Microfiber Emissions from Functionalized Textiles: Potential Threat for Human Health and Environmental Risks
Abstract
:1. Introduction
2. Textile Functionalization as the Source of Microfiber Toxicity
Heavy Metals | Additives | Type of Polymers | Effects on Human Health | References |
---|---|---|---|---|
Antimony (Sb) | Flame retardants and biocides | Polyester cotton or polyester wool fabric | Metal-estrogenic effects and breast cancer | [69,70,71] |
Aluminum (Al) | Stabilizers, inorganic pigments, and flame retardants | Polyester cotton or polyester wool fabric | Metal-estrogenic effects and breast cancer | [69,70,71,72] |
Zinc (Zn) | Heat stabilizers, flame retardants, anti-slip agents, and inorganic pigments | Polyvinyl chloride (PVC), polyethylene (PE), and polypropylene (PP) | - | [71,72] |
Bromine (Br) | Flame retardants | Polybutylene terephthalate (PBT), PE, polystyrene (PS), and PP | Apoptosis and genotoxicity | [71] |
Arsenic (As) | Biocides | PVC, low-density polyethylene (LDPE), and polyesters | Congenital disabilities; lung, skin, liver, bladder, and kidney carcinogenic effects; gastrointestinal damage; and death | [71,72,73] |
Lead (Pb) | Heat stabilizers, UV stabilizers, and inorganic pigments | PVC and all types of plastics in which red pigments are used | Anemia (less Hb), hypertension, miscarriages, disruption of nervous systems, brain damage, infertility, oxidative stress, and cell damage | [71,72,73,74,75] |
Titanium (Ti) | UV stabilizers and inorganic pigments | PVC | Cytotoxicity on human epithelial lung and colon cells | [71,72,73,76,77] |
Chrome (Cr) | Dyes for silk and metal complexes | PVC, PE, and PP | Allergic reactions to the body; nasal septum ulcer; severe cardiovascular, respiratory, hematological, gastrointestinal, renal, hepatic, and neurological effects; and possibly death. | [78] |
2.1. Coloration
2.1.1. Vat Dyes
2.1.2. Sulphur Dyes
2.1.3. Acidic Dyes
2.1.4. Disperse Dyes
2.1.5. Reactive Dyes
2.2. Surface Modification and Finishing
Grafting Functionalization (Chemical Treatment or Plasma Treatment)
2.3. Hydrophobization
2.4. Crosslinking (Crease-Resistant)
2.5. Fire-Retardant Finishing
2.6. Other Surface Modifications
2.6.1. Cationization
2.6.2. Nanomaterials
Nanomaterial | Properties |
---|---|
Silver (Ag) | Antibacterial (odor) and electrical conductivity |
Titanium Dioxide (TiO2) | UV-protective, self-cleaning, water-repellent, and soil-repellent |
Zinc Oxide (ZnO) | UV-protective, antibacterial, self-cleaning, abrasion-resistant, and stiffness |
Silicon Dioxide (SiO2) | Water-repellent, dirt-repellent, and abrasion-resistant |
Aluminum Oxide (Al2O3) | Abrasion-resistant and flame-retardant |
Nanoclays (e.g., montmorillonite) | Abrasion-resistant, flame-retardant, and active ingredient support |
3. Implication of Microfiber Contamination on Human Health
4. Positive Actions toward Reductions in Microfibers
4.1. Sustainable Production
4.2. Consumption Phase
4.3. End of Life, Recycling and Disposal Phase
4.4. Domestic Washing and Wastewater Treatment Phase
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and Fragmentation of Plastic Debris in Global Environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef]
- Statista. Annual Production of Plastics Worldwide from 1950 to 2021; Statista: Hamburg, Germany, 2021. [Google Scholar]
- Statista. Production Forecast of Thermoplastics Worldwide from 2025 to 2050; Statista: Hamburg, Germany, 2021. [Google Scholar]
- Napper, I.E.; Davies, B.F.R.; Clifford, H.; Elvin, S.; Koldewey, H.J.; Mayewski, P.A.; Miner, K.R.; Potocki, M.; Elmore, A.C.; Gajurel, A.P.; et al. Reaching New Heights in Plastic Pollution—Preliminary Findings of Microplastics on Mount Everest. One Earth 2020, 3, 621–630. [Google Scholar] [CrossRef]
- Ferreira, M.; Thompson, J.; Paris, A.; Rohindra, D.; Rico, C. Presence of Microplastics in Water, Sediments and Fish Species in an Urban Coastal Environment of Fiji, a Pacific Small Island Developing State. Mar. Pollut. Bull. 2020, 153, 110991. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, E.J.; Smith, K.L. Plastics on the Sargasso Sea Surface. Science 1972, 175, 1240–1241. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, E.J.; Anderson, S.J.; Harvey, G.R.; Miklas, H.P.; Peck, B.B. Polystyrene Spherules in Coastal Waters. Science 1972, 178, 749–750. [Google Scholar] [CrossRef]
- Wong, C.S.; Green, D.R.; Cretney, W.J. Quantitative Tar and Plastic Waste Distributions in the Pacific Ocean. Nature 1974, 247, 30–32. [Google Scholar] [CrossRef]
- Colton, J.B.; Burns, B.R.; Knapp, F.D. Plastic Particles in Surface Waters of the Northwestern Atlantic. Science 1974, 185, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Belzagui, F.; Crespi, M.; Álvarez, A.; Gutiérrez-Bouzán, C.; Vilaseca, M. Microplastics’ Emissions: Microfibers’ Detachment from Textile Garments. Environ. Pollut. 2019, 248, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Microplastics: Sources, Effects and Solutions. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20181116STO19217/microplastics-sources-effects-and-solutions (accessed on 17 June 2021).
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a Consensus on the Definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A First Overview of Textile Fibers, Including Microplastics, in Indoor and Outdoor Environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar] [CrossRef]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef] [PubMed]
- Ugwu, K.; Herrera, A.; Gómez, M. Microplastics in Marine Biota: A Review. Mar. Pollut. Bull. 2021, 169, 112540. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, A.P.; Tehrani-Bagha, A. A Review on Microplastic Emission from Textile Materials and Its Reduction Techniques. Polym. Degrad. Stab. 2022, 199, 109901. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as Contaminants in the Marine Environment: A Review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.; Okoffo, E.D.; O’Brien, J.W.; Ribeiro, F.; Wang, X.; Wright, S.L.; Samanipour, S.; Rauert, C.; Toapanta, T.Y.A.; Albarracin, R.; et al. Airborne Emissions of Microplastic Fibres from Domestic Laundry Dryers. Sci. Total Environ. 2020, 747, 141175. [Google Scholar] [CrossRef] [PubMed]
- Pirc, U.; Vidmar, M.; Mozer, A.; Kržan, A. Emissions of Microplastic Fibers from Microfiber Fleece during Domestic Washing. Environ. Sci. Pollut. Res. 2016, 23, 22206–22211. [Google Scholar] [CrossRef]
- Muthusamy, L.P.; Periyasamy, A.P.; Militký, J.; Palani, R. Adaptive Neuro-Fuzzy Inference System to Predict the Release of Microplastic Fibers during Domestic Washing. J. Test. Eval. 2022, 50, 91–104. [Google Scholar] [CrossRef]
- Napper, I.E.; Thompson, R.C. Release of Synthetic Microplastic Plastic Fibres from Domestic Washing Machines: Effects of Fabric Type and Washing Conditions. Mar. Pollut. Bull. 2016, 112, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Salvador Cesa, F.; Turra, A.; Baruque-Ramos, J. Synthetic Fibers as Microplastics in the Marine Environment: A Review from Textile Perspective with a Focus on Domestic Washings. Sci. Total Environ. 2017, 598, 1116–1129. [Google Scholar] [CrossRef] [PubMed]
- Ó Briain, O.; Marques Mendes, A.R.; McCarron, S.; Healy, M.G.; Morrison, L. The Role of Wet Wipes and Sanitary Towels as a Source of White Microplastic Fibres in the Marine Environment. Water Res. 2020, 182, 116021. [Google Scholar] [CrossRef]
- Hayakawa, K.; Okumura, R.; Yamamoto, H.; Fujiwara, M.; Yamaji, N.; Takada, H.; Kanematsu, M.; Shimizu, Y. Distribution and Fluxes of Fluorescent Whitening Agents Discharged from Domestic Wastewater into Small Rivers with Seasonal Changes of Flow Rates. Limnology 2007, 8, 251–259. [Google Scholar] [CrossRef]
- Collard, F.; Gilbert, B.; Eppe, G.; Parmentier, E.; Das, K. Detection of Anthropogenic Particles in Fish Stomachs: An Isolation Method Adapted to Identification by Raman Spectroscopy. Arch. Environ. Contam. Toxicol. 2015, 69, 331–339. [Google Scholar] [CrossRef]
- Remy, F.; Collard, F.; Gilbert, B.; Compère, P.; Eppe, G.; Lepoint, G. When Microplastic Is Not Plastic: The Ingestion of Artificial Cellulose Fibers by Macrofauna Living in Seagrass Macrophytodetritus. Environ. Sci. Technol. 2015, 49, 11158–11166. [Google Scholar] [CrossRef] [PubMed]
- Woodall, L.C.; Sanchez-Vidal, A.; Canals, M.; Paterson, G.L.J.; Coppock, R.; Sleight, V.; Calafat, A.; Rogers, A.D.; Narayanaswamy, B.E.; Thompson, R.C. The Deep Sea Is a Major Sink for Microplastic Debris. R. Soc. Open Sci. 2014, 1, 140317. [Google Scholar] [CrossRef] [PubMed]
- Luongo, G. Chemicals in Textiles: A Potential Source for Human Exposure and Environmental Pollution; Stockholm University, Faculty of Science: Gothenburg, Sweden, 2015. [Google Scholar]
- Zhang, Z.M.; Zhang, H.H.; Zhang, J.; Wang, Q.W.; Yang, G.P. Occurrence, Distribution, and Ecological Risks of Phthalate Esters in the Seawater and Sediment of Changjiang River Estuary and Its Adjacent Area. Sci. Total Environ. 2018, 619, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, N.; Fauvelle, V.; Ody, A.; Castro-Jiménez, J.; Jouanno, J.; Changeux, T.; Thibaut, T.; Sempéré, R. The Amazon River: A Major Source of Organic Plastic Additives to the Tropical North Atlantic? Environ. Sci. Technol. 2019, 53, 7513–7521. [Google Scholar] [CrossRef]
- Paluselli, A.; Fauvelle, V.; Schmidt, N.; Galgani, F.; Net, S.; Sempéré, R. Distribution of Phthalates in Marseille Bay (NW Mediterranean Sea). Sci. Total Environ. 2018, 621, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, A.P. Evaluation of Microfiber Release from Jeans: The Impact of Different Washing Conditions. Environ. Sci. Pollut. Res. 2021, 28, 58570–58582. [Google Scholar] [CrossRef]
- Luongo, G.; Avagyan, R.; Hongyu, R.; Östman, C. The Washout Effect during Laundry on Benzothiazole, Benzotriazole, Quinoline, and Their Derivatives in Clothing Textiles. Environ. Sci. Pollut. Res. 2016, 23, 2537–2548. [Google Scholar] [CrossRef] [PubMed]
- Avagyan, R.; Sadiktsis, I.; Thorsén, G.; Östman, C.; Westerholm, R. Determination of Benzothiazole and Benzotriazole Derivates in Tire and Clothing Textile Samples by High Performance Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry. J. Chromatogr. A 2013, 1307, 119–125. [Google Scholar] [CrossRef]
- Deopura, B.L.; Padaki, N. V Synthetic Textile Fibres. In Textiles and Fashion; Elsevier: Amsterdam, The Netherlands, 2015; pp. 97–114. ISBN 978-1-84569-931-4. [Google Scholar]
- East, A.J. Polyester Fibres. In Synthetic Fibres; McIntyre, J.E., Ed.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Sawston, UK, 2005; pp. 95–166. ISBN 978-1-85573-588-0. [Google Scholar]
- Gordon, C.J. Introduction to Synthetic Fibers. In Handbook of Textile Fibres; Cook, J.G., Ed.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Sawston, UK, 2001; pp. 192–193. ISBN 978-1-85573-485-2. [Google Scholar]
- Schindler, W.D.; Hauser, P.J. Chemical Finishing Processes. In Chemical Finishing of Textiles; Elsevier: Amsterdam, The Netherlands, 2004; pp. 7–28. [Google Scholar]
- Schindler, W.D.; Hauser, P.J. Introduction to Chemical Finishing. In Chemical Finishing of Textiles; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1–6. [Google Scholar]
- Joseph, P.; Tretsiakova-McNally, S. Chemical Modification of Natural and Synthetic Textile Fibres to Improve Flame Retardancy. In Handbook of Fire Resistant Textiles; Elsevier: Amsterdam, The Netherlands, 2013; pp. 37–67. [Google Scholar]
- Rosace, G.; Migani, V.; Guido, E.; Colleoni, C. Flame Retardant Finishing for Textiles. In Flame Retardants; Springer: Cham, Switzerland, 2015; pp. 209–246. [Google Scholar]
- Cheng, X.W.; Guan, J.P.; Yang, X.H.; Tang, R.C. Improvement of Flame Retardancy of Silk Fabric by Bio-Based Phytic Acid, Nano-TiO2, and Polycarboxylic Acid. Prog. Org. Coat. 2017, 112, 18–26. [Google Scholar] [CrossRef]
- Jurewicz, J.; Hanke, W. Exposure to Phthalates: Reproductive Outcome and Children Health. A Review of Epidemiological Studies. Int. J. Occup. Med. Environ. Health 2011, 2, 115–141. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.R.; Harden, F.A.; Toms, L.M.L.; Norman, R.E. Health Consequences of Exposure to Brominated Flame Retardants: A Systematic Review. Chemosphere 2014, 106, 64. [Google Scholar] [CrossRef] [PubMed]
- Schindler, W.D.; Hauser, P.J. Easy-Care and Durable Press Finishes of Cellulosics. In Chemical Finishing of Textiles; Schindler, W.D., Hauser, P.J., Eds.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Sawston, UK, 2004; pp. 51–72. ISBN 978-1-85573-905-5. [Google Scholar]
- Lassen, C. Survey of PFOS, PFOA and Other Perfluoroalkyl and Polyfluoroalkyl Substances; The Danish Environmental Protection Agency: Copenhagen K, Denmark, 2015.
- Chen, H.-L.; Burns, L.D. Environmental Analysis of Textile Products. Cloth. Text. Res. J. 2006, 24, 248–261. [Google Scholar] [CrossRef]
- Dann, A.B.; Hontela, A. Triclosan: Environmental Exposure, Toxicity and Mechanisms of Action. J. Appl. Toxicol. 2011, 31, 285–311. [Google Scholar] [CrossRef] [PubMed]
- Ter Halle, A.; Ladirat, L.; Martignac, M.; Mingotaud, A.F.; Boyron, O.; Perez, E. To What Extent Are Microplastics from the Open Ocean Weathered? Environ. Pollut. 2017, 227, 167–174. [Google Scholar] [CrossRef]
- Gigault, J.; Pedrono, B.; Maxit, B.; Ter Halle, A. Marine Plastic Litter: The Unanalyzed Nano-Fraction. Environ. Sci. Nano 2016, 3, 346–350. [Google Scholar] [CrossRef]
- Dawson, A.L.; Kawaguchi, S.; King, C.K.; Townsend, K.A.; King, R.; Huston, W.M.; Bengtson Nash, S.M. Turning Microplastics into Nanoplastics through Digestive Fragmentation by Antarctic Krill. Nat. Commun. 2018, 9, 1001. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhao, S.; Bittar, T.B.; Stubbins, A.; Li, D. Photochemical Dissolution of Buoyant Microplastics to Dissolved Organic Carbon: Rates and Microbial Impacts. J. Hazard. Mater. 2020, 383, 121065. [Google Scholar] [CrossRef] [PubMed]
- Gewert, B.; Plassmann, M.; Sandblom, O.; MacLeod, M. Identification of Chain Scission Products Released to Water by Plastic Exposed to Ultraviolet Light. Environ. Sci. Technol. Lett. 2018, 5, 272–276. [Google Scholar] [CrossRef]
- Hufenus, R.; Yan, Y.; Dauner, M.; Kikutani, T. Melt-Spun Fibers for Textile Applications. Materials 2020, 13, 4298. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Militky, J. Sustainability in Textile Dyeing: Recent Developments. In Sustainability in the Textile and Apparel Industries; Springer: Cham, Switzerland, 2020; pp. 37–79. [Google Scholar]
- Oginawati, K.; Suharyanto; Susetyo, S.H.; Sulung, G.; Muhayatun; Chazanah, N.; Dewi Kusumah, S.W.; Fahimah, N. Investigation of Dermal Exposure to Heavy Metals (Cu, Zn, Ni, Al, Fe and Pb) in Traditional Batik Industry Workers. Heliyon 2022, 8, e08914. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, A.P. Environmental Hazards of Denim Processing-I. Asian Dyer 2020, 17, 56–60. [Google Scholar]
- Periyasamy, A.P.; Militky, J. Denim Processing and Health Hazards. In Sustainability in Denim; Elsevier: Amsterdam, The Netherlands, 2017; pp. 161–196. [Google Scholar]
- Forgacs, E.; Cserháti, T.; Oros, G. Removal of Synthetic Dyes from Wastewaters: A Review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef]
- Rai, H.S.; Bhattacharyya, M.S.; Singh, J.; Bansal, T.K.; Vats, P.; Banerjee, U.C. Removal of Dyes from the Effluent of Textile and Dyestuff Manufacturing Industry: A Review of Emerging Techniques with Reference to Biological Treatment. Crit. Rev. Environ. Sci. Technol. 2005, 35, 219–238. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Periyasami, S. Critical Review on Sustainability in Denim: A Step toward Sustainable Production and Consumption of Denim. ACS Omega 2023, 8, 4472–4490. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Wang, D.; Periyasamy, A.P.; Kremenakova, D.; Militky, J.; Tunak, M. Ultrathin Multilayer Textile Structure with Enhanced EMI Shielding and Air-Permeable Properties. Polymers 2021, 13, 4176. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Yang, K.; Xiong, X.; Venkataraman, M.; Militky, J.; Mishra, R.; Kremenakova, D. Effect of Silanization on Copper Coated Milife Fabric with Improved EMI Shielding Effectiveness. Mater. Chem. Phys. 2020, 239, 122008. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Venkataraman, M.; Militky, J. Effect of Sol–Gel Treatment on Physical, Chemical and Mechanical Stability of Copper-Coated Conductive Fabrics: Focus on EMI Shielding Effectiveness. J. Mater. Sci. 2022, 57, 20780–20793. [Google Scholar] [CrossRef]
- Hu, S.; Kremenakova, D.; Militký, J.; Periyasamy, A.P. Copper-Coated Textiles for Viruses Dodging. In Textiles and Their Use in Microbial Protection, 1st ed.; Series: Textile Institute Professional Publications; CRC Press: Boca Raton, FL, USA, 2021; pp. 235–250. [Google Scholar]
- Liu, P.; Zhan, X.; Wu, X.; Li, J.; Wang, H.; Gao, S. Effect of Weathering on Environmental Behavior of Microplastics: Properties, Sorption and Potential Risks. Chemosphere 2020, 242, 125193. [Google Scholar] [CrossRef] [PubMed]
- Ammala, A.; Bateman, S.; Dean, K.; Petinakis, E.; Sangwan, P.; Wong, S.; Yuan, Q.; Yu, L.; Patrick, C.; Leong, K.H. An Overview of Degradable and Biodegradable Polyolefins. Prog. Polym. Sci. 2011, 36, 1015–1049. [Google Scholar] [CrossRef]
- Karunakaran, G.; Periyasamy, A.P.; Militký, J. Color and Design for Textiles. In Fibrous Structures and Their Impact on Textile Design; Springer: Singapore, 2023; pp. 119–148. [Google Scholar]
- Martin, M.B.; Reiter, R.; Pham, T.; Avellanet, Y.R.; Camara, J.; Lahm, M.; Pentecost, E.; Pratap, K.; Gilmore, B.A.; Divekar, S.; et al. Estrogen-Like Activity of Metals in Mcf-7 Breast Cancer Cells. Endocrinology 2003, 144, 2425–2436. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.; Divekar, S.D.; Storchan, G.B.; Parodi, D.A.; Martin, M.B. Metals and Breast Cancer. J. Mammary Gland. Biol. Neoplasia 2013, 18, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Dimitrakakis, E.; Janz, A.; Bilitewski, B.; Gidarakos, E. Small WEEE: Determining Recyclables and Hazardous Substances in Plastics. J. Hazard. Mater. 2009, 161, 913–919. [Google Scholar] [CrossRef]
- Jensen, G. Food Contact Materials and Chemical Contamination. Health Environ. Alliance 2016. [Google Scholar]
- Appenroth, K.-J. Definition of “Heavy Metals” and Their Role in Biological Systems. In Soil Heavy Metals; Springer: Berlin/Heidelberg, Germany, 2010; pp. 19–29. [Google Scholar]
- Azeh Engwa, G.; Udoka Ferdinand, P.; Nweke Nwalo, F.; Unachukwu, M.N. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World—New Tricks for an Old Dog? IntechOpen: London, UK, 2019. [Google Scholar]
- Gandamalla, D.; Lingabathula, H.; Yellu, N. Nano Titanium Exposure Induces Dose- and Size-Dependent Cytotoxicity on Human Epithelial Lung and Colon Cells. Drug Chem. Toxicol. 2019, 42, 24–34. [Google Scholar] [CrossRef]
- Almeida, L.; Ramos, D. Health and Safety Concerns of Textiles with Nanomaterials. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 102002. [Google Scholar] [CrossRef]
- Sanyal, T.; Kaviraj, A.; Saha, S. Deposition of Chromium in Aquatic Ecosystem from Effluents of Handloom Textile Industries in Ranaghat–Fulia Region of West Bengal, India. J. Adv. Res. 2015, 6, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Moody, V.; Needles, H.L. Color, Dyes, Dyeing, and Printing. In Tufted Carpet; Needles, V.M.L., Ed.; Plastics Design Library; Elsevier: Norwich, NY, USA, 2004; pp. 155–175. ISBN 978-1-884207-99-0. [Google Scholar]
- Shore, J. Society of Dyers and Colourists. In Cellulosics Dyeing; Shore, J., Ed.; Society of Dyers and Colourists: Bradford, UK, 1995; ISBN 0901956686. [Google Scholar]
- Singh, H.B.; Bharati, K.A. Mordants and Their Applications. In Handbook of Natural Dyes and Pigments; Singh, H.B., Singh, K.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 18–28. [Google Scholar]
- Singh, H.B.; Bharati, K.A. Methods of Extraction. In Handbook of Natural Dyes and Pigments; Elsevier: Amsterdam, The Netherlands, 2014; pp. 9–17. [Google Scholar]
- Mabuza, L.; Sonnenberg, N.; Marx-Pienaar, N. Natural versus Synthetic Dyes: Consumers’ Understanding of Apparel Coloration and Their Willingness to Adopt Sustainable Alternatives. Resour. Conserv. Recycl. Adv. 2023, 18, 200146. [Google Scholar] [CrossRef]
- Patel, B.H. Natural Dyes. In Handbook of Textile and Industrial Dyeing; Elsevier: Amsterdam, The Netherlands, 2011; Volume 1, pp. 395–424. ISBN 978-1-84569-695-5. [Google Scholar]
- Lucas, M.S.; Dias, A.A.; Sampaio, A.; Amaral, C.; Peres, J.A. Degradation of a Textile Reactive Azo Dye by a Combined Chemical–Biological Process: Fenton’s Reagent-Yeast. Water Res. 2007, 41, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Fatima, M.; Farooq, R.; Lindström, R.W.; Saeed, M. A Review on Biocatalytic Decomposition of Azo Dyes and Electrons Recovery. J. Mol. Liq. 2017, 246, 275–281. [Google Scholar] [CrossRef]
- Roessler, A.; Dossenbach, O.; Marte, W.; Rys, P. Electrocatalytic Hydrogenation of Vat Dyes. Dye. Pigment. 2002, 54, 141–146. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Duraisamy, G. Carbon Footprint on Denim Manufacturing. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–18. ISBN 978-3-319-48281-1. [Google Scholar]
- Periyasamy, A.P.; Wiener, J.; Militky, J. Life-Cycle Assessment of Denim. In Sustainability in Denim; Elsevier: Amsterdam, The Netherlands, 2017; pp. 83–110. [Google Scholar]
- Chakraborty, J.N. Dyeing with Indigo. In Fundamentals and Practices in Colouration of Textiles; Woodhead Publishing Limited: Sawston, UK, 2014; pp. 106–120. ISBN 978-93-80308-46-3. [Google Scholar]
- Meksi, N.; Mhenni, M.F. Indigo Dyeing Technology for Denim Yarns. In Denim; Elsevier: Amsterdam, The Netherlands, 2015; pp. 69–105. [Google Scholar]
- Chakraborty, J.N. Sulphur Dyes. In Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes; Clark, M.B.T.-H.T., Dyeing, I., Eds.; Woodhead Publishing: Sawston, UK, 2011; Volume 1, pp. 466–485. ISBN 9780857093974. [Google Scholar]
- Babu, K.M. The Dyeing of Silk. In Silk; Woodhead Publishing: Sawston, UK, 2019; pp. 109–128. [Google Scholar] [CrossRef]
- Mahapatra, N.N. Disperse Dyes. In Textile Dyes; Woodhead Publishing: Delhi, India, 1991; Volume 6, pp. 160–174. ISBN 978-93-85059-04-9. [Google Scholar]
- Gulrajani, M.L. Disperse Dyes. In Handbook of Textile and Industrial Dyeing; Woodhead Publishing Series in Textiles; Clark, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 1, pp. 365–394. [Google Scholar]
- Carpignano, R.; Savarino, P.; Barni, E.; Viscardi, G.; Baracco, A.; Clementi, S. Dyeing of Nylon 66 with Disperse Dyes. An Optimization Study. Dye. Pigment. 1989, 10, 23–31. [Google Scholar] [CrossRef]
- Michel Rupin Dyeing with Direct and Fiber Reactive Dyes. Text. Chem. Color. 1976, 8, 54–59.
- Lewis, D.M. The Chemistry of Reactive Dyes and Their Application Processes. In Handbook of Textile and Industrial Dyeing; Elsevier: Amsterdam, The Netherlands, 2011; pp. 303–364. [Google Scholar]
- Periyasamy, A.P.; Dhurai, B.; Thangamani, K. Salt-Free Dyeing—A New Method of Dyeing on Lyocell/Cotton Blended Fabrics with Reactive Dyes. Autex Res. J. 2011, 11, 14–17. [Google Scholar]
- Xiao, H.; Zhao, T.; Li, C.-H.; Li, M.-Y. Eco-Friendly Approaches for Dyeing Multiple Type of Fabrics with Cationic Reactive Dyes. J. Clean. Prod. 2017, 165, 1499–1507. [Google Scholar] [CrossRef]
- Ma, M.; Sun, Y.; Sun, G. Antimicrobial Cationic Dyes: Part 1: Synthesis and Characterization. Dye. Pigment. 2003, 58, 27–35. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Sun, J. Telechelic PEG-Polymers End-capped with Chromophores: Using as Cationic Reactive Dyes and Salt-free Dyeing Properties on Cotton Fabrics. J. Appl. Polym. Sci. 2021, 138, 50455. [Google Scholar] [CrossRef]
- Srikulkit, K.; Santifuengkul, P. Salt-free Dyeing of Cotton Cellulose with a Model Cationic Reactive Dye. Color. Technol. 2000, 116, 398–402. [Google Scholar] [CrossRef]
- Bhala, R.; Dhandhania, V.; Periyasamy, A.P. Bio-Finishing of Fabrics. Asian Dye. 2012, 9, 45–49. [Google Scholar]
- Periyasamy, A.P.; Venkatesan, H. Eco-Materials in Textile Finishing. In Handbook of Ecomaterials; Springer: Cham, Switzerland, 2019; Volume 3, pp. 1461–1482. ISBN 9783319682556. [Google Scholar]
- Kianfar, P.; Abate, M.T.; Trovato, V.; Rosace, G.; Ferri, A.; Bongiovanni, R.; Vitale, A. Surface Functionalization of Cotton Fabrics by Photo-Grafting for PH Sensing Applications. Front. Mater. 2020, 7, 39. [Google Scholar] [CrossRef]
- Le Gars, M.; Bras, J.; Salmi-Mani, H.; Ji, M.; Dragoe, D.; Faraj, H.; Domenek, S.; Belgacem, N.; Roger, P. Polymerization of Glycidyl Methacrylate from the Surface of Cellulose Nanocrystals for the Elaboration of PLA-Based Nanocomposites. Carbohydr. Polym. 2020, 234, 115899. [Google Scholar] [CrossRef] [PubMed]
- Barsbay, M.; Güven, O.; Kodama, Y. Amine Functionalization of Cellulose Surface Grafted with Glycidyl Methacrylate by γ-Initiated RAFT Polymerization. Radiat. Phys. Chem. 2016, 124, 140–144. [Google Scholar] [CrossRef]
- Fernandes, B.J.D.; Couto, R.D. Toxicological Alert: Exposure to Glycidyl Methacrylate and Cancer Risk. Toxicol. Ind. Health 2020, 36, 937–939. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Wang, M.; Wuhan, B.; Gu, Y.; Kang, T.; Jin, H.; Xu, J. TMT-Based Quantitative Proteomic Analysis Reveals the Underlying Mechanisms of Glycidyl Methacrylate-Induced 16HBE Cell Malignant Transformation. Toxicology 2023, 485, 153427. [Google Scholar] [CrossRef] [PubMed]
- Gibson, P. Water-Repellent Treatment on Military Uniform Fabrics: Physiological and Comfort Implications. J. Ind. Text. 2008, 38, 43–54. [Google Scholar] [CrossRef]
- Schindler, W.D.; Hauser, P.J. Repellent Finishes. In Chemical Finishing of Textiles; Elsevier: Amsterdam, The Netherlands, 2004; pp. 74–86. [Google Scholar]
- Periyasamy, A.P.; Venkataraman, M.; Kremenakova, D.; Militky, J.; Zhou, Y. Progress in Sol-Gel Technology for the Coatings of Fabrics. Materials 2020, 13, 1838. [Google Scholar] [CrossRef] [PubMed]
- Schellenberger, S.; Hill, P.J.; Levenstam, O.; Gillgard, P.; Cousins, I.T.; Taylor, M.; Blackburn, R.S. Highly Fluorinated Chemicals in Functional Textiles Can Be Replaced by Re-Evaluating Liquid Repellency and End-User Requirements. J. Clean. Prod. 2019, 217, 134–143. [Google Scholar] [CrossRef]
- Liu, Y.; Higaki, Y.; Mukai, M.; Takahara, A. Molecular Aggregation Structure and Water Repellency of Poly(Perfluorohexyl Acrylate) with a Carbamate Linkage. Polymer 2019, 182, 121846. [Google Scholar] [CrossRef]
- Kang, P.; Zhao, Y.; Zuo, C.; Cai, Y.; Shen, C.; Ji, B.; Wei, T. The Unheeded Inherent Connections and Overlap between Microplastics and Poly- and Perfluoroalkyl Substances: A Comprehensive Review. Sci. Total Environ. 2023, 878, 163028. [Google Scholar] [CrossRef]
- Whittaker, M.H.; Heine, L. Toxicological and Environmental Issues Associated with Waterproofing and Water Repellent Formulations. In Waterproof and Water Repellent Textiles and Clothing; Woodhead Publishing: Sawston, UK, 2018; pp. 89–120. [Google Scholar] [CrossRef]
- Kiracofe, E.A.; Zirwas, M.J. Formaldehyde in Textiles–What Dermatologists Need to Know about the Relationship to Contact Dermatitis: A Review of the US Government Accountability Office’s Report to Congressional Committees. J. Am. Acad. Dermatol. 2012, 67, 313–314. [Google Scholar] [CrossRef] [PubMed]
- Oulton, D.P. Fire-Retardant Textiles. In Chemistry of the Textiles Industry; Springer: Dordrecht, The Netherlands, 1995; pp. 102–124. [Google Scholar]
- Liu, X.; Ji, K.; Choi, K. Endocrine Disruption Potentials of Organophosphate Flame Retardants and Related Mechanisms in H295R and MVLN Cell Lines and in Zebrafish. Aquat. Toxicol. 2012, 114, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Kojima, H.; Takeuchi, S.; Itoh, T.; Iida, M.; Kobayashi, S.; Yoshida, T. In Vitro Endocrine Disruption Potential of Organophosphate Flame Retardants via Human Nuclear Receptors. Toxicology 2013, 314, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Arivithamani, N.; Giri Dev, V.R. Characterization and Comparison of Salt-Free Reactive Dyed Cationized Cotton Hosiery Fabrics with That of Conventional Dyed Cotton Fabrics. J. Clean. Prod. 2018, 183, 579–589. [Google Scholar] [CrossRef]
- Nallathambi, A.; Venkateshwarapuram Rengaswami, G.D. Industrial Scale Salt-Free Reactive Dyeing of Cationized Cotton Fabric with Different Reactive Dye Chemistry. Carbohydr. Polym. 2017, 174, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, W. Clean Dyeing of Cotton Fiber Using a Novel Nicotinic Acid Quaternary Triazine Cationic Reactive Dye: Salt-Free, Alkali-Free, and Non-Toxic by-Product. Technol. Environ. Policy 2015, 17, 563–569. [Google Scholar] [CrossRef]
- Niu, T.; Wang, X.; Wu, C.; Sun, D.; Zhang, X.; Chen, Z.; Fang, L. Chemical Modification of Cotton Fabrics by a Bifunctional Cationic Polymer for Salt-Free Reactive Dyeing. ACS Omega 2020, 5, 15409–15416. [Google Scholar] [CrossRef] [PubMed]
- Hashem, M.; Hauser, P.; Smith, B. Reaction Efficiency for Cellulose Cationization Using 3-Chloro-2- Hydroxypropyl Trimethyl Ammonium Chloride. Text. Res. J. 2003, 73, 1017–1023. [Google Scholar] [CrossRef]
- Hashem, M.M. Development of a One-stage Process for Pretreatment and Cationisation of Cotton Fabric. Color. Technol. 2006, 122, 135–144. [Google Scholar] [CrossRef]
- Arivithamani, N.; Agnes Mary, S.; Senthil Kumar, M.; Giri Dev, V.R. Keratin Hydrolysate as an Exhausting Agent in Textile Reactive Dyeing Process. Clean Technol. Environ. Policy 2014, 16, 1207–1215. [Google Scholar] [CrossRef]
- Hauser, P.J.; Tabba, A.H. Improving the Environmental and Economic Aspects of Cotton Dyeing Using a Cationised Cotton. Color. Technol. 2001, 117, 282–288. [Google Scholar] [CrossRef]
- Kanik, M.; Hauser, P.J. Printing of Cationised Cotton with Reactive Dyes. Color. Technol. 2002, 118, 300–306. [Google Scholar] [CrossRef]
- Oliveria, F.R.; De Oliveira, D.A.J.; Steffens, F.; do Nascimento, J.H.O.; e Silva, K.K.O.S.; Souto, A.P. Dyeing of Cotton and Polyester Blended Fabric Previously Cationized with Synthetic and Natural Polyelectrolytes. Procedia Eng. 2017, 200, 309–316. [Google Scholar] [CrossRef]
- Matthew, J. Farrell Cationic Cotton Prepared with Hydrophobic Alkyl Chlorohydrin Quats: A New Fiber with New Properties. In Proceedings of the AATCC ICE 2017, Wilmington, NC, USA, 28–30 March 2017. [Google Scholar]
- United Nations. Globally Harmonized System of Classification and Labelling of Chemicals (GHS); United Nations: Geneva, Switzerland, 2011. [Google Scholar]
- Periyasamy, A.P.; Militky, J.; Sachinandham, A.; Duraisamy, G. Nanotechnology in Textile Finishing: Recent Developments. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Springer: Cham, Switzerland, 2021; pp. 1–31. [Google Scholar]
- Kim, K.T.; Eo, M.Y.; Nguyen, T.T.H.; Kim, S.M. General Review of Titanium Toxicity. Int. J. Implant. Dent. 2019, 5, 10. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Janssen, C.R. Microplastics in Bivalves Cultured for Human Consumption. Environ. Pollut. 2014, 193, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C. Airborne Microplastics: Consequences to Human Health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental Exposure to Microplastics: An Overview on Possible Human Health Effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Carvalho-Oliveira, R.; Júnior, G.R.; dos Santos Galvão, L.; Ando, R.A.; Mauad, T. Presence of Airborne Microplastics in Human Lung Tissue. J. Hazard. Mater. 2021, 416, 126124. [Google Scholar] [CrossRef]
- Deville, S.; Penjweini, R.; Smisdom, N.; Notelaers, K.; Nelissen, I.; Hooyberghs, J.; Ameloot, M. Intracellular Dynamics and Fate of Polystyrene Nanoparticles in A549 Lung Epithelial Cells Monitored by Image (Cross-) Correlation Spectroscopy and Single Particle Tracking. Biochim. Et Biophys. Acta BBA-Mol. Cell Res. 2015, 1853, 2411–2419. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Tang, J.; Wang, L.; Liu, R.; Giesy, J.P. Combined Cytotoxicity of Polystyrene Nanoplastics and Phthalate Esters on Human Lung Epithelial A549 Cells and Its Mechanism. Ecotoxicol. Environ. Saf. 2021, 213, 112041. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Halimu, G.; Zhang, Q.; Song, Y.; Fu, X.; Li, Y.; Li, Y.; Zhang, H. Internalization and Toxicity: A Preliminary Study of Effects of Nanoplastic Particles on Human Lung Epithelial Cell. Sci. Total Environ. 2019, 694, 133794. [Google Scholar] [CrossRef]
- Salomon, J.J.; Ehrhardt, C. Nanoparticles Attenuate P-Glycoprotein/MDR1 Function in A549 Human Alveolar Epithelial Cells. Eur. J. Pharm. Biopharm. 2011, 77, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Schwabl, P.; Köppel, S.; Königshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of Various Microplastics in Human Stool. Ann. Intern. Med. 2019, 171, 453–457. [Google Scholar] [CrossRef]
- Bradney, L.; Wijesekara, H.; Palansooriya, K.N.; Obadamudalige, N.; Bolan, N.S.; Ok, Y.S.; Rinklebe, J.; Kim, K.-H.; Kirkham, M.B. Particulate Plastics as a Vector for Toxic Trace-Element Uptake by Aquatic and Terrestrial Organisms and Human Health Risk. Environ. Int. 2019, 131, 104937. [Google Scholar] [CrossRef]
- Vroom, R.J.E.; Koelmans, A.A.; Besseling, E.; Halsband, C. Aging of Microplastics Promotes Their Ingestion by Marine Zooplankton. Environ. Pollut. 2017, 231, 987–996. [Google Scholar] [CrossRef]
- Allen, A.S.; Seymour, A.C.; Rittschof, D. Chemoreception Drives Plastic Consumption in a Hard Coral. Mar. Pollut. Bull. 2017, 124, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Ziajahromi, S.; Kumar, A.; Neale, P.A.; Leusch, F.D.L. Environmentally Relevant Concentrations of Polyethylene Microplastics Negatively Impact the Survival, Growth and Emergence of Sediment-Dwelling Invertebrates. Environ. Pollut. 2018, 236, 425–431. [Google Scholar] [CrossRef]
- Jemec, A.; Horvat, P.; Kunej, U.; Bele, M.; Kržan, A. Uptake and Effects of Microplastic Textile Fibers on Freshwater Crustacean Daphnia Magna. Environ. Pollut. 2016, 219, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Mulder; Koricheva; Huss-Danell; Hogberg; Joshi Insects Affect Relationships between Plant Species Richness and Ecosystem Processes. Ecol. Lett. 1999, 2, 237–246. [CrossRef]
- Peixoto, D.; Pinheiro, C.; Amorim, J.; Oliva-Teles, L.; Guilhermino, L.; Vieira, M.N. Microplastic Pollution in Commercial Salt for Human Consumption: A Review. Estuar. Coast. Shelf Sci. 2019, 219, 161–168. [Google Scholar] [CrossRef]
- Kim, J.-S.; Lee, H.-J.; Kim, S.-K.; Kim, H.-J. Global Pattern of Microplastics (MPs) in Commercial Food-Grade Salts: Sea Salt as an Indicator of Seawater MP Pollution. Environ. Sci. Technol. 2018, 52, 12819–12828. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in Freshwaters and Drinking Water: Critical Review and Assessment of Data Quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Mintenig, S.M.; Löder, M.G.J.; Primpke, S.; Gerdts, G. Low Numbers of Microplastics Detected in Drinking Water from Ground Water Sources. Sci. Total Environ. 2019, 648, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Jiang, Q.; Hu, X.; Zhong, X. Occurrence and Identification of Microplastics in Tap Water from China. Chemosphere 2020, 252, 126493. [Google Scholar] [CrossRef] [PubMed]
- Schymanski, D.; Goldbeck, C.; Humpf, H.-U.; Fürst, P. Analysis of Microplastics in Water by Micro-Raman Spectroscopy: Release of Plastic Particles from Different Packaging into Mineral Water. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Kosuth, M.; Mason, S.A.; Wattenberg, E.V. Anthropogenic Contamination of Tap Water, Beer, and Sea Salt. PLoS ONE 2018, 13, e0194970. [Google Scholar] [CrossRef] [PubMed]
- Liebezeit, G.; Liebezeit, E. Synthetic Particles as Contaminants in German Beers. Food Addit. Contam. Part A 2014, 31, 1574–1578. [Google Scholar] [CrossRef] [PubMed]
- Mühlschlegel, P.; Hauk, A.; Walter, U.; Sieber, R. Lack of Evidence for Microplastic Contamination in Honey. Food Addit. Contam. Part A 2017, 34, 1982–1989. [Google Scholar] [CrossRef]
- Liebezeit, G.; Liebezeit, E. Origin of Synthetic Particles in Honeys. Pol. J. Food Nutr. Sci. 2015, 65, 143–147. [Google Scholar] [CrossRef]
- Karami, A.; Golieskardi, A.; Choo, C.K.; Larat, V.; Karbalaei, S.; Salamatinia, B. Microplastic and Mesoplastic Contamination in Canned Sardines and Sprats. Sci. Total Environ. 2018, 612, 1380–1386. [Google Scholar] [CrossRef] [PubMed]
- Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and Nano-Plastics in Edible Fruit and Vegetables. The First Diet Risks Assessment for the General Population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, E.G.; Li, J.; Chen, Q.; Ma, L.; Zeng, E.Y.; Shi, H. A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environ. Sci. Technol. 2020, 54, 3740–3751. [Google Scholar] [CrossRef]
- Revel, M.; Châtel, A.; Mouneyrac, C. Micro(Nano)Plastics: A Threat to Human Health? Curr. Opin. Environ. Sci. Health 2018, 1, 17–23. [Google Scholar] [CrossRef]
- Tutanç, L.; Cansız, D.; Emekli Alturfan, E.; Alturfan, A. Endokrin Bozucu Kimyasallar ve Tekstil Alanında Kullanımları. Experimed 2021, 11, 130–139. [Google Scholar] [CrossRef]
- Schirinzi, G.F.; Pérez-Pomeda, I.; Sanchís, J.; Rossini, C.; Farré, M.; Barceló, D. Cytotoxic Effects of Commonly Used Nanomaterials and Microplastics on Cerebral and Epithelial Human Cells. Environ. Res. 2017, 159, 579–587. [Google Scholar] [CrossRef]
- Steffens, K.-J. Persorption—Criticism and Agreement as Based upon In Vitro and In Vivo Studies on Mammals. In Absorption of Orally Administered Enzymes; Springer: Berlin/Heidelberg, Germany, 1995; pp. 9–21. [Google Scholar]
- Freedman, B.J. Persorption of Raw Starch: A Cause of Senile Dementia? Med. Hypotheses 1991, 35, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Nor, N.H.; Kooi, M.; Diepens, N.J.; Koelmans, A.A. Lifetime Accumulation of Microplastic in Children and Adults. Environ. Sci. Technol. 2021, 55, 5084–5096. [Google Scholar] [CrossRef] [PubMed]
- Gasperi, J.; Wright, S.L.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.; Kelly, F.J.; Tassin, B. Microplastics in Air: Are We Breathing It In? Curr. Opin. Environ. Sci. Health 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef]
- Wright, S.L.; Gouin, T.; Koelmans, A.A.; Scheuermann, L. Development of Screening Criteria for Microplastic Particles in Air and Atmospheric Deposition: Critical Review and Applicability towards Assessing Human Exposure. Microplast. Nanoplast. 2021, 1, 6. [Google Scholar] [CrossRef]
- Catarino, A.I.; Macchia, V.; Sanderson, W.G.; Thompson, R.C.; Henry, T.B. Low Levels of Microplastics (MP) in Wild Mussels Indicate That MP Ingestion by Humans Is Minimal Compared to Exposure via Household Fibres Fallout during a Meal. Environ. Pollut. 2018, 237, 675–684. [Google Scholar] [CrossRef]
- Pironti, C.; Ricciardi, M.; Motta, O.; Miele, Y.; Proto, A.; Montano, L. Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects. Toxics 2021, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Masud, R.I.; Suman, K.H.; Tasnim, S.; Begum, M.S.; Sikder, M.H.; Uddin, M.J.; Haque, M.N. A Review on Enhanced Microplastics Derived from Biomedical Waste during the COVID-19 Pandemic with Its Toxicity, Health Risks, and Biomarkers. Environ. Res. 2023, 216, 114434. [Google Scholar] [CrossRef] [PubMed]
- Haldar, S.; Muralidaran, Y.; Míguez, D.; Mulla, S.I.; Mishra, P. Eco-Toxicity of Nano-Plastics and Its Implication on Human Metabolism: Current and Future Perspective. Sci. Total Environ. 2023, 861, 160571. [Google Scholar] [CrossRef] [PubMed]
- Petit, A.; Catelas, I.; Antoniou, J.; Zukor, D.J.; Huk, O.L. Differential Apoptotic Response of J774 Macrophages to Alumina and Ultra-High-Molecular-Weight Polyethylene Particles. J. Orthop. Res. 2002, 20, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Richards, L.; Bladen, C.L.; Ingham, E.; Fisher, J.; Tipper, J.L. The Biological Response to Nanometre-Sized Polymer Particles. Acta Biomater. 2015, 23, 38–51. [Google Scholar] [CrossRef]
- Green, T.R.; Fisher, J.; Stone, M.; Wroblewski, B.M.; Ingham, E. Polyethylene Particles of a ‘Critical Size’ Are Necessary for the Induction of Cytokines by Macrophages in Vitro. Biomaterials 1998, 19, 2297–2302. [Google Scholar] [CrossRef]
- Bhore, R.K.; Kamble, S.B. Nano Adsorptive Extraction of Diverse Microplastics from the Potable and Seawater Using Organo-Polyoxometalate Magnetic Nanotricomposites. J. Environ. Chem. Eng. 2022, 10, 108720. [Google Scholar] [CrossRef]
- Wu, B.; Wu, X.; Liu, S.; Wang, Z.; Chen, L. Size-Dependent Effects of Polystyrene Microplastics on Cytotoxicity and Efflux Pump Inhibition in Human Caco-2 cells. Chemosphere 2019, 221, 333–341. [Google Scholar] [CrossRef]
- Fröhlich, E.; Meindl, C.; Wagner, K.; Leitinger, G.; Roblegg, E. Use of Whole Genome Expression Analysis in the Toxicity Screening of Nanoparticles. Toxicol. Appl. Pharmacol. 2014, 280, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.-B.; Kang, H.-M.; Lee, M.-C.; Kim, D.-H.; Han, J.; Hwang, D.-S.; Souissi, S.; Lee, S.-J.; Shin, K.-H.; Park, H.G.; et al. Adverse Effects of Microplastics and Oxidative Stress-Induced MAPK/Nrf2 Pathway-Mediated Defense Mechanisms in the Marine Copepod Paracyclopina Nana. Sci. Rep. 2017, 7, 41323. [Google Scholar] [CrossRef] [PubMed]
- Barboza, L.G.A.; Vieira, L.R.; Branco, V.; Figueiredo, N.; Carvalho, F.; Carvalho, C.; Guilhermino, L. Microplastics Cause Neurotoxicity, Oxidative Damage and Energy-Related Changes and Interact with the Bioaccumulation of Mercury in the European Seabass, Dicentrarchus Labrax (Linnaeus, 1758). Aquat. Toxicol. 2018, 195, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Palić, D. Micro- and Nano-Plastics Activation of Oxidative and Inflammatory Adverse Outcome Pathways. Redox Biol. 2020, 37, 101620. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, S.; Xu, H. Effects of Microplastic and Engineered Nanomaterials on Inflammatory Bowel Disease: A Review. Chemosphere 2023, 326, 138486. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, Y.; Zhang, T.; Zhang, F.; Ren, H.; Zhang, Y. Response to Comment on “Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status”. Environ. Sci. Technol. 2022, 56, 12779–12780. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, R.; Harada, K.H.; Minata, M. Comment on “Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status”. Environ. Sci. Technol. 2022, 56, 12778. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, H.; Huang, Y.; Zhang, Y.; Ren, H.; Fang, M.; Wang, Q.; Chen, W.; Hale, R.C.; Galloway, T.S.; et al. Long-Term Exposure to Environmentally Relevant Doses of Large Polystyrene Microplastics Disturbs Lipid Homeostasis via Bowel Function Interference. Environ. Sci. Technol. 2022, 56, 15805–15817. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Liu, Y.; Zhang, T.; Zhang, F.; Ren, H.; Zhang, Y. Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status. Environ. Sci. Technol. 2022, 56, 414–421. [Google Scholar] [CrossRef]
- Forte, M.; Iachetta, G.; Tussellino, M.; Carotenuto, R.; Prisco, M.; De Falco, M.; Laforgia, V.; Valiante, S. Polystyrene Nanoparticles Internalization in Human Gastric Adenocarcinoma Cells. Toxicol. In Vitro 2016, 31, 126–136. [Google Scholar] [CrossRef]
- Woo, J.-H.; Seo, H.J.; Lee, J.-Y.; Lee, I.; Jeon, K.; Kim, B.; Lee, K. Polypropylene Nanoplastic Exposure Leads to Lung Inflammation through P38-Mediated NF-ΚB Pathway Due to Mitochondrial Damage. Part. Fibre Toxicol. 2023, 20, 2. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhang, H.; Wang, C.; Su, X.-L.; Song, Y.; Wu, P.; Yang, Z.; Wong, M.-H.; Cai, Z.; Zheng, C. Metabolomics Reveal Nanoplastic-Induced Mitochondrial Damage in Human Liver and Lung Cells. Environ. Sci. Technol. 2022, 56, 12483–12493. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Hou, B.; Wang, Z.; Yang, Y. Polystyrene Microplastics Induce Mitochondrial Damage in Mouse GC-2 Cells. Ecotoxicol. Environ. Saf. 2022, 237, 113520. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Yi, Y.; Moon, S.; Yoon, H.; Park, Y.S. Impact of Micro- and Nanoplastics on Mitochondria. Metabolites 2022, 12, 897. [Google Scholar] [CrossRef] [PubMed]
- Von Moos, N.; Burkhardt-Holm, P.; Köhler, A. Uptake and Effects of Microplastics on Cells and Tissue of the Blue Mussel Mytilus Edulis L. after an Experimental Exposure. Environ. Sci. Technol. 2012, 46, 11327–11335. [Google Scholar] [CrossRef]
- Deng, J.; Ibrahim, M.S.; Tan, L.Y.; Yeo, X.Y.; Lee, Y.A.; Park, S.J.; Wüstefeld, T.; Park, J.-W.; Jung, S.; Cho, N.-J. Microplastics Released from Food Containers Can Suppress Lysosomal Activity in Mouse Macrophages. J. Hazard. Mater. 2022, 435, 128980. [Google Scholar] [CrossRef] [PubMed]
- Roursgaard, M.; Hezareh Rothmann, M.; Schulte, J.; Karadimou, I.; Marinelli, E.; Møller, P. Genotoxicity of Particles from Grinded Plastic Items in Caco-2 and HepG2 Cells. Front. Public Health 2022, 10, 906430. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, H.; Liao, Y.; Ye, Z.; Li, M.; Klobučar, G. Ecotoxicity and Genotoxicity of Polystyrene Microplastics on Higher Plant Vicia Faba. Environ. Pollut. 2019, 250, 831–838. [Google Scholar] [CrossRef]
- Tagorti, G.; Kaya, B. Genotoxic Effect of Microplastics and COVID-19: The Hidden Threat. Chemosphere 2022, 286, 131898. [Google Scholar] [CrossRef]
- Luqman, A.; Nugrahapraja, H.; Wahyuono, R.A.; Islami, I.; Haekal, M.H.; Fardiansyah, Y.; Putri, B.Q.; Amalludin, F.I.; Rofiqa, E.A.; Götz, F.; et al. Microplastic Contamination in Human Stools, Foods, and Drinking Water Associated with Indonesian Coastal Population. Environments 2021, 8, 138. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First Evidence of Microplastics in Human Placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Truscott, L. Preferred Fiber & Materials Market Report. 2022. Available online: https://textileexchange.org/knowledge-center/reports/preferred-fiber-and-materials/ (accessed on 16 January 2023).
- Periyasamy, A.P.; Militky, J. Sustainability in Regenerated Textile Fibers. In Sustainability in the Textile and Apparel Industries; Springer: Cham, Switzerland, 2020; pp. 63–95. [Google Scholar]
- Reddy, N.; Yang, Y.; Reddy, N.; Yang, Y. Polylactic Acid (PLA) Fibers. In Innovative Biofibers from Renewable Resources; Reddy, N., Yang, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 377–385. ISBN 978-3-662-45136-6. [Google Scholar]
- Degeratu, C.N.; Mabilleau, G.; Aguado, E.; Mallet, R.; Chappard, D.; Cincu, C.; Stancu, I.C. Polyhydroxyalkanoate (PHBV) Fibers Obtained by a Wet Spinning Method: Good in Vitro Cytocompatibility but Absence of in Vivo Biocompatibility When Used as a Bone Graft. Morphologie 2019, 103, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Hu, J.; Zhu, Y.; Lu, J.; Liu, Y. Polycaprolactone-Based Shape Memory Segmented Polyurethane Fiber. J. Appl. Polym. Sci. 2007, 106, 2515–2523. [Google Scholar] [CrossRef]
- Savitha, K.S.; Ravji Paghadar, B.; Senthil Kumar, M.; Jagadish, R.L. Polybutylene Succinate, a Potential Bio-Degradable Polymer: Synthesis, Copolymerization and Bio-Degradation. Polym. Chem. 2022, 13, 3562–3612. [Google Scholar] [CrossRef]
- Acevedo, F.; Villegas, P.; Urtuvia, V.; Hermosilla, J.; Navia, R.; Seeger, M. Bacterial Polyhydroxybutyrate for Electrospun Fiber Production. Int. J. Biol. Macromol. 2018, 106, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Sixta, H.; Michud, A.; Hauru, L.; Asaadi, S.; Ma, Y.; King, A.W.T.; Kilpeläinen, I.; Hummel, M. Ioncell-F: A High-Strength Regenerated Cellulose Fibre. Nord. Pulp Pap. Res. J. 2015, 30, 43–57. [Google Scholar] [CrossRef]
- Vehviläinen, M.; Määttänen, M.; Grönqvist, S.; Harlin, A. Sustainable Continuous Process for Cellulosic Regenerated Fibers. Chem. Fibers Int. 2020, 70, 128–130. [Google Scholar]
- Infinna Fiber: It’s Time for the Textile Industry to Lose Its Virginity. Available online: https://infinitedfiber.com (accessed on 16 January 2023).
- Renewcell: We Make Fashion Circular. Available online: https://www.renewcell.com/en/ (accessed on 9 October 2022).
- European Bioplastics Global Bioplastics Production Will More than Triple within the Next Five Years. Available online: https://www.european-bioplastics.org/global-bioplastics-production-will-more-than-triple-within-the-next-five-years/ (accessed on 11 February 2023).
- Ian Tiseo Production Capacity of Bioplastics Worldwide from 2020 to 2026. Available online: https://www.statista.com/statistics/678684/global-production-capacity-of-bioplastics-by-type/ (accessed on 16 January 2023).
- Yates, M.R.; Barlow, C.Y. Life Cycle Assessments of Biodegradable, Commercial Biopolymers—A Critical Review. Resour. Conserv. Recycl. 2013, 78, 54–66. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a Circular Economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Rwahwire, S.; Zhao, Y. Environmental Friendly Textile Processing. In Handbook of Ecomaterials; Springer International Publishing: Cham, Switzerland, 2019; Volume 3, pp. 1521–1558. ISBN 9783319682556. [Google Scholar]
- Vankar, P.S.; Shanker, R.; Verma, A. Enzymatic Natural Dyeing of Cotton and Silk Fabrics without Metal Mordants. J. Clean. Prod. 2007, 15, 1441–1450. [Google Scholar] [CrossRef]
- Zheng, G.H.; Fu, H.B.; Liu, G.P. Application of Rare Earth as Mordant for the Dyeing of Ramie Fabrics with Natural Dyes. Korean J. Chem. Eng. 2011, 28, 2148–2155. [Google Scholar] [CrossRef]
- Punrattanasin, N.; Nakpathom, M.; Somboon, B.; Narumol, N.; Rungruangkitkrai, N.; Mongkholrattanasit, R. Silk Fabric Dyeing with Natural Dye from Mangrove Bark (Rhizophora Apiculata Blume) Extract. Ind. Crops Prod. 2013, 49, 122–129. [Google Scholar] [CrossRef]
- Vankar, P.S.; Shanker, R.; Mahanta, D.; Tiwari, S.C. Ecofriendly Sonicator Dyeing of Cotton with Rubia Cordifolia Linn. Using Biomordant. Dye. Pigment. 2008, 76, 207–212. [Google Scholar] [CrossRef]
- Periyasamy, A.P. Natural Dyeing of Cellulose Fibers Using Syzygium Cumini Fruit Extracts and a Bio-Mordant: A Step toward Sustainable Dyeing. Sustain. Mater. Technol. 2022, 33, e00472. [Google Scholar] [CrossRef]
- Brady, P.R. Diffusion of Dyes in Natural Fibres. Rev. Prog. Color. Relat. Top. 1992, 22, 58–78. [Google Scholar] [CrossRef]
- Grifoni, D.; Bacci, L.; Zipoli, G.; Albanese, L.; Sabatini, F. The Role of Natural Dyes in the UV Protection of Fabrics Made of Vegetable Fibres. Dye. Pigment. 2011, 91, 279–285. [Google Scholar] [CrossRef]
- Kumbasar, E.P.A.; Atav, R.; Bahtiyari, M.I. Effects of Alkali Proteases on Dyeing Properties of Various Proteinous Materials with Natural Dyes. Text. Res. J. 2009, 79, 517–525. [Google Scholar] [CrossRef]
- Buschmann, H.J.; Knittel, D.; Schollmeyer, E. New Textile Applications of Cyclodextrins. J. Incl. Phenom. 2001, 40, 169–172. [Google Scholar] [CrossRef]
- Abdel-Mohdy, F.A.; Fouda, M.M.G.; Rehan, M.F.; Aly, A.S. Repellency of Controlled-Release Treated Cotton Fabrics Based on Cypermethrin and Prallethrin. Carbohydr. Polym. 2008, 73, 92–97. [Google Scholar] [CrossRef]
- Antony, R.; Arun, T.; Manickam, S.T.D. A Review on Applications of Chitosan-Based Schiff Bases. Int. J. Biol. Macromol. 2019, 129, 615–633. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-H.; Hudson, S.M. Review of Chitosan and Its Derivatives as Antimicrobial Agents and Their Uses as Textile Chemicals. J. Macromol. Sci. Part C Polym. Rev. 2003, 43, 223–269. [Google Scholar] [CrossRef]
- Oliveira, M.F.; Suarez, D.; Rocha, J.C.; de Carvalho Teixeira, A.V.; Cortés, M.E.; De Sousa, F.B.; Sinisterra, R.D. Electrospun Nanofibers of PolyCD/PMAA Polymers and Their Potential Application as Drug Delivery System. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 54, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Gulrajani, M.L.; Brahma, K.P.; Kumar, P.S.; Purwar, R. Application of Silk Sericin to Polyester Fabric. J. Appl. Polym. Sci. 2008, 109, 314–321. [Google Scholar] [CrossRef]
- Gupta, D.; Natarajan, S. Cleaner Process for Shrink Proofing of Wool Using Ultraviolet Radiation and Sericin. J. Text. Inst. 2017, 108, 147–153. [Google Scholar] [CrossRef]
- Sibaja, B.; Culbertson, E.; Marshall, P.; Boy, R.; Broughton, R.M.; Solano, A.A.; Esquivel, M.; Parker, J.; La Fuente, L.D.; Auad, M.L. Preparation of Alginate-Chitosan Fibers with Potential Biomedical Applications. Carbohydr. Polym. 2015, 134, 598–608. [Google Scholar] [CrossRef]
- Shanmugasundaram, O.L.; Mahendra Gowda, R. V Development and Characterization of Cotton, Organic Cotton Flat Knit Fabrics Coated with Chitosan, Sodium Alginate, Calcium Alginate Polymers, and Antibiotic Drugs for Wound Healing. J. Ind. Text. 2012, 42, 156–175. [Google Scholar] [CrossRef]
- Wang, P.; Tawiah, B.; Tian, A.; Wang, C.; Zhang, L.; Fu, S. Properties of Alginate Fiber Spun-Dyed with Fluorescent Pigment Dispersion. Carbohydr. Polym. 2015, 118, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y. Alginate Fibres: An Overview of the Production Processes and Applications in Wound Management. Polym. Int. 2008, 57, 171–180. [Google Scholar] [CrossRef]
- Bethesda. PDQ Aromatherapy and Essential Oils. In PDQ Integrative, Alternative, and Complementary Therapies; Bethesda: Rockville, MD, USA, 2017; pp. 1–12. [Google Scholar]
- Jeong, S.H.; Park, C.H.; Song, H.; Heo, J.H.; Lee, J.H. Biomolecules as Green Flame Retardants: Recent Progress, Challenges, and Opportunities. J. Clean. Prod. 2022, 368, 133241. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, J. The Durable Press Finishing of Silk Fabrics by Using 1,2,3,4-Butanetetracarboxylic Acid. Res. J. Text. Appar. 2006, 10, 46–48. [Google Scholar] [CrossRef]
- Bonaldi, R.R. Functional Finishes for High-Performance Apparel. In High-Performance Apparel; Elsevier: Amsterdam, The Netherlands, 2018; pp. 129–156. [Google Scholar]
- Chung, Y.-S.; Lee, K.-K.; Kim, J.-W. Durable Press and Antimicrobial Finishing of Cotton Fabrics with a Citric Acid and Chitosan Treatment. Text. Res. J. 1998, 68, 772–775. [Google Scholar] [CrossRef]
- Hedrich, S.; Janmark, J.; Langguth, N.; Magnus, K.-H. Moa Strand Scaling Textile Recycling in Europe-Turning Waste into Value. Available online: https://www.mckinsey.com/industries/retail/our-insights/scaling-textile-recycling-in-europe-turning-waste-into-value (accessed on 16 January 2023).
- Quartinello, F.; Vajnhandl, S.; Volmajer Valh, J.; Farmer, T.J.; Vončina, B.; Lobnik, A.; Herrero Acero, E.; Pellis, A.; Guebitz, G.M. Synergistic Chemo-enzymatic Hydrolysis of Poly(Ethylene Terephthalate) from Textile Waste. Microb. Biotechnol. 2017, 10, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Molnar, B.; Ronkay, F. Effect of Solid-State Polycondensation on Crystalline Structure and Mechanical Properties of Recycled Polyethylene-Terephthalate. Polym. Bull. 2019, 76, 2387–2398. [Google Scholar] [CrossRef]
- Wu, H.; Lv, S.; He, Y.; Qu, J.-P. The Study of the Thermomechanical Degradation and Mechanical Properties of PET Recycled by Industrial-Scale Elongational Processing. Polym. Test. 2019, 77, 105882. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Song, H.; Wang, Y.; Deng, T.; Hou, X. Zinc-Catalyzed Ester Bond Cleavage: Chemical Degradation of Polyethylene Terephthalate. J. Clean. Prod. 2019, 208, 1469–1475. [Google Scholar] [CrossRef]
- Mohsin, M.A.; Alnaqbi, M.A.; Busheer, R.M.; Haik, Y. Sodium Methoxide Catalyzed Depolymerization of Waste Polyethylene Terephthalate Under Microwave Irradiation. Catal. Ind. 2018, 10, 41–48. [Google Scholar] [CrossRef]
- Määttänen, M.; Gunnarsson, M.; Wedin, H.; Stibing, S.; Olsson, C.; Köhnke, T.; Asikainen, S.; Vehviläinen, M.; Harlin, A. Pre-Treatments of Pre-Consumer Cotton-Based Textile Waste for Production of Textile Fibres in the Cold NaOH(Aq) and Cellulose Carbamate Processes. Cellulose 2021, 28, 3869–3886. [Google Scholar] [CrossRef]
- De Falco, F.; Gullo, M.P.; Gentile, G.; di Pace, E.; Cocca, M.; Gelabert, L.; Brouta-Agnésa, M.; Rovira, A.; Escudero, R.; Villalba, R.; et al. Evaluation of Microplastic Release Caused by Textile Washing Processes of Synthetic Fabrics. Environ. Pollut. 2018, 236, 916–925. [Google Scholar] [CrossRef]
- Hernandez, E.; Nowack, B.; Mitrano, D.M. Polyester Textiles as a Source of Microplastics from Households: A Mechanistic Study to Understand Microfiber Release During Washing. Environ. Sci. Technol. 2017, 51, 7036–7046. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, T.; Chen, W. Occurrence and Removal of Microplastics in an Advanced Drinking Water Treatment Plant (ADWTP). Sci. Total Environ. 2020, 700, 134520. [Google Scholar] [CrossRef]
- Sachidhanandham, A.; Periyasamy, A.P. Environmentally Friendly Wastewater Treatment Methods for the Textile Industry. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Springer: Cham, Switzerland, 2021; pp. 2269–2307. [Google Scholar]
Type | Function | Examples |
---|---|---|
Processing Aids | Antioxidant | Hindered phenols, hindered amines, and phosphites |
Hydrolysis Stabilizer | Carbodiimide | |
Nucleating Agent | Talcum powder, boron nitride, and organic phosphate salts | |
Lubricant | Stearates and low-molecular-weight wax | |
Polymer Processing Aid | Fluoropolymers | |
Surfactant | Stearates and polyethylene glycols (PEGs) | |
Enhancing Additives | Plasticizer | Tributyl citrate and acetyl tributyl citrate |
Chain Extender | Difunctional acid derivatives, anhydrides, and epoxides | |
UV Stabilizer | Hindered amine light stabilizers (HALS), titanium dioxide (TiO2), zinc oxide (ZnO), and carbon black | |
Flame Retardant | Phosphorous derivatives, halogen derivatives, and HALS | |
Thermal Protection | Zirconia | |
Functional Additives | Colorant | Pigments, dyes, and carbon black |
Delustering | TiO2, ZnO, mica, and optical brightening agents | |
Antistatic | Carbon black, carbon nanotubes, graphene, and ZnO | |
Antimicrobial | TiO2, ZnO, nano-sized metal particles (Ag+, Cu2+, Zn2+), plant extracts, and phenol | |
Water/Oil Repellent | Silicone and fluorine compounds |
Part of the Plants | Dyestuff |
---|---|
Root | Turmeric, madder, onions, and beetroot |
Bark/Branches | Purple bark, sappan wood, shillicorai, khair, red, and sandalwood |
Leaf | Indigo, henna, eucalyptus, tea, cardamon, coral jasmine, and lemon grass |
Flowers | Marigold and kusum |
Fruits/Seeds | Pomegranate rind, beetle nut, myrobolan, and latkan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Periyasamy, A.P. Microfiber Emissions from Functionalized Textiles: Potential Threat for Human Health and Environmental Risks. Toxics 2023, 11, 406. https://doi.org/10.3390/toxics11050406
Periyasamy AP. Microfiber Emissions from Functionalized Textiles: Potential Threat for Human Health and Environmental Risks. Toxics. 2023; 11(5):406. https://doi.org/10.3390/toxics11050406
Chicago/Turabian StylePeriyasamy, Aravin Prince. 2023. "Microfiber Emissions from Functionalized Textiles: Potential Threat for Human Health and Environmental Risks" Toxics 11, no. 5: 406. https://doi.org/10.3390/toxics11050406
APA StylePeriyasamy, A. P. (2023). Microfiber Emissions from Functionalized Textiles: Potential Threat for Human Health and Environmental Risks. Toxics, 11(5), 406. https://doi.org/10.3390/toxics11050406