Association of Urinary Phthalate and Phthalate Replacement Metabolite Concentrations with Serum Lipid Biomarker Levels among Pregnant Women Attending a Fertility Center
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exposure Assessment
2.3. Outcome Assessment
2.4. Statistical Analysis
3. Results
3.1. Study Population Characteristics
3.2. Urinary Phthalate and Phthalate Replacement Measures
3.3. Main Results
3.4. Trimester-Specific Associations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tobias, D.K.; Gaskins, A.J.; Missmer, S.A.; Hu, F.B.; Manson, J.E.; Louis, G.M.B.; Zhang, C.; Chavarro, J.E. History of infertility and risk of type 2 diabetes mellitus: A prospective cohort study. Diabetologia 2015, 58, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Solomon, C.G.; Hu, F.B.; Dunaif, A.; Rich-Edwards, J.E.; Stampfer, M.J.; Willett, W.C.; Speizer, F.E.; Manson, J.E. Menstrual cycle irregularity and risk for future cardiovascular disease. J. Clin. Endocrinol. Metab. 2002, 87, 2013–2017. [Google Scholar] [CrossRef] [PubMed]
- Solomon, C.G.; Hu, F.B.; Dunaif, A.; Rich-Edwards, J.; Willett, W.C.; Hunter, D.J.; Colditz, G.A.; Speizer, F.E.; Manson, J.E. Long or highly irregular menstrual cycles as a marker for risk of type 2 diabetes mellitus. Jama 2001, 286, 2421–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, E.T.; Cirillo, P.M.; Vittinghoff, E.; Bibbins-Domingo, K.; Cohn, B.A.; Cedars, M.I. Menstrual irregularity and cardiovascular mortality. J. Clin. Endocrinol. Metab. 2011, 96, E114–E118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, K.H.; Glintborg, D.; Nybo, M.; Abrahamsen, B.; Andersen, M. Development and risk factors of type 2 diabetes in a nationwide population of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2017, 102, 3848–3857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahalingaiah, S.; Sun, F.; Cheng, J.J.; Chow, E.T.; Lunetta, K.L.; Murabito, J.M. Cardiovascular risk factors among women with self-reported infertility. Fertil. Res. Pract. 2017, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Parikh, N.I.; Cnattingius, S.; Mittleman, M.A.; Ludvigsson, J.F.; Ingelsson, E. Subfertility and risk of later life maternal cardiovascular disease. Hum. Reprod. 2012, 27, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Kurabayashi, T.; Mizunuma, H.; Kubota, T.; Hayashi, K. Ovarian infertility is associated with cardiovascular disease risk factors in later life: A Japanese cross-sectional study. Maturitas 2016, 83, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Cassar, S.; Misso, M.L.; Hopkins, W.G.; Shaw, C.S.; Teede, H.J.; Stepto, N.K. Insulin resistance in polycystic ovary syndrome: A systematic review and meta-analysis of euglycaemic-hyperinsulinaemic clamp studies. Hum. Reprod. 2016, 31, 2619–2631. [Google Scholar] [CrossRef] [Green Version]
- Escobar-Morreale, H.F.; Luque-Ramirez, M.; Gonzalez, F. Circulating inflammatory markers in polycystic ovary syndrome: A systematic review and metaanalysis. Fertil. Steril. 2011, 95, 1048–1058.e2. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Gao, J.; Zhang, Y.; Li, P.; Wang, H.; Ren, X.; Li, C. Serum levels of TSP-1, NF-kappaB and TGF-beta1 in polycystic ovarian syndrome (PCOS) patients in northern China suggest PCOS is associated with chronic inflammation. Clin. Endocrinol. 2015, 83, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Daan, N.M.; Louwers, Y.V.; Koster, M.P.; Eijkemans, M.J.; de Rijke, Y.B.; Lentjes, E.W.; Fauser, B.C.; Laven, J.S. Cardiovascular and metabolic profiles amongst different polycystic ovary syndrome phenotypes: Who is really at risk? Fertil. Steril. 2014, 102, 1444–1451.e3. [Google Scholar] [CrossRef] [PubMed]
- CDC; Centers for Disease and Control and Prevention. Pregnancy Mortality Surveillance System. 2020. Available online: https://www.cdc.gov/reproductivehealth/maternal-mortality/pregnancy-mortality-surveillance-system.htm?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Freproductivehealth%2Fmaternalinfanthealth%2Fpregnancy-mortality-surveillance-system.htm (accessed on 25 November 2021).
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report from the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef] [PubMed]
- Heindel, J.J.; Blumberg, B. Environmental Obesogens: Mechanisms and Controversies. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J.; Barr, D.B.; Reidy, J.A.; Malek, N.A.; Hodge, C.C.; Caudill, S.P.; Brock, J.W.; Needham, L.L.; Calafat, A.M. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000. Environ. Health Perspect. 2004, 112, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Zota, A.R.; Calafat, A.M.; Woodruff, T.J. Temporal trends in phthalate exposures: Findings from the National Health and Nutrition Examination Survey, 2001–2010. Environ. Health Perspect. 2014, 122, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauser, R.; Calafat, A.M. Phthalates and human health. Occup. Environ. Med. 2005, 62, 806–818. [Google Scholar] [CrossRef] [Green Version]
- Koch, H.M.; Rüther, M.; Schütze, A.; Conrad, A.; Pälmke, C.; Apel, P.; Brüning, T.; Kolossa-Gehring, M. Phthalate metabolites in 24-h urine samples of the German Environmental Specimen Bank (ESB) from 1988 to 2015 and a comparison with US NHANES data from 1999 to 2012. Int. J. Hyg. Environ. Health 2017, 220 (Pt A), 130–141. [Google Scholar] [CrossRef] [Green Version]
- CDC; Centers for Disease Control and Prevention. National Report on Human Exposure to Environmental Chemicals (March 2022); U.S. Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2022. Available online: https://www.cdc.gov/exposurereport/ (accessed on 13 April 2022).
- Rudel, R.A.; Gray, J.M.; Engel, C.L.; Rawsthorne, T.W.; Dodson, R.E.; Ackerman, J.M.; Rizzo, J.; Nudelman, J.L.; Brody, J.G. Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: Findings from a dietary intervention. Environ. Health Perspect. 2011, 119, 914–920. [Google Scholar] [CrossRef]
- Cirillo, T.; Fasano, E.; Esposito, F.; del Prete, E.; Cocchieri, R.A. Study on the influence of temperature, storage time and packaging type on di-n-butylphthalate and di(2-ethylhexyl)phthalate release into packed meals. Food Addit. Contam. Part A 2013, 30, 403–411. [Google Scholar] [CrossRef]
- Duty, S.M.; Ackerman, R.M.; Calafat, A.M.; Hauser, R. Personal care product use predicts urinary concentrations of some phthalate monoesters. Environ. Health Perspect. 2005, 113, 1530–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Just, A.C.; Adibi, J.J.; Rundle, A.G.; Calafat, A.M.; Camann, D.E.; Hauser, R.; Silva, M.J.; Whyatt, R.M. Urinary and air phthalate concentrations and self-reported use of personal care products among minority pregnant women in New York city. J. Expo. Sci. Environ. Epidemiol. 2010, 20, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Wormuth, M.; Scheringer, M.; Vollenweider, M.; Hungerbuhler, K. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 2006, 26, 803–824. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.K.; Chuang, J.C.; Lyu, C.; Menton, R.; Morgan, M.K. Aggregate exposures of nine preschool children to persistent organic pollutants at day care and at home. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 187–202. [Google Scholar] [CrossRef] [Green Version]
- Rudel, R.A.; Camann, D.E.; Spengler, J.D.; Korn, L.R.; Brody, J.G. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ. Sci. Technol. 2003, 37, 4543–4553. [Google Scholar] [CrossRef]
- Langer, S.; Beko, G.; Weschler, C.J.; Brive, L.M.; Toftum, J.; Callesen, M.; Clausen, G. Phthalate metabolites in urine samples from Danish children and correlations with phthalates in dust samples from their homes and daycare centers. Int. J. Hyg. Environ. Health 2014, 217, 78–87. [Google Scholar] [CrossRef]
- Koch, H.M.; Preuss, R.; Angerer, J. Di(2-ethylhexyl)phthalate (DEHP): Human metabolism and internal exposure—An update and latest results. Int. J. Androl. 2006, 29, 155–165; discussion 181–185. [Google Scholar] [CrossRef]
- Koch, H.M.; Christensen, K.L.; Harth, V.; Lorber, M.; Bruning, T. Di-n-butyl phthalate (DnBP) and diisobutyl phthalate (DiBP) metabolism in a human volunteer after single oral doses. Arch. Toxicol. 2012, 86, 1829–1839. [Google Scholar] [CrossRef]
- Kao, M.L.; Ruoff, B.; Bower, N.; Aoki, T.; Smart, C.; Mannens, G. Pharmacokinetics, metabolism and excretion of 14C-monoethyl phthalate (MEP) and 14C-diethyl phthalate (DEP) after single oral and IV administration in the juvenile dog. Xenobiotica 2012, 42, 389–397. [Google Scholar] [CrossRef]
- Calafat, A.M.; Longnecker, M.P.; Koch, H.M.; Swan, S.H.; Hauser, R.; Goldman, L.R.; Lanphear, B.P.; Rudel, R.A.; Engel, S.M.; Teitelbaum, S.L.; et al. Optimal Exposure Biomarkers for Nonpersistent Chemicals in Environmental Epidemiology. Environ. Health Perspect. 2015, 123, A166–A168. [Google Scholar] [CrossRef]
- Braun, J.M.; Just, A.C.; Williams, P.L.; Smith, K.W.; Calafat, A.M.; Hauser, R. Personal care product use and urinary phthalate metabolite and paraben concentrations during pregnancy among women from a fertility clinic. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 459–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. European Food Safety Authority. Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) Related to the 12th List of Substances for Food Contact Materials. 2006. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/395 (accessed on 22 September 2021).
- James-Todd, T.M.; Huang, T.; Seely, E.W.; Saxena, A.R. The association between phthalates and metabolic syndrome: The National Health and Nutrition Examination Survey 2001–2010. Environ. Health 2016, 15, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodruff, T.J.; Zota, A.R.; Schwartz, J.M. Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environ. Health Perspect. 2011, 119, 878–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuong, A.M.; Braun, J.M.; Sjödin, A.; Calafat, A.M.; Yolton, K.; Lanphear, B.P.; Chen, A. Exposure to endocrine disrupting chemicals (EDCs) and cardiometabolic indices during pregnancy: The HOME Study. Environ. Int. 2021, 156, 106747. [Google Scholar] [CrossRef] [PubMed]
- Minguez-Alarcon, L.; Gaskins, A.J.; Chiu, Y.H.; Souter, I.; Williams, P.L.; Calafat, A.M.; Hauser, R.; Chavarro, J.E. Dietary folate intake and modification of the association of urinary bisphenol A concentrations with in vitro fertilization outcomes among women from a fertility clinic. Reprod. Toxicol. 2016, 65, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Barr, D.B.; Wilder, L.C.; Caudill, S.P.; Gonzalez, A.J.; Needham, L.L.; Pirkle, J.L. Urinary creatinine concentrations in the U.S. population: Implications for urinary biologic monitoring measurements. Environ. Health Perspect. 2005, 113, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Schisterman, E.F.; Whitcomb, B.W.; Louis, G.M.; Louis, T.A. Lipid adjustment in the analysis of environmental contaminants and human health risks. Environ. Health Perspect. 2005, 113, 853–857. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.J.; Samandar, E.; Preau, J.L., Jr.; Reidy, J.A.; Needham, L.L.; Calafat, A.M. Quantification of 22 phthalate metabolites in human urine. J. Chromatogr. B 2007, 860, 106–112. [Google Scholar] [CrossRef]
- Silva, M.J.; Jia, T.; Samandar, E.; Preau, J.L., Jr.; Calafat, A.M. Environmental exposure to the plasticizer 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) in U.S. adults (2000–2012). Environ. Res. 2013, 126, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Stinshoff, K.; Weisshaar, D.; Staehler, F.; Hesse, D.; Gruber, W.; Steier, E. Relation between concentrations of free glycerol and triglycerides in human sera. Clin. Chem. 1977, 23, 1029–1032. [Google Scholar] [CrossRef]
- Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.C. The Friedewald-Levy-Fredrickson formula for calculating low-density lipoprotein cholesterol, the basis for lipid-lowering therapy. Am. J. Cardiol. 1988, 62, 345–346. [Google Scholar] [CrossRef]
- Searle, S.R.; Speed, F.M.; Milliken, G.A. Population marginal means in the linear model: An alternative to leasts quare means. Am. Stat. 1980, 34, 216–221. [Google Scholar]
- Rooney, K.L.; Domar, A.D. The impact of lifestyle behaviors on infertility treatment outcome. Curr. Opin. Obstet. Gynecol. 2014, 26, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Biedenharn, K.R.; Fedor, J.M.; Agarwal, A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod. Biol. Endocrinol. 2013, 11, 66. [Google Scholar] [CrossRef] [Green Version]
- Souter, I.; Bellavia, A.; Williams, P.L.; Korevaar, T.I.M.; Meeker, J.D.; Braun, J.M.; de Poortere, R.A.; Broeren, M.A.; Ford, J.B.; Calafat, A.M.; et al. Urinary Concentrations of Phthalate Metabolite Mixtures in Relation to Serum Biomarkers of Thyroid Function and Autoimmunity among Women from a Fertility Center. Environ. Health Perspect. 2020, 128, 67007. [Google Scholar] [CrossRef]
- James-Todd, T.M.; Chiu, Y.H.; Messerlian, C.; Minguez-Alarcon, L.; Ford, J.B.; Keller, M.; Petrozza, J.; Williams, P.L.; Ye, X.; Calafat, A.M.; et al. Trimester-specific phthalate concentrations and glucose levels among women from a fertility clinic. Environ. Health 2018, 17, 55. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Just, A.C.; Colicino, E.; Calafat, A.M.; Oken, E.; Braun, J.M.; McRae, N.; Cantoral, A.; Pantic, I.; Pizano-Zárate, M.L.; et al. The associations of phthalate biomarkers during pregnancy with later glycemia and lipid profiles. Environ. Int. 2021, 155, 106612. [Google Scholar] [CrossRef]
- Venkata, N.G.; Robinson, J.A.; Cabot, P.J.; Davis, B.; Monteith, G.R.; Roberts-Thomson, S.J. Mono(2-ethylhexyl)phthalate and mono-n-butyl phthalate activation of peroxisome proliferator activated-receptors alpha and gamma in breast. Toxicol. Lett. 2006, 163, 224–234. [Google Scholar] [CrossRef]
- Lapinskas, P.J.; Brown, S.; Leesnitzer, L.M.; Blanchard, S.; Swanson, C.; Cattley, R.C.; Corton, J.C. Role of PPARalpha in mediating the effects of phthalates and metabolites in the liver. Toxicology 2005, 207, 149–163. [Google Scholar] [CrossRef]
- Desvergne, B.; Feige, J.N.; Casals-Casas, C. PPAR-mediated activity of phthalates: A link to the obesity epidemic? Mol. Cell Endocrinol. 2009, 304, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Varga, T.; Czimmerer, Z.; Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim. Biophys. Acta 2011, 1812, 1007–1022. [Google Scholar] [CrossRef] [PubMed]
- Feige, J.N.; Gerber, A.; Casals-Casas, C.; Yang, Q.; Winkler, C.; Bedu, E.; Bueno, M.; Gelman, L.; Auwerx, J.; Gonzalez, F.J.; et al. The pollutant diethylhexyl phthalate regulates hepatic energy metabolism via species-specific PPARalpha-dependent mechanisms. Environ. Health Perspect. 2010, 118, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Ito, Y.; Yamagishi, N.; Yanagiba, Y.; Tamada, H.; Wang, D.; Ramdhan, D.H.; Naito, H.; Harada, Y.; Kamijima, M.; et al. Hepatic peroxisome proliferator-activated receptor α may have an important role in the toxic effects of di(2-ethylhexyl)phthalate on offspring of mice. Toxicology 2011, 289, 1–10. [Google Scholar] [CrossRef]
- Ding, S.; Qi, W.; Xu, Q.; Zhao, T.; Li, X.; Yin, J.; Zhang, R.; Huo, C.; Zhou, L.; Ye, L. Relationships between di-(2-ethylhexyl) phthalate exposure and lipid metabolism in adolescents: Human data and experimental rat model analyses. Environ. Pollut. 2021, 286, 117570. [Google Scholar] [CrossRef]
- Campioli, E.; Duong, T.B.; Deschamps, F.; Papadopoulos, V. Cyclohexane-1,2-dicarboxylic acid diisononyl ester and metabolite effects on rat epididymal stromal vascular fraction differentiation of adipose tissue. Environ. Res. 2015, 140, 145–156. [Google Scholar] [CrossRef]
- Eales, J.; Bethel, A.; Galloway, T.; Hopkinson, P.; Morrissey, K.; Short, R.E.; Garside, R. Human health impacts of exposure to phthalate plasticizers: An overview of reviews. Environ. Int. 2022, 158, 106903. [Google Scholar] [CrossRef]
- Kahn, L.G.; Philippat, C.; Nakayama, S.F.; Slama, R.; Trasande, L. Endocrine-disrupting chemicals: Implications for human health. Lancet Diabetes Endocrinol. 2020, 8, 703–718. [Google Scholar] [CrossRef]
- Schettler, T. Human exposure to phthalates via consumer products. Int. J. Androl. 2006, 29, 134–139; discussion 181–185. [Google Scholar] [CrossRef]
Enrollment | |
Age, years | 35.0 (32.0, 37.0) |
Race, N (%) | |
White | 154 (88) |
Black | 5 (2) |
Asian | 8 (5) |
Other | 8 (5) |
Body Mass Index, kg/m2 | 22.3 (21.2, 25.7) |
Ever smoked, N (%) | 50 (29) |
Graduate degree, N (%) | 105 (60) |
Primary Infertility diagnosis, N (%) | |
Male factor | 58 (33) |
Female factor | 59 (33) |
Unexplained | 58 (33) |
Pregnancy | |
Age, years | 35.0 (32.0, 38.0) |
Cycle type, N (%) | |
Without medical treatment | 29 (17) |
IUI | 45 (26) |
IVF | 101 (57) |
Number of babies, N (%) | |
Singleton (1) | 144 (82) |
Twins (2) | 28 (16) |
Triplet (3) | 3 (2) |
Trimester of sample collection, N (%) | |
1st | 61 (35) |
2nd | 47 (27) |
3rd | 67 (38) |
Triglycerides, mg/dL | 181 (111, 251) |
Total cholesterol, mg/dL | 229 (189, 280) |
HDL cholesterol, mg/dL | 68.0 (58.0, 79.0) |
Non-HDL cholesterol, mg/dL | 161 (120, 206) |
LDL cholesterol, mg/dL | 120 (92.0, 158) |
N | Detection Frequency % | Maximum LOD (μg/L) | Mean (SD) | 10th | 25th | 50th | 75th | 95th | |
---|---|---|---|---|---|---|---|---|---|
Mono-n-butyl phthalate (MBP) | 175 | 97 | 0.6 | 17.8 (31.6) | 1.70 | 3.80 | 9.20 | 19.0 | 46.7 |
Mono-isobutyl phthalate (MiBP) | 175 | 98 | 0.8 | 9.85 (15.4) | 1.20 | 2.40 | 6.01 | 12.3 | 31.7 |
Monoethyl phthalate (MEP) | 175 | 100 | 1.2 | 200 (544) | 5.54 | 11.6 | 31.3 | 109 | 1500 |
Monobenzyl phthalate (MBzP) | 175 | 93 | 0.3 | 7.54 (76.7) | 0.40 | 0.90 | 2.50 | 5.80 | 24.9 |
Mono(2-ethylhexyl) phthalate (MEHP) | 175 | 69 | 1.2 | 10.5 (50.0) | <LOD | <LOD | 1.80 | 4.80 | 27.4 |
Mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) | 175 | 99 | 0.7 | 48.6 (239) | 1.40 | 2.90 | 7.00 | 18.3 | 115 |
Mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) | 175 | 98 | 0.7 | 31.5 (145) | 1.10 | 2.50 | 5.60 | 14.0 | 56.5 |
Mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) | 175 | 100 | 0.4 | 59.1 (254) | 2.80 | 5.50 | 11.7 | 28.2 | 104 |
Cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester (MHiNCH) | 111 | 23 | 0.4 | 0.97 (4.57) | <LOD | <LOD | <LOD | <LOD | 1.40 |
Cyclohexane-1,2-dicarboxylic acid monocarboxyisooctyl ester (MCOCH) | 83 | 13 | 0.5 | 0.68 (1.92) | <LOD | <LOD | <LOD | <LOD | 1.10 |
Triglycerides, mg/dL | Total Cholesterol, mg/dL | HDL Cholesterol, mg/dL | Non-HDL Cholesterol, mg/dL | LDL Cholesterol, mg/dL | |
---|---|---|---|---|---|
MBP | |||||
Q1 | 181 (157, 206) | 234 (218, 250) | 71.6 (66.6, 76.7) | 162 (146, 178) | 126 (112, 141) |
Q2 | 211 (191, 231)ǂ | 236 (222, 250) | 69.6 (65.3, 73.9) | 166 (153, 180) | 124 (112, 137) |
Q3 | 178 (157, 199) | 228 (214, 242) | 71.0 (66.6, 75.5) | 157 (143, 171) | 122 (109, 134) |
Q4 | 212 (190, 234)ǂ | 250 (235, 264) | 66.3 (61.7, 70.9) | 183 (169, 198)ǂ | 141 (128, 154) |
MiBP | |||||
Q1 | 198 (174, 223) | 246 (230, 262) | 73.1 (68.0, 78.1) | 174 (158, 189) | 134 (120, 149) |
Q2 | 214 (193, 235) | 238 (225, 252) | 69.1 (64.8, 73.4) | 170 (156, 183) | 127 (114, 140) |
Q3 | 186 (164, 207) | 238 (224, 252) | 67.7 (63.3, 72.1) | 171 (157, 185) | 134 (121, 147) |
Q4 | 185 (162, 209) | 223 (208, 239)ǂ | 68.6 (63.8, 73.5) | 155 (140, 170) | 118 (104, 132) |
MEP | |||||
Q1 | 207 (185, 230) | 235 (220, 250) | 66.5 (61.9, 71.1) | 169 (154, 183) | 127 (114, 140) |
Q2 | 206 (185, 227) | 251 (238, 265) | 69.9 (65.6, 74.2) | 182 (168, 195) | 140 (128, 153) |
Q3 | 188 (167, 209) | 232 (218, 245) | 69.9 (65.6, 74.1) | 162 (149, 175) | 124 (112, 136) |
Q4 | 183 (160, 205) | 230 (216, 244) | 72.2 (67.7, 76.7) | 158 (144, 172) | 121 (108, 134) |
MBzP | |||||
Q1 | 185 (161, 209) | 236 (220, 252) | 73.5 (68.4, 78.4) | 162 (147, 178) | 125 (111, 140) |
Q2 | 217 (196, 237) | 230 (216, 243) | 65.0 (60.8, 69.1) * | 165 (152, 178) | 122 (109, 134) |
Q3 | 193 (172, 215) | 245 (231, 260) | 71.0 (66.5, 75.3) | 174 (160, 189) | 136 (123, 149) |
Q4 | 186 (165, 209) | 237 (223, 252) | 69.7 (65.2, 74.2) | 168 (153, 182) | 130 (117, 144) |
MEHP | |||||
G1 | 190 (170, 211) | 227 (214, 240) | 68.1 (63.9, 72.3) | 159 (146, 171) | 121 (109, 133) |
G2 | 200 (176, 224) | 232 (217, 246) | 71.3 (66.4, 76.3) | 160 (146, 176) | 121 (107, 135) |
G3 | 182 (159, 206) | 230 (215, 246) | 70.2 (65.4, 75.1) | 160 (145, 175) | 124 (110, 138) |
G4 | 209 (187, 230) | 256 (242, 270)* | 69.7 (65.2, 74.2) | 186 (172, 200) * | 145 (132, 157) * |
MEHHP | |||||
Q1 | 196 (172, 220) | 238 (222, 254) | 70.9 (65.9, 75.9) | 167 (152, 183) | 128 (114, 142) |
Q2 | 183 (163, 204) | 228 (215, 241) | 70.3 (66.1, 74.6) | 158 (145, 171) | 122 (109, 133) |
Q3 | 202 (181, 224) | 228 (215, 242) | 68.7 (64.3, 73.1) | 160 (146, 173) | 119 (107, 132) |
Q4 | 202 (179, 225) | 253 (238, 268) | 68.6 (63.9, 73.3) | 185 (170, 199) | 144 (131, 158) |
MEOHP | |||||
Q1 | 184 (160, 207) | 232 (216, 247) | 69.6 (64.7, 74.4) | 162 (147, 177) | 126 (112, 140) |
Q2 | 189 (168, 210) | 229 (216, 243) | 72.8 (68.5, 77.2) | 157 (143, 170) | 119 (107, 131) |
Q3 | 201 (180, 222) | 230 (217, 244) | 67.1 (62.8, 71.3) | 163 (150, 176) | 123 (111, 135) |
Q4 | 210 (186, 233) | 255 (240, 270)ǂ | 69.2 (64.3, 74.0) | 186 (171, 201) * | 144 (130, 158) ǂ |
MECPP | |||||
Q1 | 191 (166, 215) | 225 (210, 241) | 69.4 (64.3, 74.5) | 156 (141, 172) | 118 (104, 132) |
Q2 | 193 (171, 214) | 239 (225, 252) | 72.2 (67.8, 76.6) | 167 (153, 180) | 128 (116, 140) |
Q3 | 196 (175, 217) | 226 (213, 240) | 69.7 (65.4, 74.0) | 157 (144, 170) | 118 (106, 130) |
Q4 | 204 (180, 228) | 256 (240, 271) * | 67.2 (62.3, 72.1) | 189 (174, 205) * | 148 (134, 162) * |
∑DEHP | |||||
Q1 | 129 (112, 147) | 233 (217, 249) | 71.4 (66.5, 76.4) | 161 (146, 177) | 125 (110, 139) |
Q2 | 125 (110, 140) | 236 (221, 249) | 71.3 (66.9, 75.6) | 164 (151, 177) | 124 (111, 137) |
Q3 | 125 (110, 141) | 229 (215, 243) | 67.5 (63.2, 71.9) | 161 (148, 175) | 123 (110, 135) |
Q4 | 133 (115, 150) | 250 (235, 266) | 68.3 (63.5, 73.2) | 182 (167, 197)ǂ | 141 (127, 155) |
MHiNCH | |||||
G1 non-detectable | 171 (143, 199) | 220 (204, 236) | 74.6 (69.3, 80.0) | 145 (129, 161) | 111 (96.1, 125) |
G2 detectable | 187 (172, 202) | 223 (214, 231) | 67.1 (64.2, 70.0) * | 156 (147, 164) | 118 (111, 126) |
MCOCH | |||||
G1 non-detectable | 144 (109, 179) | 223 (203, 244) | 77.6 (70.7, 84.4) | 146 (126, 165) | 117 (98.5, 135) |
G2 detectable | 174 (161, 188) | 216 (208, 224) | 66.2 (63.6, 68.9) * | 150 (142, 157) | 115 (108, 122) |
Trimester 1 Median 8 Weeks (N = 61) | Trimester 2 Median 23 Weeks (N = 47) | Trimester 3 Median 34 Weeks (N = 67) | |
---|---|---|---|
MBP | Triglycerides, mg/dL | ||
Q1 | 88.7 (61.5, 116) | 159 (121, 1970) | 262 (221, 304) |
Q2 | 120 (91.2, 148) | 183 (158, 209) | 323 (288, 358) |
Q3 | 116 (93.6, 139) | 182 (154, 209) | 231 (185, 277) |
Q4 | 116 (96.5, 136) | 208 (182, 235) ‡ | 306 (250, 360) |
Non-HDL cholesterol, mg/dL | |||
Q1 | 101 (87.8, 114) | 132 (104, 161) | 216 (188, 244) |
Q2 | 113 (98.8, 127) | 171 (152, 190) * | 211 (187, 235) |
Q3 | 120 (108, 131) * | 173 (152, 194) * | 190 (159, 222) |
Q4 | 117 (107, 127) ǂ | 196 (176, 217) * | 244 (207, 282) |
MEHP | Total cholesterol, mg/dL | ||
G1 | 184 (170, 199) | 221 (198, 244) | 271 (249, 293) |
G2 | 192 (173, 209) | 228 (202, 255) | 288 (261, 314) |
G3 | 168 (152, 183) | 246 (229, 264) * | 271 (233, 311) |
G4 | 173 (162, 184) | 277 (259, 296) * | 325 (286, 364)* |
Non-HDL cholesterol, mg/dL | |||
G1 | 121 (109, 134) | 144 (120, 167) | 201 (179, 223) |
G2 | 118 (103, 134) | 159 (132, 1860 | 214 (188, 240) |
G3 | 103 (89.5, 116) ǂ | 171 (153, 188) * | 198 (160, 237) |
G4 | 111 (102, 121) | 197 (179, 217) * | 262 (224, 300) * |
LDL cholesterol, mg/dL | |||
G1 | 103 (91.1, 114) | 112 (92.2, 132) | 145 (125, 166) |
G2 | 100 (85.9, 114) | 124 (101, 146) | 157 (132, 181) |
G3 | 78.5 (66.5, 90.5) * | 131 (116, 146) | 154 (118, 190) |
G4 | 87.1 (78.3, 95.9) ǂ | 160 (144, 176) * | 196 (161, 233) |
MEOHP | Total cholesterol, mg/dL | ||
Q1 | 181 (166, 197) | 213 (189, 237) | 286 (258, 316) |
Q2 | 179 (165, 193) | 244 (220, 268) ‡ | 270 (245, 2940 |
Q3 | 168 (153, 182) | 242 (224, 261) ‡ | 276 (248, 303) |
Q4 | 178 (166, 191) | 287 (265, 309) * | 320 (281, 359) |
Non-HDL cholesterol, mg/dL | |||
Q1 | 115 (102, 128) | 139 (116, 163) | 218 (189, 247) |
Q2 | 109 (97.2, 121) | 167 (143, 191) ‡ | 196 (172, 221) |
Q3 | 108 (95.5, 119) | 165 (147, 184) ‡ | 207 (180, 235) |
Q4 | 118 (108, 129) | 210 (189, 231) * | 248 (209, 287) |
LDL cholesterol, mg/dL | |||
Q1 | 100 (87.9, 112) | 104 (84.1, 124) | 164 (138, 190) |
Q2 | 91.6 (80.5, 103) | 132 (112, 153) * | 139 (116, 161) |
Q3 | 80.8 (69.7, 91.9) * | 129 (113, 145) ǂ | 151 (126, 176) |
Q4 | 91.7 (82.1, 101) | 170 (151, 188) * | 192 (157, 228) |
MECPP | Total cholesterol, mg/dL | ||
Q1 | 177 (163, 191) | 213 (186, 240) | 272 (240, 305) |
Q2 | 185 (171, 200) | 237 (213, 261) | 285 (261, 308) |
Q3 | 174 (160, 188) | 240 (220, 260) | 272 (244, 299) |
Q4 | 175 (162, 187) | 286 (263, 308) * | 323 (284, 363) |
Non-HDL cholesterol, mg/dL | |||
Q1 | 112 (99.5, 124) | 139 (112, 165) | 203 (170, 235) |
Q2 | 116 (104, 128) | 163 (140, 186) | 211 (187, 235) |
Q3 | 110 (97.5, 122) | 158 (140, 177) | 204 (176, 232) |
Q4 | 116 (105, 127) | 211 (190, 233) * | 255 (216, 294) ǂ |
LDL cholesterol, mg/dL | |||
Q1 | 92.4 (81.0, 104) | 106 (82.9, 128) | 148 (118, 177) |
Q2 | 94.1 (82.3, 106) | 126 (106, 146) | 157 (135, 179) |
Q3 | 86.6 (75.2, 98.0) | 124 (108, 141) | 145 (120, 171) |
Q4 | 91.5 (81.2, 102) | 170 (151, 188) * | 197 (161, 233) ǂ |
Non-HDL cholesterol, mg/dL | |||
MHiNCH | |||
G1 non-detectable | 103 (92.4, 114) | 140 (114, 165) | 176 (117, 234) |
G2 detectable | 114 (106, 121) | 160 (146, 174) | 199 (183, 215) |
Non-HDL cholesterol, mg/dL | |||
MCOCH | |||
G1 non-detectable | 109 (93.4, 124) | 163 (152, 174) | 149 (107, 189) |
G2 detectable | 110 (104, 116) | 195 (134, 256) | 196 (182, 211) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mínguez-Alarcón, L.; Williams, P.L.; James-Todd, T.; Souter, I.; Ford, J.B.; Rexrode, K.M.; Calafat, A.M.; Hauser, R.; Chavarro, J.E. Association of Urinary Phthalate and Phthalate Replacement Metabolite Concentrations with Serum Lipid Biomarker Levels among Pregnant Women Attending a Fertility Center. Toxics 2022, 10, 292. https://doi.org/10.3390/toxics10060292
Mínguez-Alarcón L, Williams PL, James-Todd T, Souter I, Ford JB, Rexrode KM, Calafat AM, Hauser R, Chavarro JE. Association of Urinary Phthalate and Phthalate Replacement Metabolite Concentrations with Serum Lipid Biomarker Levels among Pregnant Women Attending a Fertility Center. Toxics. 2022; 10(6):292. https://doi.org/10.3390/toxics10060292
Chicago/Turabian StyleMínguez-Alarcón, Lidia, Paige L. Williams, Tamarra James-Todd, Irene Souter, Jennifer B. Ford, Kathryn M. Rexrode, Antonia M. Calafat, Russ Hauser, and Jorge E. Chavarro. 2022. "Association of Urinary Phthalate and Phthalate Replacement Metabolite Concentrations with Serum Lipid Biomarker Levels among Pregnant Women Attending a Fertility Center" Toxics 10, no. 6: 292. https://doi.org/10.3390/toxics10060292