADD (mg/kg-Day) | ||||
---|---|---|---|---|---|---|
Simulation | Scenario 1 (3.5 µg/m3) Default Exposure Defined by ExpoFIRST) | Scenario 2 (6 µg/m3) Default Exposure Defined by ExpoFIRST | Scenario 3 (6 µg/m3) 3 h Outdoor Exposure, Daily | Scenario 1 (3.5 µg/m3) Default Exposure Defined by ExpoFIRST) | Scenario 2 (6 µg/m3) Default Exposure Defined by ExpoFIRST) | Scenario 3 (6 µg/m3) 3 h Outdoor Exposure Daily) |
Age bin | ||||||
Birth to <1 month | 4.99 × 10−4 | 4.28 × 10−4 | 8.99 × 10−4 | - | - | - |
1 month to <3 months | 3.16 × 10−5 | 5.42 × 10−5 | 7.11 × 10−4 | |||
3 months to <6 months | 9.59 × 10−5 | 1.64 × 10−4 | 6.64 × 10−4 | |||
6 months to <1 year | 5.43 × 10−4 | 9.31 × 10−4 | 7.04 × 10−4 | |||
1 year to <2 years | 1.68 × 10−4 | 2.88 × 10−4 | 8.41 × 10−4 | |||
2 years to <3 years | 3.26 × 10−4 | 5.60 × 10−4 | 7.73 × 10−4 | |||
3 years to <6 years | 3.87 × 10−4 | 6.63 × 10−4 | 6.51 × 10−4 | |||
6 years to <11 years | 3.32 × 10−4 | 5.69 × 10−4 | 4.52 × 10−4 | |||
11 years to <16 years | 1.78 × 10−4 | 3.05 × 10−4 | 3.21 × 10−4 | |||
16 years to <21 years | 1.55 × 10−4 | 2.65 × 10−4 | 2.73 × 10−4 | |||
21 years to <70 years | 3.58 × 10−4 | 6.13 × 10−4 | 3.90 × 10−4 | |||
Birth to <70 years | 3.27 × 10−4 | 5.60 × 10−4 | 4.04 × 10−4 | 3.95 × 10−4 | 10.6 × 10−4 | 6.76 × 10−4 |
Year | 2019 | 2020 | 2021 | Season |
---|---|---|---|---|
January | 1.28 × 10−4 | 2.09 × 10−4 | 1.37 × 10−4 | |
February | 1.22 × 10−4 | 1.36 × 10−4 | 1.39 × 10−4 | Winter |
March | 9.98 × 10−5 | 1.15 × 10−4 | 1.21 × 10−4 | 14.1 × 10−5 |
April | 7.95 × 10−5 | 7.97 × 10−5 | 9.10 × 10−5 | Spring |
May | 7.79 × 10−5 | 7.26 × 10−5 | 7.74 × 10−5 | 9.04 × 10−5 |
June | 8.40 × 10−5 | 8.03 × 10−5 | 1.05 × 10−4 | Summer |
July | 9.12 × 10−5 | 8.52 × 10−5 | 9.38 × 10−5 | 8.74 × 10−5 |
August | 9.39 × 10−5 | 7.86 × 10−5 | 7.38 × 10−5 | |
September | 9.17 × 10−5 | 8.97 × 10−5 | 7.39 × 10−5 | Autumn |
October | 1.36 × 10−4 | 9.13 × 10−5 | 8.71 × 10−5 | 10.6 × 10−4 |
November | 1.21 × 10−4 | 1.36 × 10−4 | 1.30 × 10−4 | |
December | 1.70 × 10−4 | 1.06 × 10−4 | 1.20 × 10−4 | |
Average | 1.08 × 10−4 | 1.07 × 10−4 | 1.04 × 10−4 | 1.06 × 10−4 |
Annual Average Benzene Concentration (μg/m3) | EBD (Number of Excess Deaths) | PAF (Population Attributable Fraction) | DALYEBD | DALYEBD per 100,000 Inhabitants |
---|---|---|---|---|
2 | 0.04 | 0.00138 | 0.524 | 0.291 |
3.5 | 0.07 | 0.00242 | 0.917 | 0.509 |
4 | 0.08 | 0.00276 | 1.048 | 0.582 |
6 | 0.12 | 0.00415 | 1.571 | 0.873 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanda, M.; Dunea, D.; Iordache, S.; Pohoata, A.; Glod-Lendvai, A.-M.; Onutu, I. A Three-Year Analysis of Toxic Benzene Levels and Associated Impact in Ploieşti City, Romania. Toxics 2023, 11, 748. https://doi.org/10.3390/toxics11090748
Sanda M, Dunea D, Iordache S, Pohoata A, Glod-Lendvai A-M, Onutu I. A Three-Year Analysis of Toxic Benzene Levels and Associated Impact in Ploieşti City, Romania. Toxics. 2023; 11(9):748. https://doi.org/10.3390/toxics11090748
Chicago/Turabian StyleSanda, Mia, Daniel Dunea, Stefania Iordache, Alin Pohoata, Ana-Maria Glod-Lendvai, and Ion Onutu. 2023. "A Three-Year Analysis of Toxic Benzene Levels and Associated Impact in Ploieşti City, Romania" Toxics 11, no. 9: 748. https://doi.org/10.3390/toxics11090748
APA StyleSanda, M., Dunea, D., Iordache, S., Pohoata, A., Glod-Lendvai, A. -M., & Onutu, I. (2023). A Three-Year Analysis of Toxic Benzene Levels and Associated Impact in Ploieşti City, Romania. Toxics, 11(9), 748. https://doi.org/10.3390/toxics11090748