Method Validation for Quantification of PFOS and PFOA in Human Plasma and a Pilot Study in Blood Donors from Thai Red Cross Society
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Stock and Working Solutions
2.3. Preparation of Calibration Standards and Quality Controls (QC)
2.4. Sample Preparation and Extraction
2.5. Instrumentation
2.6. Bioanalytical Method Validation
2.6.1. Selectivity and Specificity
2.6.2. Linearity
2.6.3. Accuracy and Precision
2.6.4. Carry-Over
2.6.5. Matrix Effect
2.6.6. Recovery
2.6.7. Stability
- Stock and working solutions stability were determined by storing the standards in a laboratory refrigerator at 2–8 °C up to 6 days and analyzing the accuracy.
- Bench-top stability was assessed after thawing the QC samples at room temperature for 6 h before the analysis.
- Processed sample stability was measured by investigating the extracted QC samples kept in an autosampler at 4 °C for 24 h.
- Freeze–thaw stability required the QC samples to be stored at −80 °C in the freezer for at least 12 h and thawed at room temperature for at least 1 h. This freeze–thaw cycle was carried out up to three cycles before conducting the analysis.
- Long-term stability: the QC samples were stored at −80 °C in the freezer for 1 month before analysis.
2.6.8. Dilution Integrity
2.7. Application to Human Plasma Samples
3. Results
3.1. Validation of Bioanalytical Method for Determination of PFOS and PFOA in Human Plasma
3.1.1. Selectivity and Specificity
3.1.2. Linearity
3.1.3. Accuracy and Precision
3.1.4. Carry-Over
3.1.5. Matrix Effect and Extraction Efficiency
3.1.6. Stability
3.1.7. Dilution Integrity
3.2. A Pilot Study in Thai Blood Donors Plasma Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef] [PubMed]
- Kotthoff, M.; Müller, J.; Jürling, H.; Schlummer, M.; Fiedler, D. Perfluoroalkyl and Polyfluoroalkyl Substances in Consumer Products. Environ. Sci. Pollut. Res. 2015, 22, 14546–14559. [Google Scholar] [CrossRef] [PubMed]
- Kotlarz, N.; McCord, J.; Collier, D.; Lea, C.S.; Strynar, M.; Lindstrom, A.B.; Wilkie, A.A.; Islam, J.Y.; Matney, K.; Tarte, P.; et al. Measurement of Novel, Drinking Water-Associated PFAS in Blood from Adults and Children in Wilmington, North Carolina. Environ. Health Perspect. 2020, 128, 077005. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Liu, W.; He, W.; Xu, F.; Koelmans, A.A.; Mooij, W.M. Multimedia Fate Modeling of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulphonate (PFOS) in the Shallow Lake Chaohu, China. Environ. Pollut. 2018, 237, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Grønnestad, R.; Vázquez, B.P.; Arukwe, A.; Jaspers, V.L.B.; Jenssen, B.M.; Karimi, M.; Lyche, J.L.; Krøkje, Å. Levels, Patterns, and Biomagnification Potential of Perfluoroalkyl Substances in a Terrestrial Food Chain in a Nordic Skiing Area. Environ. Sci. Technol. 2019, 53, 13390–13397. [Google Scholar] [CrossRef]
- Li, Y.; Fletcher, T.; Mucs, D.; Scott, K.; Lindh, C.H.; Tallving, P.; Jakobsson, K. Half-Lives of PFOS, PFHxS and PFOA after End of Exposure to Contaminated Drinking Water. Occup. Environ. Med. 2017, 75, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.; Johns, L.; Meeker, J. Serum Biomarkers of Exposure to Perfluoroalkyl Substances in Relation to Serum Testosterone and Measures of Thyroid Function among Adults and Adolescents from NHANES 2011–2012. Int. J. Environ. Res. Public Health 2015, 12, 6098–6114. [Google Scholar] [CrossRef]
- Meng, Q.; Inoue, K.; Ritz, B.; Olsen, J.; Liew, Z. Prenatal Exposure to Perfluoroalkyl Substances and Birth Outcomes; an Updated Analysis from the Danish National Birth Cohort. Int. J. Environ. Res. Public Health 2018, 15, 1832. [Google Scholar] [CrossRef]
- Alderete, T.L.; Jin, R.; Walker, D.I.; Valvi, D.; Chen, Z.; Jones, D.P.; Peng, C.; Gilliland, F.D.; Berhane, K.; Conti, D.V.; et al. Perfluoroalkyl Substances, Metabolomic Profiling, and Alterations in Glucose Homeostasis among Overweight and Obese Hispanic Children: A Proof-of-Concept Analysis. Environ. Int. 2019, 126, 445–453. [Google Scholar] [CrossRef]
- DeWitt, J.C.; Blossom, S.J.; Schaider, L.A. Exposure to Per-Fluoroalkyl and Polyfluoroalkyl Substances Leads to Immunotoxicity: Epidemiological and Toxicological Evidence. J. Expo. Sci. Environ. Epidemiol. 2018, 29, 148–156. [Google Scholar] [CrossRef]
- Tabtong, W.; Boontanon, S.K.; Boontanon, N. Fate and Risk Assessment of Perfluoroalkyl Substances (PFASs) in Water Treatment Plants and Tap Water in Bangkok, Thailand. Procedia Environ. Sci. 2015, 28, 750–757. [Google Scholar] [CrossRef]
- Guardian, M.G.E.; Boongaling, E.G.; Bernardo-Boongaling, V.R.R.; Gamonchuang, J.; Boontongto, T.; Burakham, R.; Arnnok, P.; Aga, D.S. Prevalence of Per- and Polyfluoroalkyl Substances (PFASs) in Drinking and Source Water from Two Asian Countries. Chemosphere 2020, 256, 127115. [Google Scholar] [CrossRef]
- Supreeyasunthorn, P.; Boontanon, S.K.; Boontanon, N. Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) Contamination from Textiles. J. Environ. Sci. Health A 2016, 51, 472–477. [Google Scholar] [CrossRef]
- Lertassavakorn, T.; Pholphana, N.; Rangkadilok, N.; Suriyo, T.; Satayavivad, J. Determination of Perfluorooctane Sulphonate and Perfluorooctanoic Acid in Seafood and Water from Map Ta Phut Industrial Estate Area, Thailand. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2021, 38, 1400–1415. [Google Scholar] [CrossRef]
- Richterová, D.; Govarts, E.; Fábelová, L.; Rausová, K.; Rodriguez Martin, L.; Gilles, L.; Remy, S.; Colles, A.; Rambaud, L.; Riou, M.; et al. PFAS Levels and Determinants of Variability in Exposure in European Teenagers—Results from the HBM4EU Aligned Studies (2014–2021). Int. J. Hyg. Environ. Health 2023, 247, 114057. [Google Scholar] [CrossRef]
- Zeng, X.-W.; Lodge, C.J.; Dharmage, S.C.; Bloom, M.S.; Yu, Y.; Yang, M.; Chu, C.; Li, Q.-Q.; Hu, L.-W.; Liu, K.-K.; et al. Isomers of Per- and Polyfluoroalkyl Substances and Uric Acid in Adults: Isomers of C8 Health Project in China. Environ. Int. 2019, 133, 105160. [Google Scholar] [CrossRef] [PubMed]
- Nian, M.; Li, Q.-Q.; Bloom, M.; Qian, Z.; Syberg, K.M.; Vaughn, M.G.; Wang, S.-Q.; Wei, Q.; Zeeshan, M.; Gurram, N.; et al. Liver Function Biomarkers Disorder is Associated with Exposure to Perfluoroalkyl Acids in Adults: Isomers of C8 Health Project in China. Environ. Res. 2019, 172, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.-P.; Zeng, X.-W.; Bloom, M.S.; Lin, S.; Wang, S.-Q.; Yim, S.H.L.; Yang, M.; Chu, C.; Gurram, N.; Hu, L.-W.; et al. Isomers of Perfluoroalkyl Substances and Overweight Status among Chinese by Sex Status: Isomers of C8 Health Project in China. Environ. Int. 2019, 124, 130–138. [Google Scholar] [CrossRef]
- International Council for Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH Guideline M10 on Bioanalytical Method Validation and Study Sample Analysis Step 5. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-m10-bioanalytical-method-validation-step-5_en.pdf (accessed on 10 April 2023).
- Olsen, G.W.; Mair, D.C.; Lange, C.C.; Harrington, L.M.; Church, T.R.; Goldberg, C.L.; Herron, R.M.; Hanna, H.; Nobiletti, J.B.; Rios, J.A.; et al. Per- and Polyfluoroalkyl Substances (PFAS) in American Red Cross Adult Blood Donors, 2000–2015. Environ. Res. 2017, 157, 87–95. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Data Quality Assessment: Statistical Methods for Practitioners. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/900B0D00.PDF?Dockey=900B0D00.PDF (accessed on 10 April 2023).
- Kaiser, A.M.; Aro, R.; Kärrman, A.; Weiss, S.; Hartmann, C.; Uhl, M.; Forsthuber, M.; Gundacker, C.; Yeung, L.W. Comparison of extraction methods for per-and polyfluoroalkyl substances (PFAS) in human serum and placenta samples—Insights into extractable organic fluorine (EOF). Anal. Bioanal. Chem. 2021, 413, 865–876. [Google Scholar] [CrossRef]
- Papadopoulou, E.; Nicolescu, A.; Haug, L.S.; Husøy, T.; Deleanu, C.; Dirven, H.; Lindeman, B. Lipoprotein Profiles Associated with Exposure to Poly-and Perfluoroalkyl Substances (PFASs) in the EuroMix Human Biomonitoring Study. Environ. Pollut. 2022, 308, 119664. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, C.K.; Suh, C.-H.; Kang, H.-S.; Hong, C.-P.; Choi, S.-N. Serum Concentrations of Per- and Poly-Fluoroalkyl Substances and Factors Associated with Exposure in the General Adult Population in South Korea. Int. J. Hyg. Environ. Health 2017, 220, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Lind, P.M.; Lind, L.; Salihovic, S.; Ahlström, H.; Michaelsson, K.; Kullberg, J.; Strand, R. Serum Levels of Perfluoroalkyl Substances (PFAS) and Body Composition—A Cross-Sectional Study in a Middle-Aged Population. Environ. Res. 2022, 209, 112677. [Google Scholar] [CrossRef] [PubMed]
- Ingelido, A.M.; Abballe, A.; Gemma, S.; Dellatte, E.; Iacovella, N.; De Angelis, G.; Marra, V.; Russo, F.; Vazzoler, M.; Testai, E.; et al. Serum Concentrations of Perfluorinated Alkyl Substances in Farmers Living in Areas Affected by Water Contamination in the Veneto Region (Northern Italy). Environ. Int. 2020, 136, 105435. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Xu, W.; Zeng, Q.; Sun, F.; Guo, Y.; Zhong, S.; Wang, F.; Chen, D. Exposure to Perfluoroalkyl Substances in Waste Recycling Workers: Distributions in Paired Human Serum and Urine. Environ. Int. 2022, 158, 106963. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Yang, Y.; Chen, C.-E.; Zhang, D.; Tang, J. Emerging and Legacy Per-and Polyfluoroalkyl Substances in the Rivers of a Typical Industrialized Province of China: Spatiotemporal Variations, Mass Discharges and Ecological Risks. Front. Environ. Sci. 2022, 10, 986719. [Google Scholar] [CrossRef]
- Cakmak, S.; Lukina, A.; Karthikeyan, S.; Atlas, E.; Dales, R. The Association between Blood PFAS Concentrations and Clinical Biochemical Measures of Organ Function and Metabolism in Participants of the Canadian Health Measures Survey (CHMS). Sci. Total Environ. 2022, 827, 153900. [Google Scholar] [CrossRef]
- Pirard, C.; Dufour, P.; Charlier, C. Background Contamination of Perfluoralkyl Substances in a Belgian General Population. Toxicol. Lett. 2020, 333, 13–21. [Google Scholar] [CrossRef]
- Averina, M.; Hervig, T.; Huber, S.; Kjær, M.; Kristoffersen, E.K.; Bolann, B. Environmental Pollutants in Blood Donors: The Multicentre Norwegian Donor Study. Transfus. Med. 2020, 30, 201–209. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, Y.; Zhu, L.; Deng, J. Serum Levels of Perfluoroalkyl Acids (PFAAs) with Isomer Analysis and Their Associations with Medical Parameters in Chinese Pregnant Women. Environ. Int. 2014, 64, 40–47. [Google Scholar] [CrossRef]
- Reardon, A.J.F.; Khodayari Moez, E.; Dinu, I.; Goruk, S.; Field, C.J.; Kinniburgh, D.W.; MacDonald, A.M.; Martin, J.W. Longitudinal Analysis Reveals Early-Pregnancy Associations between Perfluoroalkyl Sulfonates and Thyroid Hormone Status in a Canadian Prospective Birth Cohort. Environ. Int. 2019, 129, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Lee, H.-L.; Hwang, Y.-T.; Su, T.-C. The Association between Total Serum Isomers of Per- and Polyfluoroalkyl Substances, Lipid Profiles, and the DNA Oxidative/Nitrative Stress Biomarkers in Middle-Aged Taiwanese Adults. Environ. Res. 2020, 182, 109064. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, S.; Thompson, J.; Mueller, J.F.; Bräunig, J. Apparent half-lives of chlorinated-perfluorooctane sulfonate and perfluorooctane sulfonate isomers in aviation firefighters. Environ Sci Technol. 2022, 56, 17052–17060. [Google Scholar] [CrossRef]
- Toms, L.M.L.; Bräunig, J.; Vijayasarathy, S.; Phillips, S.; Hobson, P.; Aylward, L.L.; Kirk, M.D.; Mueller, J.F. Per-and polyfluoroalkyl substances (PFAS) in Australia: Current levels and estimated population reference values for selected compounds. Int. J. Hyg. Environ. Health 2019, 222, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; Zeng, X.W.; Qian, Z.; Vaughn, M.G.; Geiger, S.D.; Hu, L.W.; Lu, L.; Fu, C.; Dong, G.H. Perfluoroalkyl substances with isomer analysis in umbilical cord serum in China. Environ. Sci. Pollut. Res. 2017, 24, 13626–13637. [Google Scholar] [CrossRef]
- Miaz, L.T.; Plassmann, M.M.; Gyllenhammar, I.; Bignert, A.; Sandblom, O.; Lignell, S.; Glynn, A.; Benskin, J.P. Temporal trends of suspect-and target-per/polyfluoroalkyl substances (PFAS), extractable organic fluorine (EOF) and total fluorine (TF) in pooled serum from first-time mothers in Uppsala, Sweden, 1996–2017. Environ. Sci. Process Impacts 2020, 22, 1071–1083. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Perfluoroalkyl and Polyfluoroalkyl Substances: Surfactants–National Report on Human Exposure to Environmental Chemicals. Available online: https://www.cdc.gov/exposurereport/report/pdf/Perfluoroalkyl%20and%20Polyfluoroalkyl%20Substances%20--%20Surfactants%20NHANES-p.pdf (accessed on 10 April 2023).
Compounds | QC Level (ng/mL) | Intra-Day (n = 7) | Inter-Day (n = 21) | ||
---|---|---|---|---|---|
%Recovery | %CV | %Recovery | %CV | ||
Fetal bovine serum matrix | |||||
L–PFOS | LLOQ (0.72) | 107.78 | 4.91 | 112.53 | 4.74 |
LQC (1.80) | 95.74 | 4.55 | 99.65 | 5.49 | |
MQC (10.77) | 95.36 | 2.94 | 97.78 | 5.16 | |
HQC (25.14) | 98.84 | 2.74 | 102.23 | 4.87 | |
br–PFOS | LLOQ (0.19) | 105.42 | 4.33 | 110.07 | 5.02 |
LQC (0.48) | 95.53 | 5.24 | 101.44 | 6.86 | |
MQC (2.90) | 96.13 | 2.81 | 99.08 | 4.89 | |
HQC (6.76) | 98.34 | 2.17 | 101.42 | 4.21 | |
Total PFOS | LLOQ (0.91) | 109.08 | 3.68 | 114.31 | 4.09 |
LQC (2.28) | 95.81 | 4.36 | 100.70 | 5.75 | |
MQC (13.67) | 95.38 | 2.59 | 97.48 | 4.13 | |
HQC (31.90) | 98.72 | 2.39 | 101.89 | 4.52 | |
PFOA | LLOQ (0.49) | 110.68 | 3.78 | 110.88 | 3.22 |
LQC (0.98) | 98.07 | 3.68 | 100.71 | 4.55 | |
MQC (9.80) | 95.17 | 2.06 | 98.23 | 6.00 | |
HQC (24.50) | 99.12 | 3.05 | 106.21 | 6.09 | |
Human plasma matrix | |||||
L–PFOS | MQC (10.77) | 96.07 | 2.44 | 98.02 | 4.26 |
HQC (25.14) | 97.52 | 1.49 | 101.19 | 3.84 | |
br–PFOS | MQC (2.90) | 95.15 | 3.18 | 95.77 | 4.20 |
HQC (6.76) | 96.29 | 2.05 | 99.97 | 3.44 | |
Total PFOS | MQC (13.67) | 95.27 | 1.37 | 97.06 | 4.03 |
HQC (31.90) | 97.35 | 1.62 | 101.00 | 3.67 | |
PFOA | MQC (9.80) | 92.11 | 1.72 | 94.30 | 4.15 |
HQC (24.50) | 95.98 | 3.67 | 102.69 | 5.21 |
Compounds | QC Levels | Recovery (n = 5/QC) | Matrix Effect (n = 5/QC) | |
---|---|---|---|---|
FBS | Human Plasma | |||
L–PFOS | LQC (1.80) | 102.21 | ||
MQC (10.77) | 99.16 | 105.73 | 103.11 | |
HQC (25.14) | 113.94 | 106.19 | 105.48 | |
br–PFOS | LQC (0.48) | 100.73 | ||
MQC (2.90) | 101.48 | 106.12 | 99.87 | |
HQC (6.76) | 115.25 | 106.07 | 102.78 | |
Total PFOS | LQC (2.28) | 101.78 | ||
MQC (13.67) | 99.58 | 106.58 | 101.95 | |
HQC (31.90) | 114.41 | 106.19 | 104.79 | |
PFOA | LQC (0.98) | 106.25 | ||
MQC (9.80) | 107.04 | 100.05 | 99.21 | |
HQC (24.50) | 111.14 | 102.66 | 106.05 |
Compounds | QC Levels | Storage Conditions for Stability Tests (n = 5/QC) | |||||||
---|---|---|---|---|---|---|---|---|---|
Bench-Top (6 h, 25 °C) | Processed Samples (24 h, 4 °C) | Freeze–Thaw (3 Cycles, −80 °C) | Long-Term (1 Month, −80 °C) | ||||||
%Recovery | %CV | %Recovery | %CV | %Recovery | %CV | %Recovery | %CV | ||
L–PFOS | LQC | 104.75 | 2.00 | 110.49 | 2.84 | 100.21 | 1.33 | 101.19 | 1.66 |
HQC | 96.31 | 1.87 | 110.54 | 1.66 | 105.48 | 2.82 | 96.29 | 2.67 | |
br–PFOS | LQC | 105.60 | 4.22 | 111.50 | 4.71 | 105.42 | 4.01 | 105.98 | 1.32 |
HQC | 95.77 | 2.17 | 109.08 | 2.57 | 102.51 | 2.06 | 94.13 | 1.58 | |
Total PFOS | LQC | 105.70 | 1.54 | 112.42 | 1.08 | 101.03 | 2.32 | 101.73 | 1.65 |
HQC | 96.75 | 1.57 | 110.02 | 2.12 | 105.76 | 1.48 | 97.69 | 2.84 | |
PFOA | LQC | 104.14 | 4.00 | 113.45 | 2.39 | 114.39 | 3.25 | 106.29 | 2.05 |
HQC | 92.66 | 1.56 | 102.07 | 2.33 | 102.27 | 13.78 | 93.16 | 2.12 |
Parameters | Analytes | |||
---|---|---|---|---|
L–PFOS | br–PFOS | Total PFOS | PFOA | |
Detection frequencies (%) | 94 | 86 | 92 | 86 |
Minimum (ng/mL) | <0.72 | <0.19 | <0.91 | <0.49 |
50th percentile (ng/mL) | 2.21 | 0.49 | 2.62 | 0.79 |
Maximum (ng/mL) | 5.12 | 1.31 | 6.27 | 2.72 |
Geometric mean (ng/mL) | 1.85 | 0.41 | 2.26 | 0.83 |
Countries | Sampling Years | Population Group (N) | Average L-PFOS Isomers (%) | References |
---|---|---|---|---|
Australia | 2016–2017 | Australian volunteers (2400) | 77.76 | [36] |
2018–2019 | Aviation firefighters (120) | 35.00 | [35] | |
Canada | 2009–2012 | Womens prior to 18 weeks of gestation (494) | 69.00 | [33] |
China | 2013 | Cord blood samples of volunteers in Guangzhou (321) | 75.16 | [37] |
2015–2016 | General residents of Shenyang city (1612) | 49.23 | [16] | |
Sweden | 2014–2017 | Pooled serum from first-time mothers in Uppsala (120) | 71.45 | [38] |
Taiwan | 2009–2011 | Taiwanese participants age 22–63 years (597) | 96.71 | [34] |
United States | 2015–2016 | U.S. population from NHANES survery (1993) | 67.80 | [39] |
2017–2018 | U.S. population from NHANES survery (1929) | 69.18 | ||
Thailand | 2021 | Red Cross blood donors (50) | 81.51 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lertassavakorn, T.; Pholphana, N.; Rangkadilok, N.; Suriyo, T.; Teeyapant, P.; Satayavivad, J. Method Validation for Quantification of PFOS and PFOA in Human Plasma and a Pilot Study in Blood Donors from Thai Red Cross Society. Toxics 2023, 11, 1015. https://doi.org/10.3390/toxics11121015
Lertassavakorn T, Pholphana N, Rangkadilok N, Suriyo T, Teeyapant P, Satayavivad J. Method Validation for Quantification of PFOS and PFOA in Human Plasma and a Pilot Study in Blood Donors from Thai Red Cross Society. Toxics. 2023; 11(12):1015. https://doi.org/10.3390/toxics11121015
Chicago/Turabian StyleLertassavakorn, Teerapong, Nanthanit Pholphana, Nuchanart Rangkadilok, Tawit Suriyo, Punthip Teeyapant, and Jutamaad Satayavivad. 2023. "Method Validation for Quantification of PFOS and PFOA in Human Plasma and a Pilot Study in Blood Donors from Thai Red Cross Society" Toxics 11, no. 12: 1015. https://doi.org/10.3390/toxics11121015