Analysis and Modeling of Air Pollution in Extreme Meteorological Conditions: A Case Study of Jeddah, the Kingdom of Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Quality and Meteorological Data
2.2. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Jin, L.; Kan, H. Air pollution: A global problem needs local fixes. Nature 2019, 570, 437–439. [Google Scholar] [CrossRef] [Green Version]
- Anwar, M.N.; Shabbir, M.; Tahir, E.; Iftikhar, M.; Saif, H.; Tahir, A.; Murtaza, M.A.; Khokhar, M.F.; Rehan, M.; Aghbashlo, M.; et al. Emerging challenges of air pollution and particulate matter in China, India, and Pakistan and mitigating solutions. J. Hazard. Mater. 2021, 416, 125851. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J. Air pollution and health. Lancet Public Health 2016, 2, e4–e5. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Review of Evidence on Health Aspects of Air Pollution: REVIHAAP Project: Technical Report; (No. WHO/EURO: 2013-2663-42419-58845); WHO: Copenhagen, Denmark, 2013. [Google Scholar]
- Walters, S.; Ayres, J. The health effects of air pollution. In Pollution Causes, Effects and Control, 4th ed.; Harrison, R.M., Ed.; Royal Society of Chemistry: Cambridge, UK, 2001; Chapter 11; p. 275. ISBN 0-85404-621-6. [Google Scholar]
- Khallaf, M. (Ed.) The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources; InTech: London, UK, 2011; Available online: https://mts.intechopen.com/books/the-impact-of-air-pollution-on-health-economy-environment-and-agricultural-sources (accessed on 29 December 2019). [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, J.T.; Pelle, E.; Dong, K.; Brahmbhatt, K.; Yarosh, D.; Pernodet, N. Effects of ozone in normal human epidermal keratinocytes. Exp. Dermatol. 2013, 22, 360–361. [Google Scholar] [CrossRef] [Green Version]
- Kurt, O.K.; Zhang, J.; Pinkerton, K.E. Pulmonary health effects of air pollution. Curr. Opin. Pulm. Med. 2016, 22, 138–143. [Google Scholar] [CrossRef]
- Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.-Q.; Mei, X.-D.; Feng, D. Air pollution and chronic airway diseases: What should people know and do? J. Thorac. Dis. 2016, 8, E31–E40. [Google Scholar]
- Bourdrel, T.; Bind, M.-A.; Béjot, Y.; Morel, O.; Argacha, J.-F. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 2017, 110, 634–642. [Google Scholar] [CrossRef]
- Ivaskova, M.; Kotes, P.; Brodnan, M. Air Pollution as an Important Factor in Construction Materials Deterioration in Slovak Republic. Procedia Eng. 2015, 108, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, Y.; Lu, J. Exploring the relationship between air pollution and meteorological conditions in China under environmental governance. Sci. Rep. 2020, 10, 14518. [Google Scholar] [CrossRef]
- González, C.; Gómez, C.; Rojas, N.; Acevedo, H.; Aristizábal, B. Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city. Atmos. Environ. 2016, 152, 279–289. [Google Scholar] [CrossRef]
- Yuval; Tritscher, T.; Raz, R.; Levi, Y.; Levy, I.; Broday, D.M. Emissions vs. turbulence and atmospheric stability: A study of their relative importance in determining air pollutant concentrations. Sci. Total Environ. 2020, 733, 139300. [Google Scholar] [CrossRef]
- Kiesewetter, G.; Amann, M. Urban PM2.5 Levels under the EU Clean Air Policy Package; TSAP Report #12, Version 1.0; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2014. [Google Scholar]
- Berkowicz, R. OSPM-A Parameterised Street Pollution Model. Environ. Monit. Assess. 2000, 65, 323–331. [Google Scholar] [CrossRef]
- Steiner, A.L.; Davis, A.J.; Sillman, S.; Owen, R.C.; Michalak, A.M.; Fiore, A.M. Observed suppression of ozone for-mation at extremely high temperatures due to chemical and biophysical feedbacks. Proc. Natl. Acad. Sci. USA 2010, 107, 19685–19690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coates, J.; Mar, K.A.; Ojha, N.; Butler, T.M. The influence of temperature on ozone production under varying NOx conditions–a modelling study. Atmos. Chem. Phys. 2016, 16, 11601–11615. [Google Scholar] [CrossRef] [Green Version]
- Nolte, C.G.; Spero, T.L.; Bowden, J.H.; Sarofim, M.C.; Martinich, J.; Mallard, M.S. Regional temperature-ozone re-lationships across the US under multiple climate and emissions scenarios. J. Air Waste Manag. Assoc. 2021, 71, 1251–1264. [Google Scholar] [CrossRef]
- Aldrin, M.; Haff, I.H. Generalised additive modelling of air pollution, traffic volume and meteorology. Atmos. Environ. 2005, 39, 2145–2155. [Google Scholar] [CrossRef]
- Andersen, S.B.; Weatherhead, E.C.; Stevermer, A.; Austin, J.; Brühl, C.; Fleming, E.L.; De Grandpré, J.; Grewe, V.; Isaksen, I.; Pitari, G.; et al. Comparison of recent modeled and observed trends in total column ozone. J. Geophys. Res. Earth Surf. 2006, 111, D02303. [Google Scholar] [CrossRef] [Green Version]
- Arnold, S.R.; Chipperfield, M.P.; Blitz, M.A. A three-dimensional model study of the effect of new temperature-dependent quantum yields for acetone photolysis. J. Geophys. Res. Earth Surf. 2005, 110, D22305. [Google Scholar] [CrossRef] [Green Version]
- Baur, D.; Saisana, M.; Schulze, N. Modelling the effects of meteoro-logical variables on ozone concentration-a quantile regression approach. Atmos. Environ. 2004, 38, 4689–4699. [Google Scholar] [CrossRef]
- Berastegi, G.I.; Madariaga, I.; Elias, A.; Agirre, E.; Uria, J. Long term changes of O3 and traffic in Bilbao. Atmos. Environ. 2001, 35, 5581–5592. [Google Scholar] [CrossRef]
- Brasseur, G.P.; Hauglustaine, D.; Walters, S.; Rasch, P.J.; Müller, J.-F.; Granier, C.; Tie, X.X. MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description. J. Geophys. Res. Earth Surf. 1998, 103, 28265–28289. [Google Scholar] [CrossRef]
- Munir, S.; Chen, H.; Ropkins, K. Modelling the impact of road traffic on ground level ozone concentration using a quantile regression approach. Atmos. Environ. 2012, 60, 283–291. [Google Scholar] [CrossRef]
- Westmoreland, E.M.; Carslaw, N.; Carslaw, D.C.; Gillah, A.; Bates, E. Analysis of Air Quality within a Street Canyon Using Statistical and Dispersion Modelling Techniques. Atmos. Environ. 2007, 41, 9195–9205. [Google Scholar] [CrossRef]
- Wilkening, I.H.; Baraldi, D. CFD modelling of accidental hydrogen release from pipelines. Int. J. Hydrogen Energy 2007, 32, 2206–2215. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Jeddah Municipality. 2021. Available online: https://www.jeddah.gov.sa/english/jeddahcity/about/index.php (accessed on 1 December 2021).
- Hassan, I.A.; Basahi, J.M.; Ismail, I.M.; Habeebullah, T.M. Spatial Distribution and Temporal Variation in Ambient Ozone and Its Associated NOx in the Atmosphere of Jeddah City, Saudi Arabia. Aerosol Air Qual. Res. 2013, 13, 1712–1722. [Google Scholar] [CrossRef]
- Lim, C.C.; Thurston, G.D.; Shamy, M.; Alghamdi, M.; Khoder, M.; Mohorjy, A.M.; Alkhalaf, A.K.; Brocato, J.; Chen, L.C.; Costa, M. Temporal variations of fine and coarse particulate matter sources in Jeddah, Saudi Arabia. J. Air Waste Manag. Assoc. 2018, 68, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Hussein, T.; Alghamdi, M.; Khoder, M.; Abdelmaksoud, A.; Al-Jeelani, H.; Goknil, M.K.; Shabbaj, I.I.; Almehmadi, F.M.; Hyvärinen, A.; Lihavainen, H.; et al. Particulate Matter and Number Concentrations of Particles Larger than 0.25 μm in the Urban Atmosphere of Jeddah, Saudi Arabia. Aerosol Air Qual. Res. 2014, 14, 1383–1391. [Google Scholar] [CrossRef] [Green Version]
- Khodeir, M.; Shamy, M.; Alghamdi, M.; Zhong, M.; Sun, H.; Costa, M.; Chen, L.C.; Maciejczyk, P. Source appor-tionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmos. Pollut. Res. 2012, 3, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Porter, W.C.; Khalil, M.A.K.; Butenhoff, C.L.; Almazroui, M.; Al-Khalaf, A.K.; Al-Sahafi, M.S. Annual and weekly patterns of ozone and particulate matter in Jeddah, Saudi Arabia. J. Air Waste Manag. Assoc. 2014, 64, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Munir, S.; Habeebullah, T.M.; Mohammed, A.M.; Morsy, E.A.; Rehan, M.; Ali, K. Analysing PM2.5 and its Association with PM10 and Meteorology in the Arid Climate of Makkah, Saudi Arabia. Aerosol Air Qual. Res. 2017, 17, 453–464. [Google Scholar] [CrossRef]
- Nayebare, S.R.; Aburizaiza, O.S.; Siddique, A.; Carpenter, D.O.; Hussain, M.M.; Zeb, J.; Aburiziza, A.J.; Khwaja, H.A. Ambient air quality in the holy city of Makkah: A source apportionment with elemental enrichment factors (EFs) and factor analysis (PMF). Environ. Pollut. 2018, 243, 1791–1801. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.R-project.org/ (accessed on 1 September 2021).
- Koenker, R. Package ‘Quantreg’. 2019. Available online: http://cran.rproject.org/web/packages/quantreg/quantreg.pdf (accessed on 1 September 2021).
- Ahmad, I.; Rehan, M.; Balkhyour, M.; Abbas, M.; Basahi, J.; Almeelbi, T.; Ismail, I.M. Review of environmental pollution and health risks at motor vehicle repair workshops challenges and perspectives for Saudi Arabia. Int. J. Agric. Environ. Res. 2016, 2, 1–23. [Google Scholar]
- Koenker, R. Quantile Regression, Economic Society Monographs No. 38; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Hao, L.; Naiman, D.Q. Quantile Regression: Series-Quantitative Applications in the Social Sciences; Series NO. 07–149; Sage Publications: Thousand Oaks, CA, USA, 2007. [Google Scholar]
- Carslaw, D. DEFRA Urban Model Evaluation Analysis—Phase 1. 2001. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat20/1105091516_UrbanFinal.pdf (accessed on 10 February 2020).
- Sayegh, A.S.; Munir, S.; Habeebullah, T.M. Comparing the Performance of Statistical Models for Predicting PM10 Concentrations. Aerosol Air Qual. Res. 2014, 14, 653–665. [Google Scholar] [CrossRef] [Green Version]
- Carslaw, D.C. The Openair Manual-Open-Source Tools for Analysing Air Pollution Data; Manual for Version 2.6-6; University of York: Heslington, UK, 2019. [Google Scholar]
- WHO. Types of Pollutants-AIR Quality and Health. 2020. Available online: https://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/health-impacts/types-of-pollutants (accessed on 16 June 2022).
- Chen, T.-M.; Kuschner, W.G.; Gokhale, J.; Shofer, S. Outdoor Air Pollution: Nitrogen Dioxide, Sulfur Dioxide, and Carbon Monoxide Health Effects. Am. J. Med. Sci. 2007, 333, 249–256. [Google Scholar] [CrossRef]
- Pulic Health England. Guidance-Health Matters: Air Pollution. 2018. Available online: https://www.gov.uk/government/publications/health-matters-air-pollution/health-matters-air-pollution (accessed on 16 June 2022).
- Jenkin, M.E. Analysis of sources and partitioning of oxidant in the UK. Part 1: The NOx-dependence of annual mean concentrations of nitrogen dioxide and ozone. Atmos. Environ. 2004, 38, 5117–5129. [Google Scholar] [CrossRef]
- Clapp, L.J.; Jenkin, M.E. Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NOx in the UK. Atmos. Environ. 2001, 35, 6391–6405. [Google Scholar] [CrossRef]
- Harkey, M.; Holloway, T.; Oberman, J.; Scotty, E. An evaluation of CMAQ NO2 using observed chemistry-meteorology correlations. J. Geophys. Res. Atmos. 2015, 120, 11775–11797. [Google Scholar] [CrossRef]
- Wang, J.; Alli, A.S.; Clark, S.; Hughes, A.; Ezzati, M.; Beddows, A.; Vallarino, J.; Nimo, J.; Bedford-Moses, J.; Baah, S.; et al. Nitrogen oxides (NO and NO2) pollution in the Accra metropolis: Spatiotemporal patterns and the role of meteorology. Sci. Total Environ. 2021, 803, 149931. [Google Scholar] [CrossRef]
- Hu, C.; Kang, P.; Jaffe, D.A.; Li, C.; Zhang, X.; Wu, K.; Zhou, M. Understanding the impact of meteorology on ozone in 334 cities of China. Atmos. Environ. 2021, 248, 118221. [Google Scholar] [CrossRef]
- Camalier, L.; Cox, W.; Dolwick, P. The effects of meteorology on ozone in urban areas and their use in as-sessing ozone trends. Atmos. Environ. 2007, 41, 7127–7137. [Google Scholar] [CrossRef]
Analyzer | NOx | SO2 | O3 | CO |
---|---|---|---|---|
Model | APNA-370 | APSA-370 | APOA-370 | APMA-370 |
Application | NO2, NO, NOx | SO2, H2S | O3 | CO |
Principle | Cross flow modulation, Chemiluminescence | UV fluorescence | Cross flow modulation, UV absorption | Cross flow modulation, non-dispersive IR absorption |
Range (ppm) | 0–10 | 0–10 | 0–10 | 0–100 |
Lower Detectable limit (LDL) | 0.5 ppb (3 sigma) | 0.5 ppb (3 sigma) | 0.5 ppb (3 sigma) | 0.02 ppm (3 sigma) |
Repeatability | ±1.0% of F. S. | ±1.0% of F. S. | ±1.0% of F. S. | ±1.0% of F. S. |
Linearity | ±1.0% of F. S. | ±1.0% of F. S. | ±1.0% of F. S. | ±1.0% of F. S. |
Zero drift (at lowest range) | <LDL/day ±1.0 ppb/week | <LDL/day <LDL/week | <LDL/day <LDL/week | <LDL/day <0.2 ppm/week |
Span drift (at lowest range) | <LDL/day ±1.0% of F. S./week | <LDL/day <LDL/week | <LDL/day <LDL/week | <LDL/day ±1.0% of F. S./week |
Response time (T90) (s) (at lowest range) | Within 90 s | Within 120 s | Within 75 s | Within 50 s |
Sample gas | ||||
flow rate (L/min) | 0.8 | 0.7 | 0.7 | 1.5 |
Metric | Min | 1st Qu | Med | Mean | 3rd Qu | Max | SD | |
---|---|---|---|---|---|---|---|---|
Variable | ||||||||
NO | 0.01 | 2.04 | 5.43 | 13.5 | 13.92 | 146.36 | 21.57 | |
NO2 | 0.82 | 17.84 | 26.60 | 28.25 | 37.97 | 93.39 | 13.29 | |
NOx | 1.32 | 21.85 | 32.86 | 41.74 | 51.02 | 197.34 | 30.80 | |
O3 | 0 | 13.86 | 35.91 | 36.31 | 55.24 | 122.94 | 25.11 | |
SO2 | 0 | 1.31 | 4.74 | 13.19 | 15.20 | 194.07 | 21.14 | |
CO | 0.03 | 0.18 | 0.26 | 0.32 | 0.37 | 2.38 | 0.23 | |
WS | 0 | 0.65 | 1.27 | 1.46 | 2.07 | 7.20 | 0.97 | |
WD | 0.84 | 251.61 | 336.63 | 292.39 | 340.96 | 350.20 | 78.19 | |
Temp | 18.98 | 27.19 | 30.61 | 30.47 | 33.80 | 47.74 | 4.45 | |
RH | 6.44 | 39.74 | 54.16 | 52.69 | 66.13 | 98.50 | 17.02 |
Tau | 0.05 | 0.25 | 0.50 | 0.75 | 0.95 | |
---|---|---|---|---|---|---|
Parameter | ||||||
Intercept | 24.29 | 20.65 | 14.61 | 13.02 | 14.50 | |
NO | −0.27 | −0.20 | −0.21 | −0.24 | −0.22 | |
NO2 | −0.91 | −1.12 | −1.19 | −1.12 | −1.15 | |
CO | 21.41 | 19.91 | 22.68 | 21.99 | 23.37 | |
SO2 | 0.05 | 0.06 | 0.10 | 0.15 | 0.45 | |
WS | 1.40 | 2.15 | 2.34 | 2.31 | 1.56 | |
WD | 0.04 | 0.04 | 0.04 | 0.02 | 0.01 | |
Temp | 0.28 | 1.00 | 1.62 | 2.14 | 2.72 | |
RH | −0.19 | −0.21 | −0.22 | −0.23 | −0.25 |
Tau | 0.05 | 0.25 | 0.50 | 0.75 | 0.95 | |
---|---|---|---|---|---|---|
Parameter | ||||||
(Intercept) | 12.69 | 11.70 | 13.25 | 20.17 | 26.54 | |
NO | −0.22 | −0.15 | −0.08 | −0.08 | −0.05 | |
O3 | −0.24 | −0.30 | −0.31 | −0.30 | −0.24 | |
CO | 40.89 | 35.34 | 30.58 | 34.55 | 41.26 | |
SO2 | 0.10 | 0.09 | 0.09 | 0.10 | 0.08 | |
WS | −0.52 | −1.07 | −1.77 | −2.51 | −3.63 | |
WD | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | |
Temp | 0.03 | 0.25 | 0.41 | 0.39 | 0.34 | |
RH | −0.03 | −0.01 | −0.02 | −0.03 | −0.05 |
Metrics | O3 QRM (MLRM) | NO2 QRM (MLRM) |
---|---|---|
Correlation Coefficient (r) | 0.92 (0.78) | 0.91 (0.81) |
Coefficient of determination (R2) | 0.86 (0.61) | 0.83 (0.66) |
RMSE (ppb) | 14.42 (15.13) | 8.96 (7.97) |
FAC2 | 0.79 (0.73) | 0.96 (0.91) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehan, M.; Munir, S. Analysis and Modeling of Air Pollution in Extreme Meteorological Conditions: A Case Study of Jeddah, the Kingdom of Saudi Arabia. Toxics 2022, 10, 376. https://doi.org/10.3390/toxics10070376
Rehan M, Munir S. Analysis and Modeling of Air Pollution in Extreme Meteorological Conditions: A Case Study of Jeddah, the Kingdom of Saudi Arabia. Toxics. 2022; 10(7):376. https://doi.org/10.3390/toxics10070376
Chicago/Turabian StyleRehan, Mohammad, and Said Munir. 2022. "Analysis and Modeling of Air Pollution in Extreme Meteorological Conditions: A Case Study of Jeddah, the Kingdom of Saudi Arabia" Toxics 10, no. 7: 376. https://doi.org/10.3390/toxics10070376
APA StyleRehan, M., & Munir, S. (2022). Analysis and Modeling of Air Pollution in Extreme Meteorological Conditions: A Case Study of Jeddah, the Kingdom of Saudi Arabia. Toxics, 10(7), 376. https://doi.org/10.3390/toxics10070376