Saxitoxin-Producing Raphidiopsis raciborskii (Cyanobacteria) Constrains Daphnia Fitness and Feeding Rate despite High Nutritious Food Availability
Abstract
1. Introduction
2. Methods
2.1. Phytoplankton and Zooplankton Culture Conditions
2.2. Phytoplankton Biomass Estimative and Saxitoxin Analysis
2.3. Life Table Experiments
2.4. Dietary Exposure to STX-Producing Cyanobacteria under Constant Nutritious Food
2.5. Dietary Exposure to STX-Producing Cyanobacteria under Variable Nutritious Food
2.6. Grazing Assays
2.7. Data Analysis
3. Results
3.1. Dietary Exposure to STX-Producing Cyanobacteria under Constant Nutritious Food
3.2. Dietary Exposure to STX-Producing Cyanobacteria under Variable Nutritional Food
3.3. Cyanobacterial Effects on Feeding Rate
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chorus, I.; Welker, M. (Eds.) Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef]
- Havens, K.E.; Hudnell, H.K. Cyanobacteria Blooms: Effects on Aquatic Ecosystems, Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs; Springer: New York, NY, USA, 2008. [Google Scholar]
- Pearl, H.; Huisman, J. Blooms Like It Hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Moustaka-Gouni, M.; Sommer, U. Effects of harmful blooms of large-sized and colonial cyanobacteria on aquatic food webs. Water 2020, 12, 1587. [Google Scholar]
- Buratti, F.M.; Manganelli, M.; Vichi, S.; Stefanelli, M.; Scardala, S.; Testai, E.; Funari, E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017, 91, 1049–1130. [Google Scholar]
- Christensen, V.G.; Khan, E. Freshwater neurotoxins and concerns for human, animal, and ecosystem health: A review of anatoxin-a and saxitoxin. Sci. Total Environ. 2020, 736, 139515. [Google Scholar] [PubMed]
- Ger, K.A.; Urrutia-Cordero, P.; Frost, P.C.; Hansson, L.A.; Sarnelle, O.; Wilson, A.E.; Lürling, M. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 2016, 54, 128–144. [Google Scholar] [PubMed]
- Martin-Creuzburg, D.; von Elert, E.; Hoffmann, K.H. Nutritional constraints at the cyanobacteria—Daphnia magna interface: The role of sterols. Limnol. Oceanogr. 2008, 53, 456–468. [Google Scholar]
- DeMott, W.R.; Van Donk, E. Strong interactions between stoichiometric constraints and algal defenses: Evidence from population dynamics of Daphnia and algae in phosphorus-limited microcosms. Oecologia 2013, 171, 175–186. [Google Scholar] [PubMed]
- Ferrão-Filho, A.S.; Koslowsky-Suzuki, B. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals. Marine Drugs 2011, 9, 2729–2772. [Google Scholar]
- Vilar, M.C.P.; Ferrão-Filho, A.S.; Azevedo, S.M. Single and mixed diets of the toxic cyanobacteria Microcystis aeruginosa and Raphidiopsis raciborskii differently affect Daphnia feeding behavior. Food Webs 2022, 32, e00245. [Google Scholar]
- Aguilera, A.; Gómez, E.B.; Kaštovský, J.; Echenique, R.O.; Salerno, G.L. The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia 2018, 57, 130–146. [Google Scholar]
- Antunes, J.T.; Leão, P.N.; Vasconcelos, V.M. Cylindrospermopsis raciborskii: Review of the distribution, phylogeography, and ecophysiology of a global invasive species. Front. Microbiol. 2015, 6, 473. [Google Scholar] [PubMed]
- Burford, M.A.; Beardall, J.; Willis, A.; Orr, P.Y.; Magalhaes, V.F.; Rangel, L.M.; Azevedo, S.M.F.O.; Neilan, B.A. Understanding the winning strategies used by the bloomforming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 2016, 54, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Vilar, M.C.P.; Rodrigues, T.F.C.P.; Silva, L.O.; Pacheco, A.B.F.; Ferrão-Filho, A.S.; Azevedo, S.M.F.O. Ecophysiological aspects and sxt genes expression underlying induced chemical defense in STX-Producing Raphidiopsis raciborskii (Cyanobacteria) against the zooplankter Daphnia gessneri. Toxins 2021, 13, 406. [Google Scholar] [PubMed]
- Wood, S.A.; Stirling, D.J. First identification of the cylindrospermopsin-producing cyanobacterium Cylindrospermopsis raciborskii in New Zealand. N. Z. J. Mar. Fresh. Res. 2003, 37, 821–828. [Google Scholar]
- Zheng, B.; He, S.; Zhao, L.; Li, J.; Du, Y.; Li, Y.; Shi, J.; Wu, Z. Does temperature favour the spread of Raphidiopsis raciborskii, an invasive bloom-forming cyanobacterium, by altering cellular trade-offs? Harmful Algae 2023, 124, 102406. [Google Scholar] [PubMed]
- Lei, L.; Peng, L.; Huang, X.; Han, B.P. Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China. Environ. Monit. 2014, 186, 3079–3090. [Google Scholar]
- Lagos, N.; Onodera, H.; Zagatto, P.A.; Andrinolo, D.; Azevedo, S.M.F.O.; Oshima, Y. The first evidence of paralytic shelfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon 1999, 37, 1359–1373. [Google Scholar] [CrossRef] [PubMed]
- Molica, R.J.R.; Oliveira, E.J.A.; Carvalho, P.V.V.C.; Costa, A.P.N.S.F.; Cunha, M.C.C.; Melo, G.L.; Azevedo, S.M.F.O. Ocurrence of saxitoxins and anatoxin-a(s)-like anticholinesterase in Brazilian drinking water supply. Harmful Algae 2005, 4, 743–753. [Google Scholar]
- Calado, S.L.M.; Wojciechowski, J.; Santos, G.S.; Magalhães, V.F.; Padial, A.A.; Cestari, M.M.; Assis, H.C.S. Neurotoxins in a water supply reservoir: An alert to environmental and human health. Toxicon 2017, 126, 12–22. [Google Scholar] [PubMed]
- Moraes, M.A.B.; Rodrigues, R.A.M.; Schlüter, L.; Podduturi, R.; Jørgensen, N.O.G.; Calijuri, M.C. Influence of Environmental Factors on Occurrence of Cyanobacteria and Abundance of Saxitoxin-Producing Cyanobacteria in a Subtropical Drinking Water Reservoir in Brazil. Water 2021, 13, 1716. [Google Scholar]
- dos Santos Machado, L.; Dörr, F.; Dörr, F.A.; Frascareli, D.; Melo, D.S.; Gontijo, E.S.; Friese, K.; Pinto, E.; Rosa, A.H.; Pompêo, M.M.; et al. Permanent occurrence of Raphidiopsis raciborskii and cyanotoxins in a subtropical reservoir polluted by domestic effluents (Itupararanga reservoir, São Paulo, Brazil). Environ. Sci. Pollut. Res. 2022, 29, 18653–18664. [Google Scholar]
- Soares, M.C.S.; Huszar, V.; Miranda, M.N.; Melo, M.M.; Roland, F.; Lürling, M. Cyanobacterial dominance in Brazil: Distribution and environmental preferences. Hydrobiologia 2013, 717, 1–12. [Google Scholar]
- Rzymski, P.; Poniedziałek, B. In search of environmental role of cylindrospermopsin: A review on global distribution and ecology of its producers. Water Res. 2014, 66, 320–327. [Google Scholar] [PubMed]
- Yang, J.R.; Hong, L.V.; Isabwe, A.; Liu, L.; Yu, X.; Chen, H.; Yang, J. Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs. Water Res. 2017, 120, 52–63. [Google Scholar]
- Tian, X.; Yuan, Y.; Zou, Y.; Qin, L.; Zhu, X.; Zhu, Y.; Zhao, Y.; Jiang, M.; Jiang, M. Cyanobacterial Blooms Increase Functional Diversity of Metazooplankton in a Shallow Eutrophic Lake. Water 2023, 15, 953. [Google Scholar]
- Litvinchuk, L.F.; Sharov, A.N.; Chernova, E.N.; Smirnov, V.V.; Berezina, N.A. Mutual links between microcystins-producing cyanobacteria and plankton community in clear and brown northern lakes. Food Webs 2023, 35, e00279. [Google Scholar]
- Heathcote, A.J.; Filstrup, C.T.; Kendall, D.; Downing, J.A. Biomass pyramids in lake plankton: Influence of cyanobacteria size and abundance. Inland Waters 2016, 6, 250–257. [Google Scholar]
- Rangel, L.M.; Silva, L.H.S.; Faassen, E.J.; Lürling, M.; Ger, K.A. Copepod prey selection and grazing efficiency mediated by chemical and morphological defensive traits of cyanobacteria. Toxins 2020, 12, 465. [Google Scholar] [PubMed]
- Mesquita, M.; Lürling, M.; Dorr, F.; Pinto, E.; Marinho, M.M. Combined Effect of Light and Temperature on the Production of Saxitoxins in Cylindrospermopsis raciborskii Strains. Toxins 2019, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Guillard, R.R. Cultures of phytoplankton for feeding of marine invertebrates. In Culture of Marine Invertebrate Animals; Smith, W.L., Chanley, M.H., Eds.; Plenum: New York, NY, USA, 1975; pp. 29–60. [Google Scholar]
- Tollrian, R. Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity: Morphological effects of Chaoborus kairomone concentration and their quantification. J. Plankton Res. 1993, 15, 1309–1318. [Google Scholar]
- Norme Experimentale T90-304; Essais des Eaux. Determination of Inhibition of Scenedesmus subspicatus par une Substance. AFNOR—Association Française of Normalization: Saint-Denis, France, 1980.
- Hillebrand, H.; Dürselen, C.D.; Kirschtel, D.; Pollingher, U.; Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 2002, 35, 403–424. [Google Scholar] [CrossRef]
- Sun, J.; Liu, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 2003, 25, 1331–1346. [Google Scholar]
- Rocha, O.; Duncan, A. The relationship between cell carbono and cell volume in freshwater algal species used in zooplanktonic studies. J. Plankton Res. 1985, 7, 279–294. [Google Scholar]
- Miranda, C.T.; de Lima, D.V.; Atella, G.C.; de Aguiar, P.F.; Azevedo, S.M. Optimization of nitrogen, phosphorus and salt for lipid accumulation of microalgae: Towards the viability of microalgae biodiesel. Nat. Sci. 2016, 8, 557. [Google Scholar]
- Taberner, A.; Castañera, P.; Silvertre, E.; Dopazo, J. Estimation of the intrinsic rate of natural increase and its error by both algebraic and resampling Approaches. Comput. Appl. Biosci. 1993, 9, 535–540. [Google Scholar]
- Lürling, M.; Verschoor, A.M. F0-spectra of chlorophyll fluorescence for the determination of zooplankton grazing. Hydrobiologia 2003, 491, 145–157. [Google Scholar] [CrossRef]
- Charles, S.; Veber, P.; Delignette-Muller, M.L. MOSAIC: A web-interface for statistical analyses in ecotoxicology. Environ. Sci. Pollut. Res. 2018, 25, 11295. [Google Scholar]
- von Elert, E.; Martin-Creuzburg, D.; Le Coz, J.R. Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata). Proc. R. Soc. Lond. B 2003, 270, 1209–1214. [Google Scholar]
- Sarrazin, J.; Sperfeld, E. Food quality mediates responses of Daphnia magna life history traits and heat tolerance to elevated temperature. Freshwat. Biol. 2022, 67, 1521–1531. [Google Scholar]
- Fileto, C.; Arcifa, M.S.; Marchetti, J.M.; Turati, I.C.; Lopes, N.P. Influence of biochemical, mineral and morphological features of natural food on tropical cladocerans. Aquat. Ecol. 2007, 41, 557–568. [Google Scholar]
- Ferrão-Filho, A.S.; Dias, T.M.; Pereira, U.J.; dos Santos, J.A.A.; Kozlowsky-Suzuki, B. Nutritional and toxicity constraints of phytoplankton from a Brazilian reservoir to the fitness of cladoceran species. Environ. Sci. Pollut. Res. 2019, 26, 12881–12893. [Google Scholar]
- Restani, G.C.; Fonseca, A.L. Effects of Cylindrospermopsis raciborskii strains (Woloszynska, 1912) Senayya & Subba Raju on the mobility of Daphnia laevis (Cladocera, Daphniidae). Braz. J. Biol. 2014, 74, 23–31. [Google Scholar] [PubMed]
- Pinto-Coelho, R.M.; Bezerra-Neto, J.F.; Giane, A.; Macedo, C.F.; Figueiredo, C.C.; Carvalho, E.A. The collapse of a Daphnia laevis (Birge, 1878) population in Pampulha Resevoir, Brasil. Acta Limnol. Brasil. 2003, 3, 53–70. [Google Scholar]
- Nogueira, I.C.G.; Lobo-da-Cunha, A.; Vasconcelos, V.M. Effects of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum (cyanobacteria) ingestion on Daphnia magna midgut and associated diverticula epithelium. Aquat. Toxicol. 2006, 80, 194–203. [Google Scholar] [PubMed]
- Costa, S.M.; Ferrão-Filho, A.S.; Azevedo, S.M.F.O. Effects of saxitoxin- and non-saxitoxin-producing strains of the cyanobacterium Cylindrospermopsis raciborskii on the fitness of temperate and tropical cladocerans. Harmful Algae 2013, 28, 55–63. [Google Scholar]
- Soares, M.C.S.; Lürling, M.; Panosso, R.; Huszar, V. Effects of the cyanobacterium Cylindrospermopsis raciborskii on feeding and life history characteristics of the grazer Daphnia magna. Ecotoxicol. Environ. 2009, 72, 1183–1189. [Google Scholar]
- Bednarska, A.; Ślusarczyk, M. Effect of non-toxic, filamentous cyanobacteria on egg abortion in Daphnia under various thermal conditions. Hydrobiologia 2013, 715, 151–157. [Google Scholar]
- Wilson, A.E.; Sarnelle, O.; Tillmanns, A.R. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: Meta-analyses of laboratory experiments. Limnol. Oceanogr. 2006, 51, 1915–1924. [Google Scholar]
- Panosso, R.; Lürling, M. Daphnia magna feeding on Cylindrospermopsis raciborskii: The role of food composition, filament length and body size. J. Plankton Res. 2010, 32, 1393–1404. [Google Scholar]
- Bednarska, A.; Pietrzak, B.; Pijanowska, J. Effect of poor manageability and low nutritional value of cyanobacteria on Daphnia magna life history performance. J. Plankton Res. 2014, 36, 838–847. [Google Scholar]
- Fabre, A.; Lacerot, G.; de Paiva, R.R.; Soares, M.C.S.; Magalhães, V.F.; Bonilla, S. South American PSP toxin-producing Cylindrospermopsis raciborskii (Cyanobacteria) decreases clearance rates of cladocerans more than copepods. Hydrobiologia 2017, 785, 61. [Google Scholar]
- Ger, K.A.; Panosso, R.; Lürling, M. Consequences of acclimation to Microcystis on the selective feeding behavior of the calanoid copepod Eudiaptomus gracilis. Limnol. Oceanogr. 2011, 56, 2103–2114. [Google Scholar] [CrossRef]
- Bouvy, M.; Falcão, D.; Marinho, M.; Pagano, M.; Moura, A. Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquat. Microbial Ecol. 2000, 23, 13–27. [Google Scholar]
- Panosso, R.; Kozlowsky-Suzuki, B.; Azevedo, S.M.F.O.; Graneli, E. Effect of grazing by a neotropical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacterial strains. J. Plankton Res. 2003, 25, 1169–1175. [Google Scholar]
- DeMott, W.R.; Gulati, R.D.; van Donk, E. Daphnia food limitation in three hypereutrophic Dutch lakes: Evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnol. Oceanogr. 2001, 46, 2054–2060. [Google Scholar]
- Rangel, L.M.; Ger, K.A.; Silva, L.H.S.; Soares, M.C.S.; Faassen, E.J.; Lürling, M. Toxicity Overrides Morphology on Cylindrospermopsis raciborskii Grazing Resistance to the Calanoid Copepod Eudiaptomus gracilis. Microb Ecol. 2016, 71, 835–844. [Google Scholar] [CrossRef] [PubMed]
- DeMott, W.R. Foraging strategies and growth inhibition in five daphnids feeding on mixtures of a toxic cyanobacterium and a green alga. Freshwat. Biol. 1999, 42, 263–274. [Google Scholar]
- Tillmanns, A.R.; Burton, S.K.; Pick, F.R. Daphnia pre-exposed to toxic Microcystis exhibit feeding selectivity. Hydrobiology 2011, 96, 20–28. [Google Scholar]
- Ghadouani, A.; Pinel-Alloul, B.; Plath, K. Effects of Microcystis aeruginosa and purified microcystin-LR on the feeding behavior of Daphnia pulicaria. Limnol. Oceanogr. 2004, 49, 666–679. [Google Scholar] [CrossRef]
- Ferrão-Filho, A.S.; Abreu, S.S.D.; Oliveira, T.; Magalhães, V.F.; Pflugmacher, S.; Silva, E.M. Single and combined effects of microcystin and saxitoxin producing cyanobacteria on the fitness and antioxidant defenses of cladocerans. Environ. Toxicol. Chem. 2017, 36, 2689–2697. [Google Scholar]
- Tillmanns, A.R.; Wilson, A.E.; Pick, F.R.; Sarnelle, O. Meta-analysis of cyanobacterial effects on zooplankton population growth rate: Species-specific responses. Hydrobiology 2008, 171, 285–295. [Google Scholar]
- Garcia, F.C.; Barbosa, F.A.R.; Braz, S.; Petrucio, M.M.; Faria, B. Water quality of an urban reservoir subjected to periodic applications of copper sulphate: The case of Ibirité reservoir, Southeast Brazil. Acta Limnol. Bras. 2009, 21, 235–243. [Google Scholar]
- Miranda, F.S.; Pinto-Coelho, R.M.; Gonzaga, A.V. Redução da riqueza de organismos do zooplâncton (com ênfase em Copepoda e Cladocera) nas lagoas do médio Rio Doce/MG. Rev. Brasil. Zoociênc. 2013, 15, 69–90. [Google Scholar]
- Mello, N.A.S.T.; Maia-Barbosa, P.M. Cyanobacteria bloom: Selective filter for zooplankton? Braz. J. Biol. 2015, 75, 165–174. [Google Scholar] [PubMed]
Assay | Date | Cyanobacteria Concentration (mg C L−1) | Green Algae Concentration (mg C L−1) | % Nutritious Food | STX (ng/L) |
---|---|---|---|---|---|
1. Life table (Constant nutritious food) | 16 May 2017 | 0.00 | 0.40 | 100.0 | --- |
0.50 | 0.40 | 44.4 | 1.5 | ||
1.00 | 0.40 | 28.6 | 3.0 | ||
1.50 | 0.40 | 21.1 | 4.5 | ||
2. Life table (Variable nutritious food) | 12 March 2018 | 0.00 | 1.00 | 100.0 | --- |
0.25 | 0.75 | 75.0 | 5.0 | ||
0.50 | 0.50 | 50.0 | 9.9 | ||
0.90 | 0.10 | 10.0 | 15.2 | ||
3. Grazing (Variable nutritious food) | 16 February 2018 | 0.00 | 1.00 | 100.0 | --- |
0.25 | 0.75 | 75.0 | 7.2 | ||
0.50 | 0.50 | 50.0 | 14.4 | ||
0.90 | 0.10 | 10.0 | 25.9 | ||
4. Grazing (Variable nutritious food) | 3 May 2018 | 0.00 | 1.00 | 100.0 | --- |
0.25 | 0.75 | 75.0 | 3.3 | ||
0.50 | 0.50 | 50.0 | 6.6 | ||
0.90 | 0.10 | 10.0 | 11.9 |
Species | LC50 (mg C L−1) | EC50 (mg C L−1) |
---|---|---|
D. laevis (Ibirité) | − | 1.24 (1.02–1.52) |
D. laevis (Rio Doce) | − | 0.98 (0.82–1.21) |
D. gessneri | 1.33 (0.75–1.92) | 1.68 (1.47–1.92) |
Factor | df | F | p |
---|---|---|---|
Age at first reproduction | |||
Species | 2 | 35.42 | <0.0001 |
Treatment | 3 | 3.32 | 0.02 |
Species × treatment | 6 | 0.74 | 0.60 |
Fecundity | |||
Species | 2 | 37.04 | <0.00 |
Treatment | 3 | 15.30 | <0.001 |
Species × treatment | 6 | 1.87 | 0.09 |
Total offspring | |||
Species | 2 | 67.35 | <0.001 |
Treatment | 3 | 15.30 | <0.001 |
Species × treatment | 6 | 1.87 | 0.09 |
Species | LC50 (mg C L−1) | EC50 (mg C L−1) |
---|---|---|
D. laevis (Ibirité) | – | 0.81 (0.23–0,95) |
D. laevis (Rio Doce) | – | 0.89 (0.76–0.97) |
D. gessneri | 0.25 (0.17–0.34) | 0.56 (0.53–0.61) |
Factor | df | F | p |
---|---|---|---|
Age at first reproduction | |||
Species | 2 | 2.24 | 0.11 |
Treatment | 3 | 20.45 | <0.001 |
Species × treatment | 6 | 2.19 | 0.04 |
Fecundity | |||
Species | 2 | 5.87 | 0.003 |
Treatment | 3 | 38.33 | <0.001 |
Species × treatment | 6 | 7.54 | <0.001 |
Total offspring | |||
Species | 2 | 0.68 | 0.50 |
Treatment | 3 | 36.97 | <0.001 |
Species × treatment | 6 | 6.05 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Reis, G.C.; de Carvalho, G.H.A.; Vilar, M.C.P.; Azevedo, S.M.F.d.O.e.; Ferrão-Filho, A.d.S. Saxitoxin-Producing Raphidiopsis raciborskii (Cyanobacteria) Constrains Daphnia Fitness and Feeding Rate despite High Nutritious Food Availability. Toxics 2023, 11, 693. https://doi.org/10.3390/toxics11080693
dos Reis GC, de Carvalho GHA, Vilar MCP, Azevedo SMFdOe, Ferrão-Filho AdS. Saxitoxin-Producing Raphidiopsis raciborskii (Cyanobacteria) Constrains Daphnia Fitness and Feeding Rate despite High Nutritious Food Availability. Toxics. 2023; 11(8):693. https://doi.org/10.3390/toxics11080693
Chicago/Turabian Styledos Reis, Gabriele Costa, Gustavo Henrique A. de Carvalho, Mauro Cesar Palmeira Vilar, Sandra Maria Feliciano de Oliveira e Azevedo, and Aloysio da Silva Ferrão-Filho. 2023. "Saxitoxin-Producing Raphidiopsis raciborskii (Cyanobacteria) Constrains Daphnia Fitness and Feeding Rate despite High Nutritious Food Availability" Toxics 11, no. 8: 693. https://doi.org/10.3390/toxics11080693
APA Styledos Reis, G. C., de Carvalho, G. H. A., Vilar, M. C. P., Azevedo, S. M. F. d. O. e., & Ferrão-Filho, A. d. S. (2023). Saxitoxin-Producing Raphidiopsis raciborskii (Cyanobacteria) Constrains Daphnia Fitness and Feeding Rate despite High Nutritious Food Availability. Toxics, 11(8), 693. https://doi.org/10.3390/toxics11080693