Medicinal Plant Growth in Heavy Metals Contaminated Soils: Responses to Metal Stress and Induced Risks to Human Health
Abstract
:1. Introduction
2. Related Studies and Background
3. Medicinal Plants Contamination with Heavy Metals: Sources and Pathways
4. Phytotherapy and Cosmetics—A Path for Human Health Risks Caused by Contaminated Medicinal Plants
5. The Interactions between Heavy Metals and Medicinal Plants and the Importance of Their Antioxidant Activity
- (i)
- The plant suffers a series of abnormalities (when the amount of ROS is relatively low), in terms of growth, development, ripening and reproduction, initiating the phenomenon of PCD and necrosis, but still survives, or
- (ii)
- In extreme cases when the amount of ROS is above the plant’s ability to counteract and the phenomenon of PCD and necrosis occurs, leading finally to the death of the plant.
6. Assessment of Risks to Human Health
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozyigit, I.I.; Yalcin, B.; Turan, S.; Saracoglu, I.A.; Karadeniz, S.; Yalcin, I.E.; Demir, G. Investigation of Heavy Metal Level and Mineral Nutrient Status in Widely Used Medicinal Plants’ Leaves in Turkey: Insights into Health Implications. Biol. Trace Elem. Res. 2018, 182, 387–406. [Google Scholar] [CrossRef] [PubMed]
- Suteu, D.; Rusu, L.; Zaharia, C.; Badeanu, M.; Daraban, G.M. Challenge of Utilization Vegetal Extracts as Natural Plant Protection Products. Appl. Sci. 2020, 10, 8913. [Google Scholar] [CrossRef]
- Rosca, M.; Cozma, P.; Minut, M.; Hlihor, R.M.; Bețianu, C.; Diaconu, M.; Gavrilescu, M. New Evidence of Model Crop Brassica Napus L. In Soil Clean-up: Comparison of Tolerance and Accumulation of Lead and Cadmium. Plants 2021, 10, 2051. [Google Scholar] [CrossRef] [PubMed]
- Asiminicesei, D.M.; Hlihor, R.M.; Cozma, P.; Apostol, M.; Simion, I.M.; Rosca, M.; Gavrilescu, M. Medicinal Plants: Linking Herbs Contamination with Human Health Risks. In Proceedings of the 2020 8th E-Health and Bioengineering Conference, EHB 2020, Online, 29–30 October 2020; pp. 1–4. [Google Scholar]
- Joint WHO/Convention Task Force on the Health Aspects of Air Pollution. Health Risks of Heavy Metals from Long-Range Transboundary Air Pollution; WHO Regional Office for Europe: Geneva, Switzerland, 2007; ISBN 9788490225370. [Google Scholar]
- Filote, C.; Roșca, M.; Hlihor, R.M.; Cozma, P.; Simion, I.M.; Apostol, M.; Gavrilescu, M. Sustainable Application of Biosorption and Bioaccumulation of Persistent Pollutants in Wastewater Treatment: Current Practice. Processes 2021, 9, 1696. [Google Scholar] [CrossRef]
- Fischer, A.; Brodziak-Dopierała, B.; Loska, K.; Stojko, J. The Assessment of Toxic Metals in Plants Used in Cosmetics and Cosmetology. Int. J. Environ. Res. Public Health 2017, 14, 1280. [Google Scholar] [CrossRef] [PubMed]
- Kohzadi, S.; Shahmoradi, B.; Ghaderi, E.; Loqmani, H.; Maleki, A. Concentration, Source, and Potential Human Health Risk of Heavy Metals in the Commonly Consumed Medicinal Plants. Biol. Trace Elem. Res. 2019, 187, 41–50. [Google Scholar] [CrossRef]
- Okatch, H.; Ngwenya, B.; Raletamo, K.M.; Andrae-Marobela, K. Determination of Potentially Toxic Heavy Metals in Traditionally Used Medicinal Plants for HIV/AIDS Opportunistic Infections in Ngamiland District in Northern Botswana. Anal. Chim. Acta 2012, 730, 42–48. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Y.; Cao, Y.; Chen, A.; Ren, M.; Ge, Y.; Yu, Z.; Wan, S.; Hu, A.; Bo, Q.; et al. Potential Health Risks of Heavy Metals in Cultivated Topsoil and Grain, Including Correlations with Human Primary Liver, Lung and Gastric Cancer, in Anhui Province, Eastern China. Sci. Total Environ. 2014, 470–471, 340–347. [Google Scholar] [CrossRef]
- Ahmad Khan, M.S.; Ahmad, I. Herbal Medicine: Current Trends and Future Prospects; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128146200. [Google Scholar]
- Asiminicesei, D.M.; Vasilachi, I.C.; Gavrilescu, M. Heavy Metal Contamination of Medicinal Plants and Potential Implications on Human Health. Rev. Chim. 2020, 71, 16–36. [Google Scholar] [CrossRef]
- Anyanwu, B.O.; Ezejiofor, A.N.; Igweze, Z.N.; Orisakwe, O.E. Heavy Metal Mixture Exposure and Effects in Developing Nations: An Update. Toxics 2018, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Yatoo, M.I.; Dimri, U.; Gopalakrishnan, A.; Karthik, K.; Gopi, M.; Khandia, R.; Saminathan, M.; Saxena, A.; Alagawany, M.; Farag, M.R.; et al. Beneficial Health Applications and Medicinal Values of Pedicularis Plants: A Review. Biomed. Pharmacother. 2017, 95, 1301–1313. [Google Scholar] [CrossRef] [PubMed]
- Daraban, G.M.; Zaharia, C.; Rusu, L.; Puitel, A.C.; Badeanu, M.; Suteu, D. Ultrasonic Extraction for Preparation of Plant Extracts with Bioinsecticidal Effects on Pest from Seed Deposits. Stud. Univ. Babes-Bolyai Chem. 2021, 66, 309–324. [Google Scholar] [CrossRef]
- Daraban, G.M.; Badeanu, M.; Rusu, L.; Zaharia, C.; Suteu, D. Vegetal Extract from Spontaneous Romanian Flora with Bioinsecticidal Action. Res. J. Agric. Sci. 2020, 52, 183–188. [Google Scholar]
- Manan, F.A.; Chai, T.T.; Samad, A.A. Environmental Pollution in Malaysia: Are Medicinal Plants Potential Phytoremediation Agents? Maejo Int. J. Sci. Technol. 2015, 9, 288–300. [Google Scholar]
- Pruteanu, A.; Muscalu, A. Phytoremediation Using Medicinal Plants–A Review. Ann. Univ. Craiova -Agric. Montanology Cadastre Ser. 2014, 44, 186–193. [Google Scholar]
- Mishra, B.; Chandra, M. Evaluation of Phytoremediation Potential of Aromatic Plants: A Systematic Review. J. Appl. Res. Med. Aromat. Plants 2022, 31, 100405. [Google Scholar] [CrossRef]
- Fattahi, B.; Arzani, K.; Souri, M.K.; Barzegar, M. Effects of Cadmium and Lead on Seed Germination, Morphological Traits, and Essential Oil Composition of Sweet Basil (Ocimum basilicum L.). Ind. Crops Prod. 2019, 138, 111584. [Google Scholar] [CrossRef]
- Angelova, V.R.; Grekov, D.F.; Kisyov, V.K.; Ivanov, K.I. Potential of Lavender (Lavandula vera L.) for Phytoremediation of Soils Contaminated with Heavy Metals. Int. J. Agric. Biosyst. Eng. 2015, 9, 522–529. [Google Scholar]
- Zaleschi, L.H.; Apostol, M.; Simion, I.M.; Cara, G.I.; Teliban, G.C.; Stavarache, M.; Nazare, A.; Hlihor, R.M. Short Overview of Heavy Metals Effects for Plants and Human Health and Their Determination in Medicinal Plants. In Proceedings of the 2021 9th E-Health Bioengineering Conference EHB 2021, Iasi, Romania, 18–19 November 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Adedokun, A.H.; Njoku, K.L.; Akinola, M.O.; Adesuyi, A.A.; Jolaoso, A.O. Potential Human Health Risk Assessment of Heavy Metals Intake via Consumption of Some Leafy Vegetables Obtained from Four Market in Lagos Metropolis, Nigeria. J. Appl. Sci. Environ. Manag. 2016, 20, 530. [Google Scholar] [CrossRef]
- Shokri, S.; Abdoli, N.; Sadighara, P.; Mahvi, A.H.; Esrafili, A.; Gholami, M.; Jannat, B.; Yousefi, M. Risk Assessment of Heavy Metals Consumption through Onion on Human Health in Iran. Food Chem. X 2022, 14, 100283. [Google Scholar] [CrossRef]
- Zhang, A.; Cao, H.; Jiang, Y.; Chen, Y.; Liu, J.; Zhou, X.; Zhou, A.; Gao, Y.; Li, J. Refining Health Risk Assessment for Determining Arsenic and Cadmium Safety Limits in an Herbal Medicine and Its Cultivation Soils. J. Clean. Prod. 2022, 331, 129837. [Google Scholar] [CrossRef]
- Zárate-Quiñones, R.H.; Custodio, M.; Orellana-Mendoza, E.; Cuadrado-Campó, W.J.; Grijalva-Aroni, P.L.; Peñaloza, R. Determination of Toxic Metals in Commonly Consumed Medicinal Plants Largely Used in Peru by ICP-MS and Their Impact on Human Health. Chem. Data Collect. 2021, 33, 100711. [Google Scholar] [CrossRef]
- Filote, C.; Roșca, M.; Hlihor, R.-M. Overview of Using Living and Non-Living Microorganisms for the Removal of Heavy Metals from Wastewaters. Res. J. Agric. Sci. 2020, 52, 22–32. [Google Scholar]
- Lippmann, M.; Schlesinger, B. Toxicological bases for the setting of health-related air pollution standards. Annu. Rev. Public Health 2000, 21, 309–333. [Google Scholar] [CrossRef]
- Rosca, M.; Hlihor, R.M.; Gavrilescu, M. Microbial Technology for the Welfare of Society. In Microbial Technology for the Welfare of Society; Arora, P.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 17, pp. 289–312. ISBN 978-981-13-8843-9. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Y.; Lan, X.; Yang, Y.; Wu, X.; Du, L. Comprehensive Assessment of Harmful Heavy Metals in Contaminated Soil in Order to Score Pollution Level. Sci. Rep. 2022, 12, 3552. [Google Scholar] [CrossRef]
- Masindi, V.; Muedi, K.L. Environmental Contamination by Heavy Metals. In Heavy Metals; Hosam El-Din, M., Saleh Refaat Aglan, F., Eds.; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- De Vries, W.; Römkens, P.F.A.M.; Kros, J.; Voogd, J.; Schulte-Uebbing, L. Impacts of Nutrients and Heavy Metals in European Agriculture. Current and Critical Inputs in Relation to Air, Soil and Water Quality; EEA: Copenhagen, Denmark, 2022; ISBN 9783200083271. [Google Scholar]
- Bai, L.Y.; Zeng, X.B.; Su, S.M.; Duan, R.; Wang, Y.N.; Gao, X. Heavy Metal Accumulation and Source Analysis in Greenhouse Soils of Wuwei District, Gansu Province, China. Environ. Sci. Pollut. Res. 2015, 22, 5359–5369. [Google Scholar] [CrossRef]
- Defarge, N.; Spiroux de Vendômois, J.; Séralini, G.E. Toxicity of Formulants and Heavy Metals in Glyphosate-Based Herbicides and Other Pesticides. Toxicol. Rep. 2018, 5, 156–163. [Google Scholar] [CrossRef]
- Kanmani, S.; Gandhimathi, R. Assessment of Heavy Metal Contamination in Soil Due to Leachate Migration from an Open Dumping Site. Appl. Water Sci. 2012, 3, 193–205. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy Metals in Agricultural Soils of the European Union with Implications for Food Safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Morkunas, I.; Wozniak, A.; Mai, V.C.; Rucinska-Sobkowiak, R.; Jeandet, P. The Role of Heavy Metals in Plant Response to Biotic Stress. Mol. A J. Synth. Chem. Nat. Prod. Chem. 2018, 23, 2320. [Google Scholar] [CrossRef] [PubMed]
- Chibuike, G.U.; Obiora, S.C. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl. Environ. Soil Sci. 2014, 2014, 752708. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Favier, L.; Rusu, L.; Simion, A.I.; Hlihor, R.M.; Pacala, M.L.; Augustyniak, A. Efficient Degradation of Clofibric Acid by Heterogeneous Photocatalytic Oxidation Process. Environ. Eng. Manag. J. 2019, 18, 1683–1692. [Google Scholar]
- Yang, G.L.; Zheng, M.M.; Tan, A.J.; Liu, Y.T.; Feng, D.; Lv, S.M. Research on the Mechanisms of Plant Enrichment and Detoxification of Cadmium. Biology 2021, 10, 544. [Google Scholar] [CrossRef]
- Takáč, P.; Szabová, T.; Kozáková, L.; Benková, M.; Takáč, P. Heavy Metals and Their Bioavailability from Soils in the Long-Term Polluted Central Spiš Region of SR. Plant Soil Environ. 2009, 55, 167–172. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Balgobind, A.; Pillay, B. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. Int. J. Mol. Sci. 2013, 14, 10197–10228. [Google Scholar] [CrossRef]
- Haydee, K.M.; Dalma, K.E. Concerning Organometallic Compounds in Environment: Occurrence, Fate, and Impact. In Recent Progress in Organometallic Chemistry; Rahman, M.M., Asiri, A.M., Eds.; IntechOpen: London, UK, 2017; pp. 47–67. [Google Scholar] [CrossRef]
- Saha, L.; Tiwari, J.; Bauddh, K.; Ma, Y. Recent Developments in Microbe–Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils. Front. Microbiol. 2021, 12, 731723. [Google Scholar] [CrossRef] [PubMed]
- Barra Caracciolo, A.; Terenzi, V. Rhizosphere Microbial Communities and Heavy Metals. Microorganisms 2021, 9, 1462. [Google Scholar] [CrossRef]
- Chen, Y.T.; Wang, Y.; Yeh, K.C. Role of Root Exudates in Metal Acquisition and Tolerance. Curr. Opin. Plant Biol. 2017, 39, 66–72. [Google Scholar] [CrossRef]
- Montiel-Rozas, M.M.; Madejón, E.; Madejón, P. Effect of Heavy Metals and Organic Matter on Root Exudates (Low Molecular Weight Organic Acids) of Herbaceous Species: An Assessment in Sand and Soil Conditions under Different Levels of Contamination. Environ. Pollut. 2016, 216, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Muszyńska, E.; Labudda, M. Dual Role of Metallic Trace Elements in Stress Biology—From Negative to Beneficial Impact on Plants. Int. J. Mol. Sci. 2019, 20, 3117. [Google Scholar] [CrossRef] [Green Version]
- Pasricha, S.; Mathur, V.; Garg, A.; Lenka, S.; Verma, K.; Agarwal, S. Molecular Mechanisms Underlying Heavy Metal Uptake, Translocation and Tolerance in Hyperaccumulators-an Analysis: Heavy Metal Tolerance in Hyperaccumulators. Environ. Chall. 2021, 4, 100197. [Google Scholar] [CrossRef]
- Lhotská, M.; Zemanová, V.; Pavlík, M.; Pavlíková, D.; Hnilička, F.; Popov, M. Leaf Fitness and Stress Response after the Application of Contaminated Soil Dust Particulate Matter. Sci. Reports 2022, 12, 10046. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Khan Niazi, N.; Foliar, A.L. Foliar Heavy Metal Uptake, Toxicity and Detoxification in Plants: A Comparison of Foliar and Root Metal Uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef]
- Favas, J.C.; Pratas, J.; Varun, M.; DSouza, R.; Paul, S.M. Phytoremediation of Soils Contaminated with Metals and Metalloids at Mining Areas: Potential of Native Flora. In Environmental Risk Assessment of Soil Contamination; InTech: London, UK, 2014. [Google Scholar]
- Angelova, V. Potential of Some Medicinal and Aromatic Plants for Phytoremedation of Contaminated Heavy Metals Soils. In Proceedings of the XV Balkan Mineral Processing Congress, Sozopol, Bulgaria, 12–16 June 2013; pp. 1045–1048. [Google Scholar]
- Bai, L.; Liu, X.L.; Hu, J.; Li, J.; Wang, Z.L.; Han, G.; Li, S.L.; Liu, C.Q. Heavy Metal Accumulation in Common Aquatic Plants in Rivers and Lakes in the Taihu Basin. Int. J. Environ. Res. Public Health 2018, 15, 2857. [Google Scholar] [CrossRef]
- Dinu, C.; Vasile, G.G.; Buleandra, M.; Popa, D.E.; Gheorghe, S.; Ungureanu, E.M. Translocation and Accumulation of Heavy Metals in Ocimum basilicum L. Plants Grown in a Mining-Contaminated Soil. J. Soils Sediments 2020, 20, 2141–2154. [Google Scholar] [CrossRef]
- Asgari Lajayer, B.; Najafi, N.; Moghiseh, E.; Mosaferi, M.; Hadian, J. Micronutrient and Heavy Metal Concentrations in Basil Plant Cultivated on Irradiated and Non-Irradiated Sewage Sludge- Treated Soil and Evaluation of Human Health Risk. Regul. Toxicol. Pharmacol. 2019, 104, 141–150. [Google Scholar] [CrossRef]
- Hashemi, S.B.; Momayezi, M.; Taleei, D. Biochar Effect on Cadmium Accumulation and Phytoremediation Factors by Lavender (Lavandula stoechas L.). Open J. Ecol. 2017, 7, 447–459. [Google Scholar] [CrossRef]
- Kiarostami, A.; Moradi, P.; Abdousi, V. Refining Properties of Lavender (Lavandula spica L.) in Cadmium Contaminated Environments. Iran. J. Plant Physiol. 2018, 8, 2277–2284. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, Q.; Wang, X. Identification of Weed Plants Excluding the Uptake of Heavy Metals. Environ. Int. 2005, 31, 829–834. [Google Scholar] [CrossRef]
- Çelik, S.A.; Kan, Y. The Determination of Mineral and Heavy Metal Contents of Echinacea Species Cultivated in Turkey. Int. J. Second. Metab. 2017, 4, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Pinto, A.P.; De Varennes, A.; Fonseca, R.; Teixeira, D.M. Phytoremediation of Soils Contaminated with Heavy Metals: Techniques and Strategies. Phytoremediat. Manag. Environ. Contam. 2015, 1, 133–155. [Google Scholar] [CrossRef]
- Prkić, A.; Politeo, N.; Giljanović, J.; Sokol, V.; Bošković, P.; Brkljača, M.; Stipišić, A. Survey of Content of Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Sodium and Zinc in Chamomile and Green Tea Leaves by Electrothermal or Flame Atomizer Atomic Absorption Spectrometry. Open Chem. 2018, 16, 228–237. [Google Scholar] [CrossRef]
- Marinescu, E.; Elisei, A.M.; Aprotosoaie, A.N.A.C.; Cioancă, O.; Trifan, A.; Miron, A.; Robu, S.; Ifrim, C.; Hăncianu, M. Assessment of Heavy Metals Content in Some Medicinal Plants and Spices Commonly Used In Romania. Farmacia 2020, 68, 1099–1105. [Google Scholar] [CrossRef]
- Abu-Darwish, M.S. Essential Oils Yield and Heavy Metals Content of Some Aromatic Medicinal Plants Grown in Ash-Shoubak Region, South of Jordan. Adv. Environ. Biol. 2009, 3, 296–301. [Google Scholar]
- Pietrelli, L.; Menegoni, P.; Papetti, P. Bioaccumulation of Heavy Metals by Herbaceous Species Grown in Urban and Rural Sites. Water. Air. Soil Pollut. 2022, 233, 141. [Google Scholar] [CrossRef]
- Barbeş, L.; Bărbulescu, A.; Stanciu, G. Statistical Analysis of Mineral Elements Content in Different Melliferous Plants from the Dobrogea Region, RomÂnia. Rom. Rep. Phys. 2020, 72, 705. [Google Scholar]
- Pavlova, D.; Karadjova, I.; Krasteva, I. Essential and Toxic Element Concentrations in Hypericum Perforatum. Aust. J. Bot. 2015, 63, 152–158. [Google Scholar] [CrossRef]
- Adamczyk-Szabela, D.; Markiewicz, J.; Wolf, W.M. Heavy Metal Uptake by Herbs. IV. Influence of Soil PH on the Content of Heavy Metals in Valeriana officinalis L. Water. Air. Soil Pollut. 2015, 226, 106. [Google Scholar] [CrossRef] [PubMed]
- Tuncturk, M.; Tuncturk, R.; Eryigit, T.; Nohutçu, L. Some Chemical Compounds of Cichorium intybus L. Species Distributed in Van Region. J. Pharmacautical Res. 2018, 17, 83–87. [Google Scholar] [CrossRef]
- Glavač, N.K.; Djogo, S.; Ražić, S.; Kreft, S.; Veber, M. Accumulation of Heavy Metals from Soil in Medicinal Plants. Arh. Hig. Rada Toksikol. 2017, 68, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Figas, A.; Tomaszewska-Sowa, M.; Kobierski, M.; Sawilska, A.K.; Klimkowska, K. Hazard of Contamination with Heavy Metals in Thymus serpyllum L. Herbs from Rural Areas. Agriculture 2021, 11, 375. [Google Scholar] [CrossRef]
- Murtić, S.; Zahirović, Ć.; Čivić, H.; Sijahović, E.; Jurković, J.; Avdić, J.; Šahinović, E.; Podrug, A. Phytoaccumulation of Heavy Metals in Native Plants Growing on Soils in the Spreča River Valley, Bosnia and Herzegovina. Plant Soil Environ. 2021, 67, 533–540. [Google Scholar] [CrossRef]
- Kostić, D.; Mitić, S.; Zarubica, A.; Mitić, M.; Veličković, J.; Randjelović, S. Content of Trace Metals in Medicinal Plants and Their Extracts. Hem. Ind. 2011, 65, 165–170. [Google Scholar] [CrossRef]
- Rudnyk-Ivashchenko, O.; Yaruta, O. Specificity of Heavy Metals Distribution in Atropa belladonna Plants. Agric. Sci. Pract. 2016, 3, 66–72. [Google Scholar] [CrossRef]
- Adamcová, D.; Radziemska, M.; Ridošková, A.; Bartoň, S.; Pelcová, P.; Elbl, J.; Kynický, J.; Brtnický, M.; Vaverková, M.D. Environmental Assessment of the Effects of a Municipal Landfill on the Content and Distribution of Heavy Metals in Tanacetum vulgare L. Chemosphere 2017, 185, 1011–1018. [Google Scholar] [CrossRef]
- Okem, A.; Southway, C.; Stirk, W.A.; Street, R.A.; Finnie, J.F.; Van Staden, J. Heavy Metal Contamination in South African Medicinal Plants: A Cause for Concern. S. Afr. J. Bot. 2014, 93, 125–130. [Google Scholar] [CrossRef]
- Radulescu, C.; Stihi, C.; Barbes, L.; Chilian, A.; Chelarescu, D.E. Studies Concerning Heavy Metals Accumulation of Carduus nutans L. and Taraxacum officinale as Potential Soil Bioindicator Species. Rev. Chim. 2013, 64, 754–760. [Google Scholar]
- FAO/WHO. Joint FAO/WHO food standards programme codex committee on contaminants in foods. In Proceedings of the Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods, Working Document for INFO Rmation and Use in Discussions Related to Contamin Ants and Toxins in the GSCTFF, The Hague, The Netherlands, 21–25 March 2011; pp. 1–90. [Google Scholar]
- Dghaim, R.; Khatib, S.A.; Rasool, H.; Khan, M.A. Determination of Heavy Metals Concentration in Traditional Herbs Commonly Consumed in the United Arab Emirates. J. Environ. Public Health 2015, 2015, 973878. [Google Scholar] [CrossRef]
- Arshad, H.; Mehmood, M.Z.; Shah, M.H.; Abbasi, A.M. Evaluation of Heavy Metals in Cosmetic Products and Their Health Risk Assessment. Saudi Pharm. J. 2020, 28, 779–790. [Google Scholar] [CrossRef]
- Ahmed, A.Y.; Asada, A.; Hamza, I.A.A. Cobalt and Lead Concentrations in Cosmetic Products Sold at Local Markets in Saudi Arabia. Toxicol. Rep. 2021, 8, 1693. [Google Scholar] [CrossRef]
- Borowska, S.; Brzóska, M.M. Metals in Cosmetics: Implications for Human Health. J. Appl. Toxicol. 2015, 35, 551–572. [Google Scholar] [CrossRef]
- Witkowska, D.; Słowik, J.; Chilicka, K. Review Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules 2021, 26, 6060. [Google Scholar] [CrossRef]
- Alam, M.F.; Akhter, M.; Mazumder, B.; Ferdous, A.; Hossain, M.D.; Dafader, N.C.; Ahmed, F.T.; Kundu, S.K.; Taheri, T.; Atique Ullah, A.K.M. Assessment of Some Heavy Metals in Selected Cosmetics Commonly Used in Bangladesh and Human Health Risk. J. Anal. Sci. Technol. 2019, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Nohynek, G.J.; Antignac, E.; Re, T.; Toutain, H. Safety Assessment of Personal Care Products/Cosmetics and Their Ingredients. Toxicol. Appl. Pharmacol. 2010, 243, 239–259. [Google Scholar] [CrossRef]
- Ullah, H.; Noreen, S.; Fozia; Rehman, A.; Waseem, A.; Zubair, S.; Adnan, M.; Ahmad, I. Comparative Study of Heavy Metals Content in Cosmetic Products of Different Countries Marketed in Khyber Pakhtunkhwa, Pakistan. Arab. J. Chem. 2017, 10, 10–18. [Google Scholar] [CrossRef]
- Łodyga-Chruścińska, E.; Sykuła, A.; Wiȩdłocha, M. Hidden Metals in Several Brands of Lipstick and Face Powder Present on Polish Market. Cosmetics 2018, 5, 57. [Google Scholar] [CrossRef]
- Shaban, N.S.; Abdou, K.A.; Hassan, N.E.-H.Y. Impact of Toxic Heavy Metals and Pesticide Residues in Herbal Products. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 102–106. [Google Scholar] [CrossRef]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front. Plant Sci. 2016, 6, 1143. [Google Scholar] [CrossRef]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef]
- Mareri, L.; Parrotta, L.; Cai, G. Environmental Stress and Plants. Int. J. Mol. Sci. 2022, 23, 5416. [Google Scholar] [CrossRef]
- Huang, H.; Ullah, F.; Zhou, D.X.; Yi, M.; Zhao, Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef]
- Zandi, P.; Schnug, E. Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. Biology 2022, 11, 155. [Google Scholar] [CrossRef]
- Yadav, B.; Jogawat, A.; Rahman, M.S.; Narayan, O.P. Secondary Metabolites in the Drought Stress Tolerance of Crop Plants: A Review. Gene Rep. 2021, 23, 101040. [Google Scholar] [CrossRef]
- Asgari Lajayer, B.; Ghorbanpour, M.; Nikabadi, S. Heavy Metals in Contaminated Environment: Destiny of Secondary Metabolite Biosynthesis, Oxidative Status and Phytoextraction in Medicinal Plants. Ecotoxicol. Environ. Saf. 2017, 145, 377–390. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y. Heavy Metal Stress and Some Mechanisms of Plant Defense Response. Sci. World J. 2015, 2015, 756120. [Google Scholar] [CrossRef]
- Schuurink, R.; Tissier, A. Glandular Trichomes Micro-organs with Model Status.Pdf. New Phytol. 2020, 225, 2251–2266. [Google Scholar] [CrossRef]
- Anjitha, K.S.; Sameena, P.P.; Puthur, J.T. Functional Aspects of Plant Secondary Metabolites in Metal Stress Tolerance and Their Importance in Pharmacology. Plant Stress 2021, 2, 100038. [Google Scholar] [CrossRef]
- Isah, T. Stress and Defense Responses in Plant Secondary Metabolites Production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef]
- Pandey, P.; Irulappan, V.; Bagavathiannan, M.V.; Senthil-Kumar, M. Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physio-Morphological Traits. Front. Plant Sci. 2017, 8, 537. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Künstler, A.; Bacsó, R.; Hafez, Y.M.; Király, L. Reactive Oxygen Species and Plant Disease Resistance. In Reactive Oxygen Species and Oxidative Damage in Plants under Stress; Gupta, D.K., Palma, J.M., Corpas, F.J., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Mustafa, M.; Szalai, Z.; Divéky-Ertsey, A.; Gál, I.; Csambalik, L. Conceptualizing Multiple Stressors and Their Consequences in Agroforestry Systems. Stresses 2022, 2, 242–255. [Google Scholar] [CrossRef]
- Gull, A.; Lone, A.A.; Wani, N.U.I. Biotic and Abiotic Stresses in Plants. In Abiotic and Biotic Stress in Plants; de Oliveira, A.B., Ed.; IntechOpen: London, UK, 2019; pp. 1–6. [Google Scholar]
- Cramer, G.R.; Urano, K.; Delrot, S.; Pezzotti, M.; Shinozaki, K. Effects of Abiotic Stress on Plants: A Systems Biology Perspective. BMC Plant Biol. 2011, 11, 163. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. The Stress Concept in Plants: An Introduction. Ann. N. Y. Acad. Sci. 1998, 851, 187–198. [Google Scholar] [CrossRef]
- Dickman, M.B.; de Figueiredo, P. Death Be Not Proud-Cell Death Control in Plant Fungal Interactions. PLoS Pathog. 2013, 9, e1003542. [Google Scholar] [CrossRef]
- Tuteja, N. Abscisic Acid and Abiotic Stress Signaling. Plant Signal. Behav. 2007, 2, 135–138. [Google Scholar] [CrossRef]
- Kanojia, A.; Dijkwel, P.P. Abiotic Stress Responses Are Governed by Reactive Oxygen Species and Age. Annu. Plant Rev. Online 2018, 1, 295–326. [Google Scholar] [CrossRef]
- Gene, P.; Kapoor, D.; Singh, S.; Kumar, V.; Romero, R.; Prasad, R. Antioxidant Enzymes Regulation in Plants in Reference to Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS). Plant Gene 2019, 19, 100182. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Keunen, E.; Remans, T.; Bohler, S.; Vangronsveld, J.; Cuypers, A. Metal-Induced Oxidative Stress and Plant Mitochondria. Int. J. Mol. Sci. 2011, 12, 6894–6918. [Google Scholar] [CrossRef] [PubMed]
- Ogbe, A.A.; Finnie, J.F.; Van Staden, J. The Role of Endophytes in Secondary Metabolites Accumulation in Medicinal Plants under Abiotic Stress. S. Afr. J. Bot. 2020, 134, 126–134. [Google Scholar] [CrossRef]
- Daraban, G.M.; Hlihor, R.M.; Apostol, M.; Badeanu, M.; Suteu, D. Secondary Plant Metabolites: Sources of Principles for Use in Agriculture, Food Industry and for Human Health Safety. In Proceedings of the 2021 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 17–18 November 2021. [Google Scholar] [CrossRef]
- Fujii, J.; Homma, T.; Osaki, T. Superoxide Radicals in the Execution of Cell Death. Antioxidants 2022, 11, 501. [Google Scholar] [CrossRef]
- Pernil, R.; Schleiff, E. Metalloproteins in the Biology of Heterocysts. Life 2019, 9, 32. [Google Scholar] [CrossRef]
- Ravet, K.; Pilon, M. Copper and Iron Homeostasis in Plants: The Challenges of Oxidative Stress. Antioxid. Redox Signal. 2013, 19, 919. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive Oxygen Gene Network of Plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef]
- Sharma, S.S.; Dietz, K.J. The Relationship between Metal Toxicity and Cellular Redox Imbalance. Trends Plant Sci. 2009, 14, 43–50. [Google Scholar] [CrossRef]
- Dalcorso, G.; Manara, A.; Furini, A. An Overview of Heavy Metal Challenge in Plants: From Roots to Shoots. Metallomics 2013, 5, 1117–1132. [Google Scholar] [CrossRef]
- Gupta, D.K.; Corpas, F.J.; Palma, J.M. Heavy Metal Stress in Plants; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9783642384691. [Google Scholar]
- Haider, K.; Haider, M.R.; Neha, K.; Yar, M.S. Free Radical Scavengers: An Overview on Heterocyclic Advances and Medicinal Prospects. Eur. J. Med. Chem. 2020, 204, 112607. [Google Scholar] [CrossRef]
- İşeri, Ö.D.; Körpe, D.A.; Yurtcu, E.; Sahin, F.I.; Haberal, M. Copper-Induced Oxidative Damage, Antioxidant Response and Genotoxicity in Lycopersicum esculentum Mill. and Cucumis sativus L. Plant Cell Rep. 2011, 30, 1713–1721. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nakanishi, H.; Nishizawa, N.K. Recent Insights into Iron Homeostasis and Their Application in Graminaceous Crops. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 900–913. [Google Scholar] [CrossRef]
- Mehraban, P.; Abdol, Z.A.; Sadeghipour, H.R. Iron Toxicity in Rice Under Different Potassium Nutrition. Asian J. Plant Sci. 2008, 7, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Palma, J.M.; Gupta, D.K.; Corpas, F.J. Metalloenzymes Involved in the Metabolism of Reactive Oxygen Species and Heavy Metal Stress. In Heavy Metal Stress in Plants; Gupta, D.K., Corpas, F.J., Palma, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–18. ISBN 9783319204215. [Google Scholar]
- Miller, G.; Mittler, R. Could Heat Shock Transcription Factors Function as Hydrogen Peroxide Sensors in Plants? Ann. Bot. 2006, 98, 279–288. [Google Scholar] [CrossRef]
- Miller, G.; Suzuki, N.; Ciftci-Yilmaz, S.; Mittler, R. Reactive Oxygen Species Homeostasis and Signalling during Drought and Salinity Stresses. Plant Cell Environ. 2010, 33, 453–467. [Google Scholar] [CrossRef]
- Arif, N.; Yadav, V.; Singh, S.; Kushwaha, B.K.; Singh, S.; Tripathi, D.K.; Vishwakarma, K.; Sharma, S.; Dubey, N.K.; Chauhan, D.K. Assessment of Antioxidant Potential of Plants in Response to Heavy Metals. In Plant Responses to Xenobiotics; Singh, A., Prasad, S., Singh, R., Eds.; Springer: Singapore, 2016; pp. 97–125. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive Oxygen Species (ROS) and Response of Antioxidants as ROS-Scavengers during Environmental Stress in Plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef]
- Tavanti, T.R.; de Melo, A.A.R.; Moreira, L.D.K.; Sanchez, D.E.J.; Silva, R.D.S.; da Silva, R.M.; dos Reis, A.R. Micronutrient Fertilization Enhances ROS Scavenging System for Alleviation of Abiotic Stresses in Plants. Plant Physiol. Biochem. 2021, 160, 386–396. [Google Scholar] [CrossRef]
- Georgiadou, E.C.; Kowalska, E.; Patla, K.; Kulbat, K.; Smolińska, B.; Leszczyńska, J.; Fotopoulos, V. Influence of Heavy Metals (Ni, Cu, and Zn) on Nitro-Oxidative Stress Responses, Proteome Regulation and Allergen Production in Basil (Ocimum basilicum L.) Plants. Front. Plant Sci. 2018, 9, 862. [Google Scholar] [CrossRef]
- Santos, E.S.; Abreu, M.M.; Saraiva, J.A. Mutielemental Concentration and Physiological Responses of Lavandula Pedunculata Growing in Soils Developed on Different Mine Wastes. Environ. Pollut. 2016, 213, 43–52. [Google Scholar] [CrossRef]
- Dey, S.; Mazumder, P.B.; Paul, S.B. Copper-Induced Changes in Growth and Antioxidative Mechanisms of Tea Plant (Camellia sinensis (L.) O. Kuntze). Afr. J. Biotechnol. 2015, 14, 582–592. [Google Scholar] [CrossRef]
- Zhang, H.; Heal, K.; Zhu, X.; Tigabu, M.; Xue, Y.; Zhou, C. Tolerance and Detoxification Mechanisms to Cadmium Stress by Hyperaccumulator Erigeron annuus Include Molecule Synthesis in Root Exudate. Ecotoxicol. Environ. Saf. 2021, 219, 112359. [Google Scholar] [CrossRef]
- Patel, A.; Pandey, V.; Patra, D.D. Metal Absorption Properties of Mentha Spicata Grown under Tannery Sludge Amended Soil-Its Effect on Antioxidant System and Oil Quality. Chemosphere 2016, 147, 67–73. [Google Scholar] [CrossRef]
- Uddin, I.; Bano, A.; Masood, S. Chromium Toxicity Tolerance of Solanum nigrum L. and Parthenium hysterophorus L. Plants with Reference to Ion Pattern, Antioxidation Activity and Root Exudation. Ecotoxicol. Environ. Saf. 2015, 113, 271–278. [Google Scholar] [CrossRef]
- Tarhan, L.; Kavakcioglu, B. Glutathione Metabolism in Urtica dioica in Response to Cadmium Based Oxidative Stress. Biol. Plant. 2015, 60, 163–172. [Google Scholar] [CrossRef]
- Rout, J.R.; Behera, S.; Keshari, N.; Ram, S.S.; Bhar, S.; Chakraborty, A.; Sudarshan, M.; Sahoo, S.L. Effect of Iron Stress on Withania somnifera L.: Antioxidant Enzyme Response and Nutrient Elemental Uptake of in Vitro Grown Plants. Ecotoxicology 2014, 24, 401–413. [Google Scholar] [CrossRef]
- Begović, L.; Mlinarić, S.; Antunović Dunić, J.; Katanić, Z.; Lončarić, Z.; Lepeduš, H.; Cesar, V. Response of Lemna minor L. to Short-Term Cobalt Exposure: The Effect on Photosynthetic Electron Transport Chain and Induction of Oxidative Damage. Aquat. Toxicol. 2016, 175, 117–126. [Google Scholar] [CrossRef]
- Iannone, M.F.; Groppa, M.D.; Benavides, M.P. Cadmium Induces Different Biochemical Responses in Wild Type and Catalase-Deficient Tobacco Plants. Environ. Exp. Bot. 2015, 109, 201–211. [Google Scholar] [CrossRef]
- Fatemi, H.; Esmaiel Pour, B.; Rizwan, M. Foliar Application of Silicon Nanoparticles Affected the Growth, Vitamin C, Flavonoid, and Antioxidant Enzyme Activities of Coriander (Coriandrum sativum L.) Plants Grown in Lead (Pb)-Spiked Soil. Environ. Sci. Pollut. Res. 2020, 28, 1417–1425. [Google Scholar] [CrossRef]
- Khair, K.U.; Farid, M.; Ashraf, U.; Zubair, M.; Rizwan, M.; Farid, S.; Ishaq, H.K.; Iftikhar, U.; Ali, S. Citric Acid Enhanced Phytoextraction of Nickel (Ni) and Alleviate Mentha piperita (L.) from Ni-Induced Physiological and Biochemical Damages. Environ. Sci. Pollut. Res. 2020, 27, 27010–27022. [Google Scholar] [CrossRef]
- Đogić, S.; Džubur, N.; Karalija, E.; Parić, A. Biochemical Responses of Basil to Aluminium and Cadmium Stresses. Acta Agric. Serbica 2017, 22, 57–65. [Google Scholar] [CrossRef]
- Kováčik, J.; Dresler, S.; Wójciak-Kosior, M.; Hladký, J.; Babula, P. Metabolic Changes Induced by Manganese in Chamomile. Plant Physiol. Biochem. 2018, 133, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Azimychetabi, Z.; Sabokdast Nodehi, M.; Karami Moghadam, T.; Motesharezadeh, B. Cadmium Stress Alters the Essential Oil Composition and the Expression of Genes Involved in Their Synthesis in Peppermint (Mentha piperita L.). Ind. Crops Prod. 2021, 168, 113602. [Google Scholar] [CrossRef]
- Babula, P.; Klejdus, B.; Kovacik, J.; Hedbavny, J.; Hlavna, M. Lanthanum Rather than Cadmium Induces Oxidative Stress and Metabolite Changes in Hypericum perforatum. J. Hazard. Mater. 2015, 286, 334–342. [Google Scholar] [CrossRef]
- Kulbat-Warycha, K.; Georgiadou, E.C.; Mańkowska, D.; Smolińska, B.; Fotopoulos, V.; Leszczyńska, J. Response to Stress and Allergen Production Caused by Metal Ions (Ni, Cu and Zn) in Oregano (Origanum vulgare L.) Plants. J. Biotechnol. 2020, 324, 171–182. [Google Scholar] [CrossRef]
- Zarinkamar, F.; Moradi, A.; Davoodpour, M. Ecophysiological, Anatomical, and Apigenin Changes Due to Uptake and Accumulation of Cadmium in Matricaria chamomilla L. Flowers in Hydroponics. Environ. Sci. Pollut. Res. 2021, 28, 55154–55165. [Google Scholar] [CrossRef] [PubMed]
- Grejtovský, A.; Markušová, K.; Eliašová, A. The Response of Chamomile (Matricaria chamomilla L.) Plants to Soil Zinc Supply. Plant Soil Environ. 2006, 52, 1–7. [Google Scholar] [CrossRef]
- Grejtovský, A.; Markušová, K.; Nováková, L. Lead Uptake by Matricaria chamomilla L. Plant Soil Environ. 2008, 54, 47–54. [Google Scholar] [CrossRef]
- Bagheri, M.; Javanmard, H.R.; Naderi, M.R. Soil Cadmium and Lead Affecting Biochemical Properties of Matricaria chamomilla L. at Different Growth Stages in the Greenhouse and Field. BioMetals 2021, 34, 881–893. [Google Scholar] [CrossRef]
- Stancheva, I.; Geneva, M.; Markovska, Y.; Tzvetkova, N.; Mitova, I.; Todorova, M.; Petrov, P. A Comparative Study on Plant Morphology, Gas Exchange Parameters, and Antioxidant Response of Ocimum basilicum L. and Origanum vulgare L. Grown on Industrially Polluted Soil. Turk. J. Biol. 2014, 38, 89–102. [Google Scholar] [CrossRef]
- Kang, Y.; Yang, L.; Dai, H.; Xie, M.; Wang, Y.; Peng, J.; Sun, H.; Ao, T.; Chen, W. Antioxidant System Response, Mineral Element Uptake and Safe Utilization of Polygonatum sibiricum in Cadmium-Contaminated Soil. Sci. Rep. 2021, 11, 18737. [Google Scholar] [CrossRef] [PubMed]
- Nadgórska-Socha, A.; Ptasiński, B.; Kita, A. Heavy Metal Bioaccumulation and Antioxidative Responses in Cardaminopsis arenosa and Plantago lanceolata Leaves from Metalliferous and Non-Metalliferous Sites: A Field Study. Ecotoxicology 2013, 22, 1422. [Google Scholar] [CrossRef] [PubMed]
- El-Shora, H.M.; Massoud, G.F.; El-Sherbeny, G.A.; Alrdahe, S.S.; Darwish, D.B. Alleviation of Lead Stress on Sage Plant by 5-Aminolevulinic Acid (ALA). Plants 2021, 10, 1969. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tang, Y.; Gu, F.; Wang, X.; Yang, W.; Han, Y.; Ruan, Y. Phytochemical Analysis Reveals an Antioxidant Defense Response in Lonicera japonica to Cadmium-Induced Oxidative Stress. Sci. Rep. 2022, 12, 6840. [Google Scholar] [CrossRef]
- Goyer, R.; United States Environmental Protection Agency; Risk Assessment, F; Eastern Research Group, I. Issue Paper on the Human Health Effects of Metals; US Environmental Protection Agency: Washington, DC, USA, 2004.
- Meng, C.; Wang, P.; Hao, Z.; Gao, Z.; Li, Q.; Gao, H.; Liu, Y.; Li, Q.; Wang, Q.; Feng, F. Ecological and Health Risk Assessment of Heavy Metals in Soil and Chinese Herbal Medicines. Environ. Geochem. Health 2021, 1–12. [Google Scholar] [CrossRef]
- US EPA. Framework for Human Health Risk Assessment to Inform Decision Making; EPA/100/R-14/001; US Environmental Protection Agency: Washington, DC, USA, 2014; pp. 1–63.
- US EPA. Exposure Factors Handbook: 2011 Edition; EPA/600/R-09/052F; US Environmental Protection Agency: Washington, DC, USA, 2011; pp. 1–1466.
- Dorne, J.L.C.M.; Kass, G.E.N.; Bordajandi, L.R.; Amzal, B.; Bertelsen, U.; Castoldi, A.F.; Heppner, C.; Eskola, M.; Fabiansson, S.; Ferrari, P.; et al. Human Risk Assessment of Heavy Metals: Principles and Applications. Met. Ions Life Sci. 2011, 8, 27–60. [Google Scholar] [CrossRef]
- US EPA. Reference Dose (RfD): Description and Use in Health Risk Assessments; Background Document 1A; US Environmental Protection Agency: Washington, DC, USA, 1993.
- US EPA. Framework for Metals Risk Assessment; EPA/120/R-07/001; US Environmental Protection Agency: Washington, DC, USA, 2007; pp. 1–24.
- Sharma, B.; Singh, S.; Siddiqi, N.J. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems. Biomed. Res. Int. 2014, 2014, 640754. [Google Scholar] [CrossRef]
- Nedelescu, M.; Stan, M.; Ciobanu, A.M.; Bălălău, C.; Filippini, T.; Baconi, D. Attention Deficit among Preschool and School-Aged Children Living near Former Metal-Processing Plants in Romania. Environ. Res. 2022, 208, 112689. [Google Scholar] [CrossRef]
- US EPA. About Risk Assessment; US Environmental Protection Agency: Washington, DC, USA, 2022.
- Sexton, K.; Selevan, S.G.; Wagener, D.K.; Lybarger, J.A. Estimating Human Exposures to Environmental Pollutants: Availability and Utility of Existing Databases. Arch. Environ. Health Int. J. 1992, 47, 398–407. [Google Scholar] [CrossRef]
- US EPA. Example Exposure Scenarios; US Environmental Protection Agency: Washington, DC, USA, 2003; pp. 1–136.
- US EPA. Guidelines for Exposure Assessment; EPA/600/Z-92/001; US Environmental Protection Agency: Washington, DC, USA, 1992; Volume 57, pp. 22888–22938.
- Zamir, R.; Islam, N.; Kudrat-E-Zahan; Asraf, A.; Zakaria, C.M. An Insight into Pathway and Health Risk Assessment of Toxic Metals in Herbal Medicine. J. Chem. 2022, 2022, 2610852. [Google Scholar] [CrossRef]
- US EPA. Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities; EPA/530/R-05/006; US Environmental Protection Agency: Washington, DC, USA, 2005.
- Meseret, M.; Ketema, G.; Kassahun, H. Health Risk Assessment and Determination of Some Heavy Metals in Commonly Consumed Traditional Herbal Preparations in Northeast Ethiopia. J. Chem. 2020, 2020, 8883837. [Google Scholar] [CrossRef]
- Zuo, T.T.; Jin, H.Y.; Zhang, L.; Liu, Y.L.; Nie, J.; Chen, B.L.; Fang, C.f.; Xue, J.; Bi, X.y.; Zhou, L.; et al. Innovative Health Risk Assessment of Heavy Metals in Chinese Herbal Medicines Based on Extensive Data. Pharmacol. Res. 2020, 159, 104987. [Google Scholar] [CrossRef] [PubMed]
- Kolapo, A.A.; Omoboyede, J.O. Health Risk Assessment of Natural Radionuclide and Heavy Metals in Commonly Consumed Medicinal Plants in South-West Nigeria. Ife J. Sci. 2018, 20, 529. [Google Scholar] [CrossRef]
- Yang, C.M.; Chien, M.Y.; Chao, P.C.; Huang, C.M.; Chen, C.H. Investigation of Toxic Heavy Metals Content and Estimation of Potential Health Risks in Chinese Herbal Medicine. J. Hazard. Mater. 2021, 412, 125142. [Google Scholar] [CrossRef] [PubMed]
- Nkansah, M.A.; Opoku, F.; Ackumey, A.A. Risk Assessment of Mineral and Heavy Metal Content of Selected Tea Products from the Ghanaian Market. Environ. Monit. Assess. 2016, 188, 332. [Google Scholar] [CrossRef]
Plant sp. | Plant Samples Origin | Plant Part | Heavy Metals Ions Concentration (mg/kg) | Refs. | |||||
---|---|---|---|---|---|---|---|---|---|
Cd(II) | Pb(II) | Cu(II) | Zn(II) | Ni(II) | Mn(II) | ||||
Oenothera biennis | Qingchengzi mining area, China | roots | 0.15–1.22 | 43–83.2 | 1.7–3.8 | 43.9–212.7 | - | - | [62] |
aerial parts | 0.12–0.79 | 5.5–42.4 | 1.6–2.9 | 36.6–151.8 | - | - | |||
Taraxacum mongolicum | roots | 0.93–2.20 | 128.4–212.2 | 7.3–8.9 | 35.9–127.2 | - | - | ||
aerial parts | 2.11–5.18 | 51.7–71.7 | 5.8–11.5 | 23.1–58.2 | - | - | |||
Plantago asiatica | roots | 0.31–15.0 | 65.9–344.7 | 14–18.4 | 90.1–651 | - | - | ||
aerial parts | 0.30–14.5 | 20.9–181.8 | 7.6–17 | 70–344.9 | - | - | |||
Portulaca oleracea | roots | 0.83 | 25.8 | 11.7 | 129.8 | - | - | ||
aerial parts | 0.37 | 21.8 | 9.9 | 73.1 | - | - | |||
Echinacea pallida var. pallida | Laboratory experiments in greenhouse | roots | 0.13–0.15 | 2.305–2.989 | 15.164–18.420 | 28.787–39.604 | 3.689–5.983 | 81.35–97.37 | [63] |
aerial parts | 0.10–0.11 | 0.412–0.753 | 8.979–22.241 | 14.463–14.957 | 0.898–0.983 | 8.91–9.25 | |||
Echinacea purpurea var. purpurea | roots | 0.11–0.24 | 1.770–7.247 | 25.326–25.284 | 51.72–142.23 | 3.307–16.155 | 60.41–272.78 | ||
aerial parts | 0.10–0.12 | 0.345–1.015 | 17.194–27.875 | 21.445–22.577 | 1.229–2.485 | 24.80–25.21 | |||
Echinacea purpurea var. baby white swan | roots | 0.12–0.13 | 1.198–2.211 | 16.459–29.079 | 23.569–27.267 | 3.625–4.481 | 54.50–70.81 | ||
aerial parts | 0.08–0.11 | 0.648–0.834 | 10.453–12.709 | 18.798–19.370 | 1.208–2.399 | 16.54–32.05 | |||
Echinacea purpurea var. double decker | roots | 0.098–0.10 | 0.481–1.818 | 8.495–17.822 | 23.755–23.789 | 0.595–3.412 | 41.27–57.97 | ||
aerial parts | 0.103–0.11 | 0.390–0.793 | 10.350–14.509 | 16.278–19.621 | 1.445–1.837 | 19.66–41.13 | |||
Echinacea paradoxa var. paradoxa | roots | 0.116–0.13 | 0.286–1.893 | 6.173–35.347 | 21.178–32.894 | 0.716–3.927 | 33.65–66.64 | ||
aerial parts | 0.09–0.12 | 0.551–2.180 | 10.397–23.762 | 17.441–26.995 | 1.052–4.821 | 13.67–78.67 | |||
Lavandula vera L. | Agricultural fields contaminated by the Non-Ferrous-Metal Works, KCM- Plovdiv, Bulgaria | roots | 2.3–160.9 | 20.5–1566.9 | - | 46.8–1755.9 | - | - | [64] |
stems | 3.1–27.1 | 71.2–2157.9 | - | 74.9–683.2 | - | - | |||
leaves | 28.4–113.2 | 89.97–5784.7 | - | 80.2–2881.9 | - | - | |||
flowering stalks | 0.62–15.6 | 31.4–1147.3 | - | 57.1–349.3 | - | - | |||
Matricaria chamomilla | Commercially available teas produced in different European Countries | flowers | 0.08–0.81 | 0.56–1.28 | 4.09–11.4 | 63.4–109 | - | 54.7–184 | [65] |
Camellia sinesis | leaves | 36.3–202 | 1.50–4.77 | 9.35–22.6 | 30.7–116 | - | 1.15–1.76 | ||
Achillea millefolium | From spontaneous flora of Galați County, Romania and different indigenous products (herbal teas packs) | flowers | 0.02–0.04 | 0.09–0.42 | 11.00–15.00 | - | - | - | [66] |
Calendula officinalis | flowers | 0.01 | 0.14–0.24 | 4.00–24.00 | - | - | - | ||
Matricaria chamomilla | flowers | 0.01–0.02 | 0.04–0.49 | 11.00–17.00 | - | - | - | ||
Ocimum basilicum | aerial parts | 0.01 | 0.60–2.03 | 10.00–15.00 | - | - | - | ||
Tilia cordata | flowers | 0.01–0.05 | 0.01–0.32 | 0.00–17.00 | - | - | - | ||
Anethum graveolens | leaves | 0.02–0.12 | 0.08–0.09 | 127–142 | - | - | - | ||
Origanum majorana | aerial parts | 0.05 | 0.14–0.95 | 131–348 | - | - | - | ||
Origanum vulgare | aerial parts | 0.06–0.07 | 0.04 | 198–201 | - | - | - | ||
Mentha piperita | leaves | 0.01–0.10 | 0.18–1.28 | 157–309 | - | - | - | ||
Petroselinum crispum | leaves | 0.05–0.07 | 0.06–0.11 | 122–133 | - | - | - | ||
Thymus vulgaris | aerial parts | 0.03–0.09 | 0.07–0.11 | 131–191 | - | - | - | ||
Thymus Vulgaris | Ash-shouback south region, Jordan | aerial parts | BLD | 33.03 | 13.23 | 16.18 | 23.85 | 15.52 | [67] |
Tymus serpyllum | aerial parts | BLD | 1.26 | 10.40 | 15.80 | BLD | 14.7 | ||
Saliva officinalis | aerial parts | BLD | BLD | 7.66 | 114.91 | 0.47 | 44.0 | ||
Hypericum perforatum | Site close to a country road inside the Canale Monterano Natural Park/Site located in the inner city of Rome, Italy | flowers | 0.03/0.27 | 2.88/3.96 | 6.27/9.36 | 21.33/26.46 | 0.40/5.80 | - | [68] |
roots | 0.02/0.77 | 3.40/73.30 | 6.45/8.75 | 29.82/25.60 | 0.04/1.12 | - | |||
cauline leaves | 0.02/0.72 | 0.24/7.82 | 2.71/10.13 | 20.66/29.33 | 0.32/1.32 | - | |||
stalk | 0.02/0.27 | 0.02/70.30 | 1.09/2.25 | 18.10/26.70 | 0.02/0.09 | - | |||
Dactylis glomerata | flowers | 0.09/0.02 | 0.47/1.55 | 1.77/2.75 | 10.45/8.47 | 0.09/0.02 | - | ||
roots | 0.76/0.81 | 0.35/30.32 | 3.97/6.76 | 14.91/39.17 | 0.04/0.05 | - | |||
basal leaves | 0.34/0.96 | 0.74/8.60 | 0.98/5.28 | 9.14/17.20 | 0.39/0.36 | - | |||
stalk | 0.43/0.39 | 0.13/0.61 | 0.36/2.00 | 6.76/9.24 | 0.02/0.91 | - | |||
Plantago lanceolata | flowers | 0.02/3.12 | 0.59/1.89 | 4.20/0.12 | 37.42/18.87 | 0.02/3.45 | - | ||
roots | 0.12/0.84 | 0.52/8.48 | 7.80/17.38 | 14.97/67.13 | 0.19/0.44 | - | |||
cauline leaves | 0.01/0.01 | 0.77/2.91 | 1.93/4.94 | 6.35/20.25 | 0.39/0.02 | - | |||
stalk | 0.02/0.99 | 0.04/2.10 | 0.79/2.96 | 2.67/13.38 | 0.02/0.06 | - | |||
Verbascum thapsus | flowers | 0.07/0.02 | 0.10/0.83 | 1.21/6.20 | 2.12/19.91 | 0.11/0.50 | - | ||
roots | 0.05/0.08 | 1.83/3.50 | 7.48/9.24 | 3.72/36.88 | 0.53/0.02 | - | |||
cauline leaves | 0.02/0.15 | 0.56/8.81 | 3.79/8.30 | 3.60/27.31 | 0.17/0.29 | - | |||
stalk | 0.02/0.02 | 0.26/9.21 | 3.27/9.24 | 1.49/15.60 | 0.02/0.02 | - | |||
Cichorium intybus | flowers | 3.51/0.05 | 0.11/0.58 | 3.48/4.81 | 18.75/15.29 | 1.11/0.79 | - | ||
roots | 0.17/0.19 | 0.40/4.82 | 3.67/7.86 | 11.77/17.7 | 0.49/0.50 | - | |||
basal leaves | 0.02/1.16 | 0.29/4.81 | 1.76/21.25 | 23.27/53.90 | 0.02/1.16 | - | |||
cauline leaves | 0.02/0.27 | BLD | 2.59/6.40 | 3.31/66.35 | 0.45/0.33 | - | |||
stalk | 0.15/0.11 | 0.02/4.32 | 2.29/2.84 | 5.34/35.75 | 0.33/0.19 | ||||
Hypericum perforatum | “Dealul Bujorului” Natural Reservation and “Izvorul Cerbului” camping, Romania | flowers | 0.16–0.68 | - | 22.56–43.62 | 23.66–30.64 | - | 11.91–20.67 | [69] |
leaves | 0.078–0.84 | - | 0.465–5.602 | 30.2–75.62 | - | 194.6–254.2 | |||
stems | 0.42–4.65 | - | 17.64–19.85 | 13.16–17.64 | - | 7.25–15.74 | |||
Hypericum perforatum | Sites from the Rhodope Mountains | aerial parts | 0.35–0.92 | 0.7–1.9 | 5.6–9.1 | 21–47 | 0.7–11.7 | 12–69 | [70] |
Valeriana officinalis L. | Soil from agricultural land located away from excessive traffic, Krokocice village, Poland | roots | - | - | 8.50 | 49.5 | - | 81.0 | [71] |
Cichorium intybus L. | Van Lake Basin Van Turkey | aerial parts | 0.15 | 0.14 | 10.80 | 18.84 | - | 20.04 | [72] |
Urtica dioica | Meža Valley (Slovenia) | aerial parts | 0.2–0.9 | 1.1–15.5 | 5.0–18.7 | 29.1–73.5 | - | 17.3–318.0 | [73] |
Hypericum perforatum | aerial parts | 0.2–4.2 | 2.1–25.1 | 6.3–11.7 | 26.9–103.4 | - | 7.8–75.4 | ||
Achillea millefolium | aerial parts | 0.3–5.7 | 1.5–15.9 | 4.2–9.9 | 23.2–211.7 | - | 16.6–163.2 | ||
Plantago lanceolata | aerial parts | 0.3–16 | 1.4–195.9 | 4.2–9.3 | 33.3–799.5 | - | 10.3–75.4 | ||
Thymus serpyllum L. | Kuyavia- Pomerania Province, Poland | inflorescences | - | 4.1–6.80 | 21.75–30.85 | 64.75–106.2 | - | 124.3–338.6 | [74] |
leaves + stems | - | 12.00–17.90 | 7.80–16.20 | 41.95–116.9 | - | 128.0–289.1 | |||
roots | - | 5.00–20.80 | 22.00–28.20 | 34.05–109.4 | - | 119.6–264.6 | |||
Urtica dioica | Sites in Spreča river valley, Bosnia and Herzegovina | aerial parts | 0.022 | 0.04 | 13.81 | 31.8 | 1.7 | - | [75] |
Artemisia vulgaris | aerial parts | 0.034 | 3.36 | 16.92 | 34.5 | 42.9 | - | ||
Mentha arvensis | aerial parts | 0.019 | 1.31 | 13.87 | 32.2 | 7.6 | - | ||
Urtica urens | aerial parts | BLD | BLD | 12.9 | 38.9 | 5.2 | - | ||
Achillea millefolium | aerial parts | BLD | BLD | 12.1 | 36.2 | 6.1 | - | ||
Calendula officinalis | Natural habitats of the plants, region of Southeast Serbia | flower | - | - | 12.82 | 18.15 | - | 24.38 | [76] |
Primula officinalis | flower | - | - | 20.35 | 22.36 | - | 36.60 | ||
Origanum vulgare | aerial parts | - | - | 23.95 | 49.65 | - | 21.80 | ||
Cichorium intybus | aerial parts | - | - | 20.50 | 32.40 | - | 49.39 | ||
Saturea montana | aerial parts | - | - | 15.77 | 25.12 | - | 40.65 | ||
Delphinidum consolida | aerial parts | - | - | 23.06 | 39.84 | - | 13.84 | ||
Papaver rhoeas | flower | - | - | 35.50 | 31.80 | - | 20.61 | ||
Atropa belladonna | Laboratory studies | seeds | 0.11 | BLD | 11.61 | 50.58 | 1.13 | 18.81 | [77] |
roots | 0.14 | BLD | 7.44 | 15.03 | 2.89 | 17.56 | |||
Tanacetum vulgare L. | Landfill site located in the Pilsen Region, Czech Republic | root | 0.294–1.63 | 1.335–18.03 | 29.35–75.82 | 39.50–166.2 | 8.84–77.66 | 138.0–560.7 | [78] |
stalk | 0.620–2.077 | 0.029–4.141 | 3.331–33.85 | 40.82–230.6 | 0.241–70.65 | 38.10–237.2 | |||
leaf | 0.609–2.190 | 0.639–6.240 | 17.91–62.86 | 58.30–721.9 | 6.77–163.5 | 172– 401.1 | |||
Hypoxis helmerocallidea | Muthi shops and open street markets in Pietermaritzburg KwaZulu-Natal, South Africa | tuber | 0–0.04 | 0.58–1.50 | 7.83–11.90 | 27.15–40.67 | 2.54–2.59 | 182.25–234.79 | [79] |
Rapenea melanophloeos | stem bark | 0–0.04 | 0.24–1.96 | 1.96–3.47 | 3.99–5.16 | 2.47–2.52 | 55.14– 163 | ||
Bulbine natalensis | root | 0.24–0.28 | 3.69–5.16 | 4.58–19.70 | 51.68–107.33 | 3.82–6.28 | 169– 479 | ||
Alepidea amatymbica | root | 0.27–0.39 | 0.37–4.54 | 13.00–19.33 | 45.25–55.93 | 12–30 | 238–248.69 | ||
Drimia elata | bulb | 0.01–0.06 | 0.22–1.23 | 5.61–11.25 | 34.07–102.57 | 4.24–10 | 60.69–145.76 | ||
Lycopodium clavatum | whole plant | 0.11–0.15 | 0–3.93 | 6.25–7.15 | 20.48–24.37 | 4.56–6.55 | 144– 315 | ||
Schizocarphus nervosus | bulb | 0–0.01 | 0.1–0.42 | 2.46–3.71 | 19.79–25.28 | 398–4.89 | 41.86–49.57 | ||
Momordica foetida | root | 0.01 | 2.87–3.62 | 5.78–6.61 | 34.56–36.11 | 5.78–6.61 | 44.77–55.28 | ||
Carduus nutans | Historical polluted sites from Navodari area, Romania | leaf | 0.005–0.053 | 2.18–25.63 | 1.88–15.21 | 12.66–31.01 | 0.211–1.29 | - | [80] |
Taraxacum officinale | leaf | 0.002–0.078 | 1.117–13.79 | 5.70–13.84 | 20.45–35.49 | 0.108–0.812 | - | ||
Maximum permissible levels (mg/kg) | 0.3 | 10 | 20 | 50 | - | - | [81,82] |
Plant | Metals Ions | Level of Heavy Metals | Plant Growth System | Plant Component | Enzymatic Antioxidant | Nonenzymatic Antioxidant | Refs. |
---|---|---|---|---|---|---|---|
Camellia sinensis | Cu(II) | 50–600 µM | hydroponic culture | root and leaves | SOD↑ POD↑ CAT↑ APX↑ | MDA↑ Phenol↑ | [138] |
Erigeron annuus | Cd(II) | 0–200 µM | hydroponic culture | root, stem, and leaves | SOD↓ CAT↓ POD↑ | MDA↑ Proline↑ NPT↑ GSH↑ PC↑ | [139] |
Mentha spicata | Cr(III) Cd(II) Co(II) Ni(II) Pb(II) | 0–30,512 µg/g 1.2–100 µg/g 1.1–45 µg/g 0–60 µg/g 0–38 µg/g | soil and sludge | root, stem, and leaves | SOD↑ POD↑ CAT↑ | MDA↑ Proline↑ | [140] |
Solanum nigrum | Cr(III) | 0, 0.5, 1 mM | soil | leaves | SOD↑ POD↑ | Proline↑ | [141] |
roots | - | Citric acid↑ Malic acid↑ | |||||
Parthenium hysterophorus | soil | leaves | SOD↑ POD↑ | Proline↑ | |||
root | - | Citric acid↑ Glutamic acid↑ Malic acid↑ | |||||
Urtica dioica | Cd(II) | 0, 0.045, and 0.09 mM | hydroponic culture | root, stem and leaves | GR↑ GST↑ GSH-Px↑ | GSH↑ GSSG↑ LPO↑ | [142] |
Withania somnifera | Fe(II) | 25, 50, 100 and 200 µM | hydroponic culture | root and leaves | SOD↑ CAT↑ GPX↑ | - | [143] |
Lemna minor | Co(II) | 0, 0.01 and 1 mM | hydroponic culture | plants | SOD↓ | TBARS↑ | [144] |
Nicotiana tabacum | Cd | 0, 100 and 500 µM | hydroponic culture | plants | SOD↑ APX↑ GPX↑ CAT↑ | Proline↑ GSH↑ GSSG↑ | [145] |
Coriandrum sativum L. | Pb | 0, 500, 1000, 1500 mg/kg | soil | plants | CAT↑ POD↑ SOD↑ | Flavonoid↑ Vitamin C↓ MDA↑ | [146] |
Mentha piperita | Ni(II) | 100, 250, and 500 μM | hydroponic system | roots and leaves | CAT↑ APX↑ POD↑ SOD↑ | Soluble proteins MDA↑ Carotenoids↓ H2O2↑ protein ↓ | [147] |
Ocimum basilicum L. | Cd(II) and Al(III) | 0–100 mg/kg | soil | epigeal parts | DPPH↑ | Phenols↑ Flavonoids↑ flavanols↑ | [148] |
Matricaria chamomilla | Mn(II) | 0 and 1000 μM | soil | shoots | APX↑ GPX↑ CAT↑ GR↓ | AsA ↓ NPT↓ Soluble proteins↓ Soluble phenols↓ | [149] |
Mentha piperita L. | Cd(II) | 0–40 mg/kg | soil | leaves | CAT↑ APX↑ PPO↑ | Proline↑ MDA↑ Total Phenol↑ Total protein↓ H2O2↑ | [150] |
Hypericum perforatum | Cd(II) | 0, 10 μM | hydroponic | shoots | PAL↓ | Total soluble phenols↑ Flavonols↑ Epicatechin↑ Procyanidins↑ Proline↑ MDA↑ Ascorbic acid↓ Glycine↓ GSH↓ GSSG↓ | [151] |
root | PAL↓ | Total soluble phenols↑ Flavonols↓ Epicatechin↑ Procyanidins↓ | |||||
Origanum vulgare L. | Ni(II) | 0–500 ppm | soil mixed with perlite | leaves | - | Anthocyanins↓ Carotenoids↓ MDA↑ Proline↑ Total Phenols↑ | [152] |
Cu(II) | 0–1000 ppm | soil mixed with perlite | leaves | - | Anthocyanins↓ Carotenoids↓ MDA↑ Proline↑ Total Phenols↓ | ||
Zn(II) | 0–3000 ppm | soil mixed with perlite | leaves | - | Anthocyanins↓ Carotenoids↓ MDA↑ Proline↑ Total Phenols↓ | ||
Matricaria chamomilla | Cd(II) | 0–360 μM | hydroponic culture | flowers | SOD↑ POD↑ | MDA↑ Apigenin↑ | [153] |
Matricaria chamomilla | Zn(II) | 43.2–343.2 mg/kg | orthic luvisol | anthodia | - | Apigenin↑ Herniarin↓ | [154] |
Matricaria chamomilla | Pb(II) | 0–75 μM | hydroponic culture | leaves | - | Proline↑ | [155] |
Ocimum basilicum | Ni(II) | 0–500 ppm | soil mixed with perlite | leaves | SOD↑ CAT↓ APX↑ NR↑ p5CS↑ | Anthocyanins↓ Carotenoids↓ MDA↑ H2O2↑ NO↑ Proline↑ Protein↑ Profilin↓ | [136] |
Cu(II) | 0–1000 ppm | soil mixed with perlite | leaves | SOD↑ CAT↑ APX↑ NR↑ p5CS↑ | Anthocyanins↓ Carotenoids↓ MDA↑ H2O2↑ NO↑ Proline↑ Protein↓ Profilin↑ | ||
Zn(II) | 0–3000 ppm | soil mixed with perlite | leaves | SOD↑ CAT↑ APX↑ NR↑ p5CS↑ | Anthocyanins↓ Carotenoids↓ MDA↓ H2O2↑ NO↑ Proline↑ Protein↓ Profilin↓ | ||
Matricaria chamomilla L. | Cd(II) | 0–40 mg/kg | soil | leaves | SOD↑ CAT↑ | Carotenoids↑ Proline↑ Sugar↓ lipid peroxidation↑ | [156] |
Pb(II) | 0–180 mg/kg | soil | leaves | SOD↑ CAT↑ | Carotenoids↑ Proline↑ Sugar↓ lipid peroxidation↑ | ||
Ocimum basilicum L. | Cd(II), Pb(II) and Zn(II) | 0.25, 16 and 46.03 mg/kg vs. and 14, 142 and 207 mg/kg | soil | shoots | CAT↑ GPX↑ GST↑ GR↑ GPO↑ MDHAR↓ DHAR↓ APX↓ PAL↑ | MDA↑ H2O2↓ GSH↓ GSSG↓ ASC↓ DHASC↑ phenols ↑ flavonoids↑ | [157] |
Origanum vulgare L. | Cd(II), Pb(II) and Zn(II) | 0.25, 16 and 46.03 mg/kg vs. and 14, 142 and 207 mg/kg | soil | shoots | CAT↓ GPX↑ GST↑ GR↑ GPO↑ MDHAR↓ DHAR↓ APX↑ PAL↓ | MDA↓ H2O2↓ GSH↑ GSSG↓ ASC↑ DHASC↑ phenols ↑ flavonoids↓ | |
Polygonatum sibiricum | Cd(II) | 0–54.60 mg/kg | soil | roots and aerial parts | SOD↑ POD↓ CAT↓ | Polysaccharide↑ | [158] |
Plantago lanceolata | Cd(II) Zn(II) Pb(II) Cu(II) Mn(II) | 2.7–301.2 mg/kg 358.8–70445.8 mg/kg 123.1–4230.9 mg/kg 12.9–74.1 mg/kg 64.7–779.2 mg/kg | metalliferous and non-metalliferous soil | leaves | POD↑ SOD↑ | GSH↑ Proline↓ | [159] |
Salvia officinalis | Pb(II) | 0–400 μM | hydroponic culture | leaves | APX↑ GPX↑ SOD↑ GR↑ | Protein↓ MDA↑ H2O2↑ | [160] |
Lonicera japonica | Cd(II) | 0–200 mg/kg | soil | leaves | APX↑ DHAR↑ MDHAR↑ GR↑ | H2O2↑ GSH↑ GSSG↓ NPT↑ Proline↑ | [161] |
Risk Equations | Equation Form | Equation Parameters | Refs. | |
---|---|---|---|---|
Reference Dose, RfD | (2) | RfD = Reference dose (mg/kg/day); NOAEL = No observed adverse effects level; UF = Uncertainty Factors; MF = Modification Factors. | [167] | |
Potential Dose, PD | PD = C × IR | (3) | C = Concentration (mg/kg); IR = Ingestion rate (g/day). | [173] |
Average Daily Dose, ADD | (4) | ADD = average daily dose (mg/kg/day); C = heavy metals concentration detected in food products (mg/kg); IR = ingestion rate (g/day). | [174] | |
Average Daily Dose, ADDor Estimated Daily Intake, EDI | (5) | ADD = average daily dose (mg/kg/day); EDI = estimated daily dose (mg/kg/day); C = heavy metals concentration detected in food products (mg/kg); IR = ingestion rate (g/day); ED = exposure duration (days/year); EF = exposure frequency (years); BW = body weight (kg); AT = averaging time (days). | [24,163,173,175] | |
(6) | ||||
Hazard Quotient, HQ | (7) | ADD = average daily dose (mg/kg/day); EDI = estimated daily intake (mg/kg/day); RfD = reference dose (mg/kg/day). | [174] | |
(8) | ||||
Hazard Index, HI | (9) | HQ = Hazard Quotient. | [174] | |
Risk for carcinogenic chemical substances | (10) | LADD = Lifetime Average Daily Dose, (mg/kg/day); SF = slope factor cancerogenic, [(mg/kg/day)−1]. | [176] | |
Cumulative risk | (11) | Riski = Carcinogenic risk for chemical substance i. | [176] |
Herbal/Herbal Mix/Product | Heavy Metals Detected | HQ | HI | Refs. | |
---|---|---|---|---|---|
Metal Ion | Concentration (mg/kg) | ||||
Aster tataricus L.f. | Cr(III) | 4.58 | 9.41 × 10−5 | 8.84 × 10−2 | [175] |
Ni(II) | 4.12 | 6.35 × 10−3 | |||
Cu(II) | 24.73 | 1.91 × 10−2 | |||
Zn(II) | 58.11 | 5.97 × 10−3 | |||
As(II) | 0.19 | 1.91 × 10−2 | |||
Cd(II) | 0.45 | 1.37 × 10−2 | |||
Hg(II) | 0.20 | 8.72 × 10−3 | |||
Pb(II) | 1.74 | 1.54 × 10−2 | |||
Salvia miltiorrhiza Bge | Cr(III) | 0.76 | 2.61 × 10−5 | 7.68 × 10−2 | |
Ni(II) | 4.53 | 1.16 × 10−2 | |||
Cu(II) | 10.27 | 1.32 × 10−2 | |||
Zn(II) | 14.92 | 2.55 × 10−3 | |||
As(II) | 0.10 | 8.59 × 10−3 | |||
Cd(II) | 0.06 | 3.02 × 10−3 | |||
Hg(II) | 0.36 | 2.62 × 10−2 | |||
Pb(II) | 0.79 | 1.16 × 10−2 | |||
Radix Aucklandiae | Cr(III) | 0.05 | 6.61 × 10−3 | 9.53 × 10−2 | |
Ni(II) | 5.27 | 4.87 × 10−3 | |||
Cu(II) | 82.93 | 3.83 × 10−2 | |||
Zn(II) | 50.49 | 3.11 × 10−3 | |||
As(II) | 0.04 | 4.47 × 10−3 | |||
Cd(II) | 0.24 | 4.47 × 10−3 | |||
Hg(II) | 0.20 | 5.22 × 10−3 | |||
Pb(II) | 7.01 | 3.71 × 10−2 | |||
Scutellaria baicalensis Georgi | Cr(III) | 0.28 | 5.06 × 10−6 | 3.87 × 10−2 | |
Ni(II) | 2.98 | 3.98 × 10−3 | |||
Cu(II) | 13.56 | 9.06 × 10−3 | |||
Zn(II) | 13.21 | 1.18 × 10−3 | |||
As(II) | 0.03 | 3.04 × 10−3 | |||
Cd(II) | 0.26 | 6.84 × 10−3 | |||
Hg(II) | 0.22 | 8.07 × 10−3 | |||
Pb(II) | 0.86 | 6.55 × 10−3 | |||
Aloe Percrassa, Verbascum sinaiticum | Pb(II) | 3.30 | 0.1269 | 0.7229 | [177] |
Cr(III) | 10.70 | 0.5487 | |||
Cu(II) | 12.3 | 0.0473 | |||
Chenopodium murale | Pb(II) | 3.75 | 0.2875 | 1.228 | |
Cr(III) | 8.45 | 0.86 | |||
Cu(II) | 10.5 | 0.0807 | |||
Urtica simensis, Trigonella Foenum-graceeum, Calpurnia aure | Pb(II) | 4.00 | 0.3075 | 1.472 | |
Cr(III) | 10.60 | 1.08 | |||
Cu(II) | 11.05 | 0.0850 | |||
Verbena officinalis, Dodonaea angustifolia, Calpurnia aurea | Pb(II) | 4.00 | 0.3075 | 1.438 | |
Cr(III) | 10.15 | 1.04 | |||
Cu(II) | 11.85 | 0.091 | |||
Carica papaya, Dodonaea angustifolia | Pb(II) | 3.00 | 0.23 | 0.776 | |
Cr(III) | 5.35 | 0.54 | |||
Cu(II) | 0.81 | 0.006 | |||
Rumex abyssinicus, Trigonella Foenum-graceeum, Thymus vulgari | Pb(II) | 3.92 | 0.3 | 0.876 | |
Cr(III) | 5.60 | 0.57 | |||
Cu(II) | 0.86 | 0.0065 | |||
Argy Wormwood | Pb(II) | 4.713 | 0.316 | 1.326 | [178] |
Cd(II) | 1.051 | 0.247 | |||
As(II) | 0.884 | 0.692 | |||
Hg(II) | 0.027 | 0.063 | |||
Cu(II) | 16.39 | 0.008 | |||
Plantain Herb | Pb(II) | 3.110 | 0.209 | 1.541 | |
Cd(II) | 0.269 | 0.063 | |||
As(II) | 1.506 | 1.179 | |||
Hg(II) | 0.036 | 0.085 | |||
Cu(II) | 11.44 | 0.005 | |||
Peppermint | Pb(II) | 1.836 | 0.123 | 0.653 | |
Cd(II) | 0.116 | 0.027 | |||
As(II) | 0.329 | 0.257 | |||
Hg(II) | 0.103 | 0.242 | |||
Cu(II) | 9.254 | 0.004 | |||
Rhubarb | Pb(II) | 0.340 | 0.023 | 0.159 | |
Cd(II) | 0.086 | 0.020 | |||
As(II) | 0.112 | 0.088 | |||
Hg(II) | 0.011 | 0.026 | |||
Cu(II) | 3.551 | 0.002 | |||
Chrysanthemum Flower | Pb(II) | 0.888 | 0.060 | 1.146 | |
Cd(II) | 0.257 | 0.060 | |||
As(II) | 0.270 | 0.211 | |||
Hg(II) | 0.345 | 0.810 | |||
Cu(II) | 9.903 | 0.005 | |||
Common Coltsfoot Flower | Pb(II) | 1.173 | 0.079 | 0.651 | |
Cd(II) | 0.081 | 0.019 | |||
As(II) | 0.647 | 0.506 | |||
Hg(II) | 0.018 | 0.042 | |||
Cu(II) | 10.30 | 0.005 | |||
Turmeric Root Tuber | Pb(II) | 0.580 | 0.039 | 0.159 | |
Cd(II) | 0.179 | 0.042 | |||
As(II) | 0.087 | 0.068 | |||
Hg(II) | 0.004 | 0.009 | |||
Cu(II) | 2.348 | 0.001 | |||
Hibiscus sabdariffa | Zn(II) | 4.10 | 0.77 | 2.07 | [179] |
Pb(II) | 0.74 | 0.13 | |||
Cd(II) | 0.10 | 0.10 | |||
Ni(II) | 0.39 | 0.29 | |||
Cu(II) | 0.08 | 0.01 | |||
Fe(II) | 7.9 | 0.77 | |||
Curcuma longa | Zn(II) | 5.20 | 1.00 | 2.52 | |
Pb(II) | 0.79 | 0.15 | |||
Cd(II) | 0.12 | 0.12 | |||
Ni(II) | 0.37 | 0.25 | |||
Cu(II) | 0.26 | 0.04 | |||
Fe(II) | 9.8 | 0.96 | |||
Ocimum basilicum | Zn(II) | 5.18 | 0.99 | 2.30 | |
Pb(II) | 0.74 | 0.13 | |||
Cd(II) | 0.16 | 0.16 | |||
Ni(II) | 0.38 | 0.27 | |||
Cu(II) | 0.12 | 0.02 | |||
Fe(II) | 7.5 | 0.73 | |||
Allium sativum | Zn(II) | 5.60 | 1.04 | 2.44 | |
Pb(II) | 0.62 | 0.10 | |||
Cd(II) | 0.13 | 0.13 | |||
Ni(II) | 0.37 | 0.25 | |||
Cu(II) | 0.07 | 0.01 | |||
Fe(II) | 9.3 | 0.91 | |||
Zingiber officinale | Zn(II) | 7.20 | 1.39 | 2.69 | |
Pb(II) | 2.75 | 0.51 | |||
Cd(II) | 0.17 | 0.17 | |||
Ni(II) | 0.63 | 0.48 | |||
Cu(II) | 0.51 | 0.11 | |||
Fe(II) | 0.3 | 0.03 | |||
Asprellae ilicis radix | Pb(II) | 0.0126 | 1.76 | 2.65 | [180] |
Cd(II) | 0.00178 | 0.89 | |||
Hedyotidis diffusae herba | Pb(II) | 0.00302 | 0.85 | 2.72 | |
As(II) | 0.00088 | 0.41 | |||
Cd(II) | 0.00146 | 1.46 | |||
Plantaginis herba | Pb(II) | 0.00264 | 0.37 | 1.00 | |
As(II) | 0.00239 | 0.56 | |||
Cd(II) | 0.00014 | 0.07 | |||
Lysimachiae herba | Pb(II) | 0.00323 | 0.9 | 1.53 | |
As(II) | 0.00065 | 0.3 | |||
Cd(II) | 0.00032 | 0.32 | |||
Violae herba | Pb(II) | 0.00464 | 0.65 | 1.24 | |
As(II) | 0.00175 | 0.41 | |||
Cd(II) | 0.00036 | 0.18 | |||
Centipedae herba | Pb(II) | 0.00673 | 0.38 | 1.00 | |
As(II) | 0.00168 | 0.16 | |||
Cd(II) | 0.00232 | 0.46 | |||
Eckloniae/Laminariae thallus | Pb(II) | 0.00267 | 0.15 | 3.42 | |
As(II) | 0.0337 | 3.13 | |||
Cd(II) | 0.0007 | 0.14 | |||
Toxicodendri resina | Pb(II) | 0.0738 | 1.55 | 11.9 | |
As(II) | 0.00478 | 0.17 | |||
Cd(II) | 0.00055 | 0.04 | |||
Hg(II) | 0.0977 | 10.2 | |||
Pheretima | Pb(II) | 0.0141 | 0.66 | 1.15 | |
As(II) | 0.0024 | 0.19 | |||
Cd(II) | 0.00164 | 0.27 | |||
Hg(II) | 0.00015 | 0.03 | |||
Fossilia Ossis Mastodi | Pb(II) | 0.0054 | 0.76 | 2.19 | |
As(II) | 0.0056 | 1.3 | |||
Cd(II) | 0.00026 | 0.13 | |||
Haematitum | Pb(II) | 0.00559 | 0.78 | 2.08 | |
As(II) | 0.00525 | 1.22 | |||
Hg(II) | 0.00011 | 0.08 | |||
Tea bags | Fe(II) | 1.05–7.45 | 2.00 × 10−4–1.42 × 10−3 | 0.68–1.11 | [181] |
Zn(II) | 0.10–0.30 | 4.44 × 10−5–1.33 × 10−3 | |||
As(II) | 1.40–2.00 | 0.62–0.89 | |||
Cd(II) | 0.10–1.50 | 0.01–0.20 | |||
Pb(II) | 0.10–0.40 | 3.81 × 10−3–1.52 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hlihor, R.M.; Roșca, M.; Hagiu-Zaleschi, L.; Simion, I.M.; Daraban, G.M.; Stoleru, V. Medicinal Plant Growth in Heavy Metals Contaminated Soils: Responses to Metal Stress and Induced Risks to Human Health. Toxics 2022, 10, 499. https://doi.org/10.3390/toxics10090499
Hlihor RM, Roșca M, Hagiu-Zaleschi L, Simion IM, Daraban GM, Stoleru V. Medicinal Plant Growth in Heavy Metals Contaminated Soils: Responses to Metal Stress and Induced Risks to Human Health. Toxics. 2022; 10(9):499. https://doi.org/10.3390/toxics10090499
Chicago/Turabian StyleHlihor, Raluca Maria, Mihaela Roșca, Laura Hagiu-Zaleschi, Isabela Maria Simion, Gabriel Mihăiță Daraban, and Vasile Stoleru. 2022. "Medicinal Plant Growth in Heavy Metals Contaminated Soils: Responses to Metal Stress and Induced Risks to Human Health" Toxics 10, no. 9: 499. https://doi.org/10.3390/toxics10090499
APA StyleHlihor, R. M., Roșca, M., Hagiu-Zaleschi, L., Simion, I. M., Daraban, G. M., & Stoleru, V. (2022). Medicinal Plant Growth in Heavy Metals Contaminated Soils: Responses to Metal Stress and Induced Risks to Human Health. Toxics, 10(9), 499. https://doi.org/10.3390/toxics10090499