Biomonitoring of Exposure to Urban Pollutants and Oxidative Stress during the COVID-19 Lockdown in Rome Residents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enrollment and Sampling Campaigns
2.2. Targeted Monitoring
2.2.1. Instrumentation and Chemical Supplies
2.2.2. SPMA and Cotinine Analysis
2.2.3. PAH Analysis
2.2.4. Determination of Oxidative Stress Biomarkers
2.2.5. Determination of Urinary Elements
2.3. Analytical Determination of Urinary Metabolic Profiles
2.3.1. Sample Preparation for NMR Analysis
2.3.2. 1H-NMR Spectroscopy
2.4. Data Analysis and Statistics
3. Results and Discussions
3.1. Targeted Metabolomics: Determination of Urinary Biomarkers
3.2. Determination of Urinary Elements
3.3. Untargeted Metabolomics and Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samanta, P.; Ghosh, A.R. Environmental perspectives of COVID-19 outbreaks: A review. World J. Gastroenterol. 2021, 27, 5822–5850. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 12 May 2022).
- Giovanetti, M.; Benvenuto, D.; Angeletti, S.; Ciccozzi, M. The first two cases of 2019-nCoV in Italy: Where they come from? J. Med. Virol. 2020, 92, 518–521. [Google Scholar] [CrossRef] [Green Version]
- Decreto del Presidente del Consiglio dei Ministri 8 Mzo 2020; Gazzetta Ufficiale: Rome, Italy, 2020.
- Decreto del Presidente del Consiglio dei Ministri 11 Giugno 2020; Gazzetta Ufficiale: Rome, Italy, 2020.
- Mishra, N.P.; Das, S.S.; Yadav, S.; Khan, W.; Afzal, M.; Alarifi, A.; Kenawy, E.R.; Ansari, M.T.; Hasnain, M.S.; Nayak, A.K. Global impacts of pre- and post-COVID-19 pandemic: Focus on socio-economic consequences. Sens. Int. 2020, 1, 100042. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, R.; Liu, L.; Yuan, Y.; Liu, C.G.; Hang Ho, S.S.; Ren, H.; Wang, Q.; Lv, Y.; Yan, M.; et al. Differential health and economic impacts from the COVID-19 lockdown between the developed and developing countries: Perspective on air pollution. Environ. Pollut. 2022, 293, 118544. [Google Scholar] [CrossRef] [PubMed]
- Massimi, L.; Pietrodangelo, A.; Frezzini, M.A.; Ristorini, M.; De Francesco, N.; Sargolini, T.; Amoroso, A.; Di Giosa, A.; Canepari, S.; Perrino, C. Effects of COVID-19 lockdown on PM10 composition and sources in the Rome Area (Italy) by elements’ chemical fractionation-based source apportionment. Atmos. Res. 2022, 266, 105970. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Carnevale Miino, M. Lockdown for CoViD-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef]
- Winkler, A.; Amoroso, A.; Di Giosa, A.; Marchegiani, G. The effect of Covid-19 lockdown on airborne particulate matter in Rome, Italy: A magnetic point of view. Environ. Pollut. 2021, 291, 118191. [Google Scholar] [CrossRef]
- Bai, X.; Chen, H.; Oliver, B.G. The health effects of traffic-related air pollution: A review focused the health effects of going green. Chemosphere 2022, 289, 133082. [Google Scholar] [CrossRef]
- Shima, M. Health Effects of Air Pollution: A Historical Review and Present Status. Nihon Eiseigaku Zasshi. 2017, 72, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.Y.Y.; Jones, R.R.; Breeze, C.; Blechter, B.; Rothman, N.; Hu, W.; Ji, B.; Bassig, B.A.; Silverman, D.T.; Lan, Q. Commute patterns, residential traffic-related air pollution, and lung cancer risk in the prospective UK Biobank cohort study. Environ. Int. 2021, 155, 106698. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, M.L.; Di Filippo, P.; Gentili, A.; Canepari, S. Semiautomatic sequential extraction of polycyclic aromatic hydrocarbons and elemental bio-accessible fraction by accelerated solvent extraction on a single particulate matter sample. Talanta 2017, 174, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wu, Y.; Ge, X.; Nie, D.; Wang, M.; Zhou, H.; Chen, M. In vitro toxicity evaluation of heavy metals in urban air particulate matter on human lung epithelial cells. Sci. Total Environ. 2019, 678, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Marconi, E.; Canepari, S.; Luisa Astolfi, M.; Perrino, C. Determination of Sb(III), Sb(V) and identification of Sb-containing nanoparticles in airborne particulate matter. Procedia Environ. Sci. 2011, 4, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Vogel, C.F.A.; Van Winkle, L.S.; Esser, C.; Haarmann-Stemmann, T. The aryl hydrocarbon receptor as a target of environmental stressors—Implications for pollution mediated stress and inflammatory responses. Redox Biol. 2020, 34, 101530. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Ahn, S.; Zhang, L. Benzene-associated immunosuppression and chronic inflammation in humans: A systematic review. Occup. Environ. Med. 2021, 78, 377–384. [Google Scholar] [CrossRef]
- Tranfo, G.; Pigini, D.; Paci, E.; Bauleo, L.; Forastiere, F.; Ancona, C. Biomonitoring of urinary benzene metabolite SPMA in the general population in Central Italy. Toxics 2018, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Tranfo, G.; Pigini, D.; Paci, E.; Marini, F.; Bonanni, R.C. Association of exposure to benzene and smoking with oxidative damage to nucleic acids by means of biological monitoring of general population volunteers. Environ. Sci. Pollut. Res. 2017, 24, 13885–13894. [Google Scholar] [CrossRef]
- Carrieri, M.; Pigini, D.; Martinelli, A.; Paci, E.; Maratini, F.; Salamon, F.; Tranfo, G. Effect of benzene exposure on the urinary biomarkers of nucleic acid oxidation in two cohorts of gasoline pump attendants. Int. J. Environ. Res. Public Health 2019, 16, 129. [Google Scholar] [CrossRef] [Green Version]
- Bolden, A.L.; Kwiatkowski, C.F.; Colborn, T. New Look at BTEX: Are Ambient Levels a Problem? Environ. Sci. Technol. 2015, 49, 5261–5276. [Google Scholar] [CrossRef]
- Mchale, C.M.; Zhang, L.; Smith, M.T. Current understanding of the mechanism of benzene-induced leukemia in humans: Implications for risk assessment. Carcinogenesis 2012, 33, 240–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Parliament. European Council Directive 2008/50/EC on Ambient Air Quality and Cleaner Air for Europe; European Parliament: Strasbourg, France, 2008.
- IARC Publications Website. Certain Polycyclic Aromatic Hydrocarbons and Heterocyclic Compounds. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Certain-Polycyclic-Aromatic-Hydrocarbons-And-Heterocyclic-Compounds-1973 (accessed on 13 May 2022).
- Tombolini, F.; Pigini, D.; Tranfo, G.; Paci, E.; Carosi, I.; Marini, F.; Bauleo, L.; Ancona, C.; Forastiere, F. Levels of urinary metabolites of four PAHs and cotinine determined in 1016 volunteers living in Central Italy. Environ. Sci. Pollut. Res. 2018, 25, 28772–28779. [Google Scholar] [CrossRef]
- Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuen, J.Q.; Olin, P.H.; Lim, H.S.; Benner, S.G.; Sutherland, R.A.; Ziegler, A.D. Accumulation of potentially toxic elements in road deposited sediments in residential and light industrial neighborhoods of Singapore. J. Environ. Manag. 2012, 101, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, M.L.; Canepari, S.; Cardarelli, E.; Ghighi, S.; Marzo, M.L. Chemical Fractionation of Ellements in Airborne Particulate Matter: Primary Results on PM10 and PM2.5 Samples in the Lazio Region (Central Italy). Ann. Chim. 2006, 96, 183–194. [Google Scholar] [CrossRef]
- Shi, G.; Chen, Z.; Bi, C.; Wang, L.; Teng, J.; Li, Y.; Xu, S. A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city of China. Atmos. Environ. 2011, 45, 764–771. [Google Scholar] [CrossRef]
- Zgłobicki, W.; Telecka, M.; Skupiński, S. Assessment of short-term changes in street dust pollution with heavy metals in Lublin (E Poland)—levels, sources and risks. Environ. Sci. Pollut. Res. 2019, 26, 35049–35060. [Google Scholar] [CrossRef] [Green Version]
- Fort, M.; Grimalt, J.O.; Querol, X.; Casas, M.; Sunyer, J. Evaluation of atmospheric inputs as possible sources of antimony in pregnant women from urban areas. Sci. Total Environ. 2016, 544, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Kong, A.; Frigge, M.L.; Masson, G.; Besenbacher, S.; Sulem, P.; Magnusson, G.; Gudjonsson, S.A.; Sigurdsson, A.; Jonasdottir, A.; Jonasdottir, A.; et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 2012, 488, 471–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.U.; Liu, G.; Yousaf, B.; Abbas, Q.; Ullah, H.; Munir, M.A.M.; Fu, B. Pollution characteristics and human health risks of potentially (eco)toxic elements (PTEs) in road dust from metropolitan area of Hefei, China. Chemosphere 2017, 181, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Padoan, E.; Romè, C.; Ajmone-Marsan, F. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect. Sci. Total Environ. 2017, 601–602, 89–98. [Google Scholar] [CrossRef]
- Knasmüller, S.; Parzefall, W.; Sanyal, R.; Ecker, S.; Schwab, C.; Uhl, M.; Mersch-Sundermann, V.; Williamson, G.; Hietsch, G.; Langer, T.; et al. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat. Res. Mol. Mech. Mutagen. 1998, 402, 185–202. [Google Scholar] [CrossRef]
- Duzgoren-Aydin, N.S.; Wong, C.S.C.; Aydin, A.; Song, Z.; You, M.; Li, X.D. Heavy metal contamination and distribution in the urban environment of Guangzhou, SE China. Environ. Geochem. Health 2006, 28, 375–391. [Google Scholar] [CrossRef]
- Protano, C.; Manigrasso, M.; Avino, P.; Vitali, M. Second-hand smoke generated by combustion and electronic smoking devices used in real scenarios: Ultrafine particle pollution and age-related dose assessment. Environ. Int. 2017, 107, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Kamunda, C.; Mathuthu, M.; Madhuku, M. Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 663. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, Y.; Hou, H.; Shangguan, Y.; Li, F. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Sci. Total Environ. 2014, 468–469, 654–662. [Google Scholar] [CrossRef]
- Domingo-Relloso, A.; Grau-Perez, M.; Galan-Chilet, I.; Garrido-Martinez, M.J.; Tormos, C.; Navas-Acien, A.; Gomez-Ariza, J.L.; Monzo-Beltran, L.; Saez-Tormo, G.; Garcia-Barrera, T.; et al. Urinary metals and metal mixtures and oxidative stress biomarkers in an adult population from Spain: The Hortega Study. Environ. Int. 2019, 123, 171–180. [Google Scholar] [CrossRef]
- Tranfo, G.; Paci, E.; Carrieri, M.; Marchetti, E.; Sisto, R.; Gherardi, M.; Costabile, F.; Bauleo, L.; Ancona, C.; Pigini, D. Levels of urinary biomarkers of oxidatively generated damage to DNA and RNA in different groups of workers compared to general population. Int. J. Environ. Res. Public Health 2019, 16, 2995. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.M.; Alam, S.S.; Abdel-Aziem, S.H.; Ahmed, K.A. Benzo-a-pyrene induced genotoxicity and cytotoxicity in germ cells of mice: Intervention of radish and cress. J. Genet. Eng. Biotechnol. 2011, 9, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Riley, E.A.; Carpenter, E.E.; Ramsay, J.; Zamzow, E.; Pyke, C.; Paulsen, M.H.; Sheppard, L.; Spear, T.M.; Seixas, N.S.; Stephenson, D.J.; et al. Evaluation of 1-Nitropyrene as a Surrogate Measure for Diesel Exhaust. Ann. Work Expo. Health 2018, 62, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Toriba, A.; Kitaoka, H.; Dills, R.L.; Mizukami, S.; Tanabe, K.; Takeuchi, N.; Ueno, M.; Kameda, T.; Tang, N.; Hayakawa, K.; et al. Identification and Quantification of 1-Nitropyrene Metabolites in Human Urine as a Proposed Biomarker for Exposure to Diesel Exhaust. Chem. Res. Toxicol. 2007, 20, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Paci, E.; Pigini, D.; Bauleo, L.; Ancona, C.; Forastiere, F.; Tranfo, G. Urinary Cotinine Concentration and Self-Reported Smoking Status in 1075 Subjects Living in Central Italy. Int. J. Environ. Res. Public Health 2018, 15, 804. [Google Scholar] [CrossRef] [Green Version]
- Darrall, K.G.; Figgins, J.A.; Brown, R.D.; Phillips, G.F. Determination of benzene and associated volatile compounds in mainstream cigarette smoke. Analyst 1998, 123, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Jay Forman, H.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Chao, M.R.; Evans, M.D.; Hu, C.W.; Ji, Y.; Møller, P.; Rossner, P.; Cooke, M.S. Biomarkers of nucleic acid oxidation—A summary state-of-the-art. Redox Biol. 2021, 42, 101872. [Google Scholar] [CrossRef]
- Tanaka, M.; Chock, P.B. Oxidative Modifications of RNA and Its Potential Roles in Biosystem. Front. Mol. Biosci. 2021, 8, 407. [Google Scholar] [CrossRef]
- Jin, L.; Godri Pollitt, K.J.; Liew, Z.; Rosen Vollmar, A.K.; Vasiliou, V.; Johnson, C.H.; Zhang, Y. Use of Untargeted Metabolomics to Explore the Air Pollution-Related Disease Continuum. Curr. Environ. Health Rep. 2021, 8, 7–22. [Google Scholar] [CrossRef]
- Ancona, C.; Bauleo, L.; Biscotti, G.; Bocca, B.; Caimi, S.; Cruciani, F.; Di Lorenzo, S.; Petrolati, M.; Pino, A.; Piras, G.; et al. A survey on lifestyle and level of biomarkers of environmental exposure in residents in Civitavecchia (Italy). Ann. Ist. Super. Sanita 2016, 52, 488–494. [Google Scholar] [CrossRef] [PubMed]
- EU Directive. EU―Directive 2002/73/EC of the European Parliament and of the Council. Off. J. Eur. Communities 2002, 269, 15–20. [Google Scholar]
- ICOH. International Code of Ethics for Occupational Health Professionals; International Commission on Occupational Health: Rome, Italy, 2014. [Google Scholar]
- Kroll, M.H.; Chesler, R.; Hagengruber, C.; Blank, D.W.; Kestner, J.; Rawe, M. Automated determination of urinary creatinine without sample dilution: Theory and practice. Clin. Chem. 1986, 32, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Raponi, F.; Bauleo, L.; Ancona, C.; Forastiere, F.; Paci, E.; Pigini, D.; Tranfo, G. Quantification of 1-hydroxypyrene, 1- and 2-hydroxynaphthalene, 3-hydroxybenzo[a]pyrene and 6-hydroxynitropyrene by HPLC-MS/MS in human urine as exposure biomarkers for environmental and occupational surveys. Biomarkers 2017, 22, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, R.; Manini, P.; De Palma, G.; Alinovi, R.; Goldoni, M.; Niessen, W.M.A.; Mutti, A. Quantitative determination of urinary 8-oxo-7,8-dihydro-2′- deoxyguanosine, 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydroguanosine, and their non-oxidized forms: Daily concentration profile in healthy volunteers. Biomarkers 2010, 15, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Protano, C.; Canepari, S.; Astolfi, M.L.; D’Onorio De Meo, S.; Vitali, M. Urinary reference ranges and exposure profile for lithium among an Italian paediatric population. Sci. Total Environ. 2018, 619–620, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, M.L.; Vitali, M.; Marconi, E.; Martellucci, S.; Mattei, V.; Canepari, S.; Protano, C. Urinary Mercury Levels and Predictors of Exposure among a Group of Italian Children. Int. J. Environ. Res. Public Health 2020, 17, 9225. [Google Scholar] [CrossRef]
- Astolfi, M.L.; Protano, C.; Marconi, E.; Massimi, L.; Brunori, M.; Piamonti, D.; Migliara, G.; Vitali, M.; Canepari, S. A new rapid treatment of human hair for elemental determination by inductively coupled mass spectrometry. Anal. Methods 2020, 12, 1906–1918. [Google Scholar] [CrossRef]
- ANAS. Bollettini Mensili dell’Osservatorio del Traffico; ANAS: Rome, Italy; Available online: https://www.stradeanas.it/sites/default/files/SMI4-SintesiOsservatorioMarzo2020.pdf (accessed on 18 May 2022).
- ANAS. Bollettini Mensili dell’Osservatorio del Traffico/Archivio Osservatorio del Traffico; ANAS: Rome, Italy; Available online: https://www.stradeanas.it/sites/default/files/SMI4-SintesiOsservatorioMarzo2021.pdf (accessed on 18 May 2022).
- ARPA Lazio. Bollettini Qualità dell’Aria; ARPA Lazio: Rieti, Italy; Available online: http://www.arpalazio.net/main/aria/sci/basedati/bollettini/bs.php?year=2020 (accessed on 18 May 2022).
- ARPA Lazio. Bollettini Qualità dell’Aria; ARPA Lazio: Rieti, Italy; Available online: http://www.arpalazio.net/main/aria/sci/basedati/bollettini/bs.php?year=2019 (accessed on 18 May 2022).
- ARPA Lazio. Bollettini Qualità dell’Aria; ARPA Lazio: Rieti, Italy; Available online: http://www.arpalazio.net/main/aria/sci/basedati/bollettini/bs.php?year=2021 (accessed on 18 May 2022).
- Hjortenkrans, D.; Bergbäck, B.O.; Bergbäck, B.; Aggerud, A.H. New Metal Emission Patterns in Road Traffic Environments. Environ. Monit. Assess. 2006, 117, 85–98. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Campbell, W.W.; Anderson, R.A. Effects of Aerobic Exercise and Training on the Trace Minerals Chromium, Zinc and Copper. Sports Med. 1987, 4, 9–18. [Google Scholar] [CrossRef]
- Kovacs, L.; Zamboni, C.B.; Nunes, L.A.S.; Lourenço, T.F.; Macedo, D.V. Concentrations of ions and metals in blood of amateur and elite runners using NAA. J. Radioanal. Nucl. Chem. 2013, 3, 393–398. [Google Scholar] [CrossRef]
- Genuis, S.J.; Birkholz, D.; Rodushkin, I.; Beesoon, S. Blood, urine, and sweat (BUS) study: Monitoring and elimination of bioaccumulated toxic elements. Arch. Environ. Contam. Toxicol. 2011, 61, 344–357. [Google Scholar] [CrossRef]
- Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; The National Academic Press: Washington, DC, USA, 2001. [CrossRef] [Green Version]
- Barceloux, D.G.; Barceloux, D.D. Cobalt. J. Toxicol. Clin. Toxicol. 1999, 37, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Varela-Moreiras, G.; Murphy, M.M.; Scott, J.M. Cobalamin, folic acid, and homocysteine. Nutr. Rev. 2009, 67, S69–S72. [Google Scholar] [CrossRef] [PubMed]
- Toxicological Profile for Cobalt; U.S. Department of Health and Human Services: Washington, DC, USA, 2004.
- Expert Group on Vitamins and Minerals. Safe Upper Levels for Vitamins and Minerals Expert Group on Vitamins and Minerals Contents; Food Standards Agency: London, UK, 2003.
- Mills, E.; O’Neill, L.A.J. Succinate: A metabolic signal in inflammation. Trends Cell Biol. 2014, 24, 313–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benetti, E.; Liberto, E.; Bressanello, D.; Bordano, V.; Rosa, A.C.; Miglio, G.; Haxhi, J.; Pugliese, G.; Balducci, S.; Cordero, C. Sedentariness and urinary metabolite profile in type 2 diabetic patients, a cross-sectional study. Metabolites 2020, 10, 205. [Google Scholar] [CrossRef]
Analyte | 8-oxoGua | 8-oxoGuo | 8-oxodGuo | 3-NO2Tyr | 5-MeCyt | SPMA | 1-OHPy | 6-OHNPy | 3-OHBaPy | 1-OHNAP | 2-OHNAP |
---|---|---|---|---|---|---|---|---|---|---|---|
YEAR 2020 | |||||||||||
mean | 15.99 * | 6.73 * | 2.26 * | 33.91 | 11.33 | 0.31 * | 0.05 * | >LOD | 0.04 | 0.43 | 4.65 |
SD | 14.54 | 4.31 | 1.25 | 27.60 | 6.99 | 0.20 | 0.04 | >LOD | 0.04 | 0.76 | 6.12 |
median | 9.72 | 5.36 | 2.21 | 21.74 | 9.89 | 0.23 | 0.04 | >LOD | 0.02 | 0.27 | 2.89 |
5th perc | 4.02 | 2.14 | 0.36 | 12.04 | 5.03 | 0.13 | 0.02 | >LOD | 0.01 | 0.01 | 1.03 |
95th perc | 47.85 | 15.46 | 4.38 | 103.52 | 21.85 | 0.73 | 0.13 | 0.01 | 0.14 | 1.63 | 12.85 |
min | 2.07 | 1.67 | 0.09 | 7.96 | 4.33 | 0.09 | 0.01 | >LOD | 0.01 | 0.01 | 0.52 |
max | 64.46 | 19.54 | 5.31 | 126.20 | 43.13 | 0.94 | 0.18 | >LOD | 0.17 | 4.62 | 39.22 |
YEAR 2021 | |||||||||||
mean | 46.50 | 10.60 | 3.64 | 32.95 | 12.72 | 0.39 | 0.07 | >LOD | 0.03 | 0.46 | 6.08 |
SD | 43.98 | 5.61 | 1.84 | 24.81 | 8.05 | 0.23 | 0.03 | >LOD | 0.03 | 1.15 | 6.80 |
median | 28.80 | 8.66 | 3.14 | 23.11 | 9.89 | 0.31 | 0.06 | >LOD | 0.02 | 0.12 | 3.66 |
5th perc | 6.89 | 4.52 | 1.42 | 14.08 | 5.12 | 0.14 | 0.03 | >LOD | 0.01 | 0.01 | 0.76 |
95th perc | 118.19 | 22.39 | 5.98 | 69.41 | 30.86 | 0.83 | 0.13 | 0.01 | 0.07 | 1.82 | 19.48 |
min | 4.43 | 3.89 | 1.05 | 3.17 | 3.68 | 0.14 | 0.02 | >LOD | 0.01 | 0.01 | 0.01 |
max | 232.30 | 24.50 | 10.74 | 142.61 | 38.48 | 1.07 | 0.16 | 0.02 | 0.18 | 7.43 | 37.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buonaurio, F.; Borra, F.; Pigini, D.; Paci, E.; Spagnoli, M.; Astolfi, M.L.; Giampaoli, O.; Sciubba, F.; Miccheli, A.; Canepari, S.; et al. Biomonitoring of Exposure to Urban Pollutants and Oxidative Stress during the COVID-19 Lockdown in Rome Residents. Toxics 2022, 10, 267. https://doi.org/10.3390/toxics10050267
Buonaurio F, Borra F, Pigini D, Paci E, Spagnoli M, Astolfi ML, Giampaoli O, Sciubba F, Miccheli A, Canepari S, et al. Biomonitoring of Exposure to Urban Pollutants and Oxidative Stress during the COVID-19 Lockdown in Rome Residents. Toxics. 2022; 10(5):267. https://doi.org/10.3390/toxics10050267
Chicago/Turabian StyleBuonaurio, Flavia, Francesca Borra, Daniela Pigini, Enrico Paci, Mariangela Spagnoli, Maria Luisa Astolfi, Ottavia Giampaoli, Fabio Sciubba, Alfredo Miccheli, Silvia Canepari, and et al. 2022. "Biomonitoring of Exposure to Urban Pollutants and Oxidative Stress during the COVID-19 Lockdown in Rome Residents" Toxics 10, no. 5: 267. https://doi.org/10.3390/toxics10050267