Testing the Limit: Evaluating Drinking Water Arsenic Regulatory Levels Based on Adverse Pregnancy Outcomes in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Fetal Loss, Preterm Birth, and Neonatal Mortality
2.3. Exposure Assessment: Drinking Water Arsenic
2.4. Covariates
2.5. Statistical Approaches
3. Results
3.1. Miscarriage and Drinking Water Arsenic
3.2. Miscarriage Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Shaji, E.; Santosh, M.; Sarath, K.V.; Prakash, P.; Deepchand, V.; Divya, B.V. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci. Front. 2021, 12, 101079. [Google Scholar] [CrossRef]
- US EPA. Arsenic in Drinking Water Rule Economic Analysis; United States Environmental Protection Agency, Office of Ground Water and Drinking Water: Washington, DC, USA, 2000.
- Chen, C.J.; Chuang, Y.C.; Lin, T.M.; Wu, H.Y. Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: High-arsenic artesian well water and cancers. Cancer Res. 1985, 45, 5895–5899. [Google Scholar] [PubMed]
- Chen, C.J.; Wu, M.M.; Lee, S.S.; Wang, J.D.; Cheng, S.H.; Wu, H.Y. Atherogenicity and carcinogenicity of high-arsenic artesian well water. Multiple risk factors and related malignant neoplasms of blackfoot disease. Arteriosclerosis 1988, 8, 452–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.J.; Chen, C.W.; Wu, M.M.; Kuo, T.L. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br. J. Cancer 1992, 66, 888–892. [Google Scholar] [CrossRef] [Green Version]
- Welch, B.; Smit, E.; Cardenas, A.; Hystad, P.; Kile, M.L. Trends in urinary arsenic among the U.S. population by drinking water source: Results from the National Health and Nutritional Examinations Survey 2003–2014. Environ. Res. 2018, 162, 8–17. [Google Scholar] [CrossRef]
- Foster, S.A.; Pennino, M.J.; Compton, J.E.; Leibowitz, S.G.; Kile, M.L. Arsenic Drinking Water Violations Decreased across the United States Following Revision of the Maximum Contaminant Level. Environ. Sci. Technol. 2019, 53, 11478–11485. [Google Scholar] [CrossRef]
- World Health Organization. Arsenic in Drinking Water: Background Document for Development of WHO Guidelines for Drinking-water Quality. WHO/SDE/WSH/03.04/75/Rev/1. 2011. Available online: https://www.who.int/water_sanitation_health/dwq/chemicals/arsenic.pdf?ua=1 (accessed on 25 June 2021).
- Report NRC (US) S to U the 1999 A in DW. Introduction Arsenic in Drinking Water: 2001 Update; National Academies Press: Washington, DC, USA, 2001; Available online: http://www.ncbi.nlm.nih.gov/books/NBK223672/ (accessed on 25 June 2021).
- NJDEP New Jersey Department of Environmental Protection. Available online: https://www.state.nj.us/dep/dsr/arsenic/guide.htm (accessed on 2 July 2021).
- NH DES. Review of the Drinking Water Maximum Contaminant Level (MCL) and Ambient Groundwater Quality Standard (AGQS) for Arsenic. New Hamps. Dep. Environ. Serv. 2018, 1–71. Available online: https://www.des.nh.gov/sites/g/files/ehbemt341/files/documents/r-wd-18-20.pdf (accessed on 2 July 2021).
- Ministry of Environment and Food of Denmark. Bekendtgørelse om Vandkvalitet og Tilsyn med Vandforsyningsanlæg. BEK no. 802. 2019. Available online: https://www.vandcenterdjurs.dk/media/1133/gaeldende-drikkevandsbekendtgoerelse-28-10-2019.pdf (accessed on 2 July 2021).
- Neonatal Mortality. UNICEF DATA. Available online: https://data.unicef.org/topic/child-survival/neonatal-mortality/ (accessed on 5 February 2020).
- USAID. USAID Maternal Health Strategy, 2014–2020. Toward Ending Preventable Maternal Mortality. 2014. Available online: https://www.mchip.net/sites/default/files/mchipfiles/USAID%20MH%20Strategy%20Apr.22.14.pdf (accessed on 25 February 2020).
- Lawn, J.E.; Blencowe, H.; Waiswa, P.; Amouzou, A.; Mathers, C.; Hogan, D.; Draper, E.S. Stillbirths: Rates, risk factors, and acceleration towards 2030. Lancet 2016, 387, 587–603. [Google Scholar] [CrossRef] [Green Version]
- Lawn, J.E.; Cousens, S.; Zupan, J. Lancet Neonatal Survival Steering Team. 4 million neonatal deaths: When? Where? Why? Lancet 2005, 365, 891–900. [Google Scholar] [CrossRef]
- Blencowe, H.; Cousens, S.; Jassir, F.B.; Say, L.; Chou, D.; Mathers, C.; Hogan, D.; Shiekh, S.; Qureshi, Z.; You, D.; et al. National, regional, and worldwide estimates of stillbirth rates in 2015, with trends from 2000: A systematic analysis. Lancet Global Health 2016, 4, e98–e108. [Google Scholar] [CrossRef] [Green Version]
- Lawn, J.E.; Yakoob, M.Y.; Haws, R.A.; Soomro, T.; Darmstadt, G.L.; Bhutta, Z.A. 3.2 million stillbirths: Epidemiology and overview of the evidence review. BMC Pregnancy Childbirth 2009, 9, S2. [Google Scholar] [CrossRef] [PubMed]
- Nonyane, B.A.S.; Norton, M.; Begum, N.; Shah, R.M.; Mitra, D.K.; Darmstadt, G.L.; Baqui, A.H.; Projahnmo Study Group in Bangladesh; for the Projahnmo Study Group in Bangladesh. Pregnancy intervals after stillbirth, neonatal death and spontaneous abortion and the risk of an adverse outcome in the next pregnancy in rural Bangladesh. BMC Pregnancy Childbirth 2019, 19, 62. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, S.; Osrin, D.; Paul, E.; Costello, A. Neonatal mortality of low-birth-weight infants in Bangladesh. Bull World Health Organ. 2001, 79, 608–614. [Google Scholar] [PubMed]
- McCormick, M.C. The contribution of low birth weight to infant mortality and childhood morbidity. N. Engl. J. Med. 1985, 312, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Rashid, H.; Ma, E.; Ferdous, F.; Ekström, E.C.; Wagatsuma, Y. First-trimester fetal growth restriction and the occurrence of miscarriage in rural Bangladesh: A prospective cohort study. PLoS ONE 2017, 12, e0181967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldwell, B.K.; Caldwell, J.C.; Mitra, S.N.; Smith, W. Searching for an optimum solution to the Bangladesh arsenic crisis. Soc. Sci. Med. 2003, 56, 2089–2096. [Google Scholar] [CrossRef]
- Arsenic Contamination of Groundwater in Bangladesh|British Geological Survey (BGS). Available online: http://www.bgs.ac.uk/arsenic/bangladesh/ (accessed on 21 April 2019).
- Johnston, R. Bangladesh National Drinking Water Quality Survey of 2009; UNICEF & Bangladesh Bureau of Statistics: Nottingham, UK, 2011; p. 192. [Google Scholar]
- Kile, M.L.; Rodrigues, E.G.; Mazumdar, M.; Dobson, C.B.; Diao, N.; Golam, M.; Quamruzzaman, Q.; Rahman, M.; Christiani, D.C. A prospective cohort study of the association between drinking water arsenic exposure and self-reported maternal health symptoms during pregnancy in Bangladesh. Environ. Health 2014, 13, 29. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, E.G.; Kile, M.; Dobson, C.; Amarasiriwardena, C.; Quamruzzaman, Q.; Rahman, M.; Golam, M.; Christiani, D.C. Maternal–infant biomarkers of prenatal exposure to arsenic and manganese. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 639–648. [Google Scholar] [CrossRef]
- Welch, B.M.; Branscum, A.; Ahmed, S.M.; Hystad, P.; Smit, E.; Afroz, S.; Megowan, M.; Golam, M.; Hasan, O.S.I.; Rahman, M.L.; et al. Arsenic exposure and serum antibody concentrations to diphtheria and tetanus toxoid in children at age 5: A prospective birth cohort in Bangladesh. Environ. Int. 2019, 127, 810–818. [Google Scholar] [CrossRef]
- Welch, B.M.; Branscum, A.; Geldhof, G.J.; Ahmed, S.M.; Hystad, P.; Smit, E.; Afroz, S.; Megowan, M.; Golam, M.; Sharif, O.; et al. Evaluating the effects between metal mixtures and serum vaccine antibody concentrations in children: A prospective birth cohort study. Environ. Health 2020, 19, 41. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Vahter, M.; Smith, A.H.; Nermell, B.; Yunus, M.; El Arifeen, S.; Persson, L.; Ekström, E.-C. Arsenic Exposure during Pregnancy and Size at Birth: A Prospective Cohort Study in Bangladesh. Am. J. Epidemiol. 2009, 169, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Steinmaus, C.; Yuan, Y.; Bates, M.N.; Smith, A.H. Case-Control Study of Bladder Cancer and Drinking Water Arsenic in the Western United States. Am. J. Epidemiol. 2003, 158, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.R.; Rubin, D.B. Constructing a Control Group Using Multivariate Matched Sampling Methods That Incorporate the Propensity Score. Am. Stat. 1985, 39, 33–38. [Google Scholar]
- Ho, D.E.; Imai, K.; King, G.; Stuart, E.A. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. J. Stat. Softw. 2011, 42, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.; Easter, K.W.; Konishi, Y. Economic Evaluation of the New U.S. Arsenic Standard for Drinking Water: A Disaggregate Approach. Water Resources Research. 2010. Available online: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009WR008269 (accessed on 25 June 2021).
- Eastman, N.J. The arsenic content of the human placenta following arsphenamine therapy. Am. J. Obstet. Gynecol. 1931, 21, 60–64. [Google Scholar] [CrossRef]
- ATSDR–Toxicological Profile: Arsenic. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=22&tid=3 (accessed on 19 October 2019).
- Bloom, M.S.; Fitzgerald, E.F.; Kim, K.; Neamtiu, I.; Gurzau, E.S. Spontaneous pregnancy loss in humans and exposure to arsenic in drinking water. Int. J. Hyg. Environ. Health 2010, 213, 401–413. [Google Scholar] [CrossRef]
- Milton, A.H.; Smith, W.; Rahman, B.; Hasan, Z.; Kulsum, U.; Dear, K.; Ali, A. Chronic arsenic exposure and adverse pregnancy outcomes in bangladesh. Epidemiology 2005, 16, 82–86. [Google Scholar] [CrossRef]
- Rahman, A.; Vahter, M.; Ekström, E.C.; Rahman, M.; Golam Mustafa, A.H.M.; Wahed, M.A.; Yunus, M.; Persson, L. Association of arsenic exposure during pregnancy with fetal loss and infant death: A cohort study in Bangladesh. Am. J. Epidemiol. 2007, 165, 1389–1396. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Noble, B.N.; Joya, S.A.; Ibn Hasan, M.O.S.; Lin, P.I.; Rahman, M.L.; Kile, M.L. A Prospective Cohort Study Examining the Associations of Maternal Arsenic Exposure with Fetal Loss and Neonatal Mortality. Am. J. Epidemiol. 2019, 188, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Quansah, R.; Armah, F.A.; Essumang, D.K.; Luginaah, I.; Clarke, E.; Marfoh, K.; Dzodzomenyo, M. Association of Arsenic with Adverse Pregnancy Outcomes/Infant Mortality: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2015, 123, 412–421. [Google Scholar] [CrossRef]
- Hopenhayn-Rich, C.; Browning, S.R.; Hertz-Picciotto, I.; Ferreccio, C.; Peralta, C.; Gibb, H. Chronic arsenic exposure and risk of infant mortality in two areas of Chile. Environ. Health Perspect. 2000, 108, 667–673. [Google Scholar] [CrossRef] [PubMed]
- von Ehrenstein, O.S.; Guha Mazumder, D.N.; Hira-Smith, M.; Ghosh, N.; Yuan, Y.; Windham, G.; Ghosh, A.; Haque, R.; Lahiri, S.; Kalman, D.; et al. Pregnancy outcomes, infant mortality, and arsenic in drinking water in West Bengal, India. Am. J. Epidemiol. 2006, 163, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Myers, S.L.; Lobdell, D.T.; Liu, Z.; Xia, Y.; Ren, H.; Li, Y.; Kwok, R.K.; Mumford, J.L.; Mendola, P. Maternal drinking water arsenic exposure and perinatal outcomes in Inner Mongolia, China. J. Epidemiol. Community Health 2010, 64, 325–329. [Google Scholar] [CrossRef]
- Milton, A.H.; Hussain, S.; Akter, S.; Rahman, M.; Mouly, T.A.; Mitchell, K. A Review of the Effects of Chronic Arsenic Exposure on Adverse Pregnancy Outcomes. Int. J. Environ. Res. Public Health 2017, 14, 556. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5486242/ (accessed on 24 February 2020). [CrossRef] [PubMed] [Green Version]
- Bloom, M.S.; Neamtiu, I.A.; Surdu, S.; Pop, C.; Lupsa, I.R.; Anastasiu, D.; Gurzau, E.S. Consumption of low-moderate level arsenic contaminated water does not increase spontaneous pregnancy loss: A case control study. Environ. Health 2014, 13, 81. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216381/ (accessed on 24 February 2020). [CrossRef] [PubMed] [Green Version]
- Smith, A.H.; Lingas, E.O.; Rahman, M. Contamination of drinking-water by arsenic in Bangladesh: A public health emergency. Bull World Health Organ. 2000, 78, 1093–1103. [Google Scholar] [PubMed]
- Frisbie, S.H.; Ortega, R.; Maynard, D.M.; Sarkar, B. The concentrations of arsenic and other toxic elements in Bangladesh’s drinking water. Environ. Health Perspect. 2002, 110, 1147–1153. [Google Scholar] [CrossRef]
- Hopenhayn-Rich, C.; Biggs, M.L.; Smith, A.H. Lung and kidney cancer mortality associated with arsenic in drinking water in Córdoba, Argentina. Int. J. Epidemiol. 1998, 27, 561–569. [Google Scholar] [CrossRef]
- Wasserman, G.A.; Liu, X.; LoIacono, N.J.; Kline, J.; Factor-Litvak, P.; van Geen, A.; Graziano, J.H. A cross-sectional study of well water arsenic and child IQ in Maine schoolchildren. Environ. Health 2014, 13, 23. [Google Scholar] [CrossRef] [Green Version]
- Golub, M.S.; Macintosh, M.S.; Baumrind, N. Developmental and reproductive toxicity of inorganic arsenic: Animal studies and human concerns. J. Toxicol. Environ. Health Part B 1998, 1, 199–237. [Google Scholar] [CrossRef]
- Kabir, T.; Anwar, S.; Taslem Mourosi, J.; Hossain, J.; Rabbane, M.G.; Rahman, M.M.; Tahsin, T.; Hasan, N.; Shill, M.C.; Hosen, M.J. Arsenic hampered embryonic development: An in vivo study using local Bangladeshi Danio rerio model. Toxicol. Rep. 2020, 7, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Walter, I.; Schwerdtle, T.; Thuy, C.; Parsons, J.L.; Dianov, G.L.; Hartwig, A. Impact of arsenite and its methylated metabolites on PARP-1 activity, PARP-1 gene expression and poly(ADP-ribosyl)ation in cultured human cells. DNA Repair 2007, 6, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.K.; Jirtle, R.L. Imprinted genes as potential genetic and epigenetic toxicologic targets. Environ. Health Perspect. 2000, 108, 5–11. [Google Scholar] [PubMed] [Green Version]
- Vega, L.; Montes de Oca, P.; Saavedra, R.; Ostrosky-Wegman, P. Helper T cell subpopulations from women are more susceptible to the toxic effect of sodium arsenite in vitro. Toxicology 2004, 199, 121–128. [Google Scholar] [CrossRef]
- Zhang, T.C.; Schmitt, M.T.; Mumford, J.L. Effects of arsenic on telomerase and telomeres in relation to cell proliferation and apoptosis in human keratinocytes and leukemia cells in vitro. Carcinogenesis 2003, 24, 1811–1817. [Google Scholar] [CrossRef] [Green Version]
- Waalkes, M.P.; Liu, J.; Chen, H.; Xie, Y.; Achanzar, W.E.; Zhou, Y.S.; Cheng, M.-L.; Diwan, B.A. Estrogen signaling in livers of male mice with hepatocellular carcinoma induced by exposure to arsenic in utero. J. Natl. Cancer Inst. 2004, 96, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Bodwell, J.E.; Kingsley, L.A.; Hamilton, J.W. Arsenic at very low concentrations alters glucocorticoid receptor (GR)-mediated gene activation but not GR-mediated gene repression: Complex dose-response effects are closely correlated with levels of activated GR and require a functional GR DNA binding domain. Chem. Res. Toxicol. 2004, 17, 1064–1076. [Google Scholar]
- Chattopadhyay, S.; Ghosh, S.; Chaki, S.; Debnath, J.; Ghosh, D. Effect of sodium arsenite on plasma levels of gonadotrophins and ovarian steroidogenesis in mature albino rats: Duration-dependent response. J. Toxicol. Sci. 1999, 24, 425–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rassen, J.A.; Shelat, A.A.; Myers, J.; Glynn, R.J.; Rothman, K.J.; Schneeweiss, S. One-to-many propensity score matching in cohort studies. Pharmacoepidemiol. Drug Saf. 2012, 21, 69–80. [Google Scholar] [CrossRef]
- Stuart, E.A.; Green, K.M. Using Full Matching to Estimate Causal Effects in Nonexperimental Studies: Examining the Relationship between Adolescent Marijuana Use and Adult Outcomes. Dev. Psychol. 2008, 44, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.B. Full Matching in an Observational Study of Coaching for the SAT. J. Am. Stat. Assoc. 2004, 99, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Stürmer, T.; Joshi, M.; Glynn, R.J.; Avorn, J.; Rothman, K.J.; Schneeweiss, S. A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. J. Clin. Epidemiol. 2006, 59, 437.e1–437.e24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, R.J.; Rothman, K.J.; Bateman, B.T.; Hernandez-Diaz, S.; Huybrechts, K.F. A Propensity score based fine stratification approach for confounding adjustment when exposure is infrequent. Epidemiology 2017, 28, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Kile, M.L.; Houseman, E.A.; Breton, C.V.; Quamruzzaman, Q.; Rahman, M.; Mahiuddin, G.; Christiani, D.C. Association between total ingested arsenic and toenail arsenic concentrations. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2007, 42, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
Live Births (n = 1130) | Miscarriage (n = 132) | Stillbirth (n = 72) | Neonatal Mortality (n = 20) | Overall (n = 1597) | p-Value ** | |
---|---|---|---|---|---|---|
Age (years) | 0.6 | |||||
Mean (SD) | 23.0 (4.22) | 23.1 (4.45) | 22.2 (3.76) | 23.2 (4.02) | 22.9 (4.19) | |
Median [Min, Max] | 22.0 [18.0, 41.0] | 22.0 [18.0, 35.0] | 21.0 [18.0, 35.0] | 23.0 [18.0, 33.0] | 22.0 [18.0, 41.0] | |
BMI (Kg/m2) | 0.4 | |||||
Mean (SD) | 20.5 (3.23) | 20.8 (3.18) | 20.2 (3.04) | 19.8 (2.69) | 20.5 (3.20) | |
Median [Min, Max] | 20.0 [13.4, 36.0] | 20.4 [12.6, 29.0] | 20.1 [15.3, 30.2] | 19.3 [14.3, 25.4] | 20.1 [12.3, 36.0] | |
Education | 0.1 | |||||
No school attendance | 159 (14.1%) | 24 (18.2%) | 13 (18.1%) | 6 (30.0%) | 236 (14.8%) | |
Primary School | 365 (32.3%) | 45 (34.1%) | 29 (40.3%) | 7 (35.0%) | 540 (33.8%) | |
Secondary School and Higher Education | 606 (53.6%) | 63 (47.7%) | 30 (41.7%) | 7 (35.0%) | 821 (51.4%) | |
Monthly Household Income (Taka) | 0.04 | |||||
<3000 | 188 (16.6%) | 11 (8.3%) | 19 (26.4%) | 5 (25.0%) | 253 (15.8%) | |
3001-4000 | 298 (26.4%) | 25 (18.9%) | 16 (22.2%) | 7 (35.0%) | 394 (24.7%) | |
4001-5000 | 336 (29.7%) | 43 (32.6%) | 17 (23.6%) | 4 (20.0%) | 493 (30.9%) | |
5001+ | 301 (26.6%) | 38 (28.8%) | 14 (19.4%) | 4 (20.0%) | 425 (26.6%) | |
Missing | 7 (0.6%) | 15 (11.4%) | 6 (8.3%) | 0 (0%) | 32 (2.0%) | |
Cook Fuel Type | 0.1 | |||||
Clean Fuel | 778 (68.8%) | 86 (65.2%) | 38 (52.8%) | 15 (75.0%) | 1090 (68.3%) | |
Less Clean Fuel | 346 (30.6%) | 46 (34.8%) | 34 (47.2%) | 5 (25.0%) | 499 (31.2%) | |
Refused | 3 (0.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 5 (0.3%) | |
Missing | 3 (0.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 3 (0.2%) | |
Risk of subsequent miscarriage/stillbirth | 0.8 | |||||
First Born or None Previous | 922 (81.6%) | 105 (79.5%) | 59 (81.9%) | 15 (75.0%) | 1312 (82.2%) | |
Previous Miscarriage/Stillbirth | 208 (18.4%) | 27 (20.5%) | 13 (18.1%) | 5 (25.0%) | 285 (17.8%) | |
Number of previous births | 0.8 | |||||
First Born | 536 (47.4%) | 68 (51.5%) | 37 (51.4%) | 10 (50.0%) | 768 (48.1%) | |
2nd or Greater Born | 594 (52.6%) | 64 (48.5%) | 35 (48.6%) | 10 (50.0%) | 829 (51.9%) | |
Clinic Location | 0.02 | |||||
Pabna | 555 (49.1%) | 48 (36.4%) | 31 (43.1%) | 12 (60.0%) | 726 (45.5%) | |
Sirajdikhan | 575 (50.9%) | 84 (63.6%) | 41 (56.9%) | 8 (40.0%) | 871 (54.5%) | |
Preterm Birth (> 37 Weeks Gestation) | <0.001 | |||||
No | 887 (78.5%) | -- | -- | 9 (45.0%) | 918 (57.5%) | |
Yes | 243 (21.5%) | -- | -- | 11 (55.0%) | 260 (16.3%) | |
Missing | -- | 132 (100%) | 72 (100%) | -- | 419 (26.2%) | |
Gestational Age (Weeks) | 0.009 | |||||
Mean (SD) | 38.0 (1.85) | -- | -- | 34.8 (5.08) | 37.9 (2.00) | |
Median [Min, Max] | 38.0 [29.0, 42.0] | -- | -- | 35.5 [22.0, 40.0] | 38.0 [22.0, 42.0] | |
Missing | -- | 132 (100%) | 72 (100%) | -- | 419 (26.2%) | |
Child’s Weight at Birth (kg) | 0.01 | |||||
Mean (SD) | 2.84 (0.402) | -- | -- | 2.52 (0.760) | 2.84 (0.409) | |
Median [Min, Max] | 2.86 [0.800, 4.80] | -- | -- | 2.50 [1.40, 4.60] | 2.86 [0.800, 4.80] | |
Missing | -- | 132 (100%) | 72 (100%) | -- | 419 (26.2%) | |
Child’s Sex at Birth | 0.5 | |||||
Male | 574 (50.8%) | -- | -- | 12 (60.0%) | 598 (37.4%) | |
Female | 556 (49.2%) | -- | -- | 8 (40.0%) | 580 (36.3%) | |
Missing | -- | 132 (100%) | 72 (100%) | -- | 419 (26.2%) | |
Type of Birth | 0.06 | |||||
Cesarean | 404 (35.8%) | -- | -- | 3 (15.0%) | 413 (25.9%) | |
Vaginal | 726 (64.2%) | -- | -- | 17 (85.0%) | 765 (47.9%) | |
Missing | -- | 132 (100%) | 72 (100%) | -- | 419 (26.2%) | |
Drinking Water Manganese (µg/L) | 0.5 | |||||
Mean (SD) | 722 (704) | 708 (715) | 643 (671) | 734 (630) | 728 (729) | |
Median [Min, Max] | 590 [0.500, 4720] | 620 [1.00, 3500] | 490 [1.00, 2600] | 670 [1.50, 2700] | 590 [0.500, 5300] | |
Drinking Water Arsenic cut off 1 µg/L | 0.4 | |||||
<1 µg/L | 312 (27.6%) | 36 (27.3%) | 20 (27.8%) | 2 (10.0%) | 442 (27.7%) | |
≥1 µg/L | 818 (72.4%) | 96 (72.7%) | 52 (72.2%) | 18 (90.0%) | 1155 (72.3%) | |
Drinking Water Arsenic cut off 2.5 µg/L | 0.2 | |||||
<2.5 µg/L | 576 (51.0%) | 73 (55.3%) | 43 (59.7%) | 7 (35.0%) | 845 (52.9%) | |
≥2.5 µg/L | 554 (49.0%) | 59 (44.7%) | 29 (40.3%) | 13 (65.0%) | 752 (47.1%) | |
Drinking Water Arsenic cut off 5 µg/L | 0.3 | |||||
<5 µg/L | 624 (55.2%) | 78 (59.1%) | 46 (63.9%) | 9 (45.0%) | 915 (57.3%) | |
≥5 µg/L | 506 (44.8%) | 54 (40.9%) | 26 (36.1%) | 11 (55.0%) | 682 (42.7%) | |
Drinking Water Arsenic cut off 10 µg/L | 0.3 | |||||
<10 µg/L | 699 (61.9%) | 88 (66.7%) | 50 (69.4%) | 10 (50.0%) | 1014 (63.5%) | |
≥10 µg/L | 431 (38.1%) | 44 (33.3%) | 22 (30.6%) | 10 (50.0%) | 583 (36.5%) | |
Drinking Water Arsenic cut off 50 µg/L | 0.4 | |||||
<50 µg/L | 886 (78.4%) | 108 (81.8%) | 61 (84.7%) | 14 (70.0%) | 1271 (79.6%) | |
≥50 µg/L | 244 (21.6%) | 24 (18.2%) | 11 (15.3%) | 6 (30.0%) | 326 (20.4%) |
Goal or Regulatory Cut-off of Arsenic (µg/L) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 µg/L | 2.5 µg/L | 5 µg/L | 10 µg/L | 50 µg/L | |||||||
Below | Above | Below | Above | Below | Above | Below | Above | Below | Above | ||
Miscarriage † (n = 132) | Yes | 6 | 111 | 70 | 47 | 74 | 43 | 83 | 34 | 99 | 18 |
No | 69 | 1051 | 569 | 551 | 617 | 503 | 691 | 429 | 878 | 242 | |
Odds Ratio | 1.09 (0.69–1.73) | 1.90 (1.07–3.38) | 2.73 (1.49–5.02) | 1.18 (0.60–2.30) | 0.66 (0.33–1.33) | ||||||
Stillbirth † (n = 72) | Yes | 20 | 46 | 41 | 25 | 42 | 24 | 46 | 20 | 56 | 10 |
No | 309 | 811 | 569 | 551 | 617 | 503 | 691 | 429 | 878 | 242 | |
Odds Ratio | 0.72 (0.36–1.43) | 1.21 (0.60–2.43) | 0.60 (0.28–1.30) | 0.86 (0.44–1.71) | 0.70 (0.31–1.59) | ||||||
Preterm Birth * (n = 260) | Yes | 44 | 211 | 71 | 184 | 81 | 174 | 112 | 143 | 165 | 90 |
No | 258 | 614 | 494 | 378 | 533 | 339 | 577 | 295 | 714 | 158 | |
Odds Ratio | 1.06 (0.57–1.99) | 1.06 (0.56–1.97) | 1.44 (0.91–2.31) | 1.04 (0.67–1.61) | 1.43 (0.93–2.20) | ||||||
Neonatal Mortality (n = 20) * | Yes | 2 | 18 | 7 | 13 | 9 | 11 | 10 | 10 | 14 | 6 |
No | 300 | 803 | 558 | 545 | 605 | 498 | 679 | 424 | 864 | 239 | |
Odds Ratio | 3.36 (0.78–14.58) | 1.90 (0.75–4.8) | 1.48 (0.61–3.61) | 1.60 (0.66–3.88) | 1.55 (0.59–4.0706) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrews, F.V.; Branscum, A.; Hystad, P.; Smit, E.; Afroz, S.; Golam, M.; Sharif, O.; Rahman, M.; Quamruzzaman, Q.; Christiani, D.C.; et al. Testing the Limit: Evaluating Drinking Water Arsenic Regulatory Levels Based on Adverse Pregnancy Outcomes in Bangladesh. Toxics 2022, 10, 600. https://doi.org/10.3390/toxics10100600
Andrews FV, Branscum A, Hystad P, Smit E, Afroz S, Golam M, Sharif O, Rahman M, Quamruzzaman Q, Christiani DC, et al. Testing the Limit: Evaluating Drinking Water Arsenic Regulatory Levels Based on Adverse Pregnancy Outcomes in Bangladesh. Toxics. 2022; 10(10):600. https://doi.org/10.3390/toxics10100600
Chicago/Turabian StyleAndrews, Faye V., Adam Branscum, Perry Hystad, Ellen Smit, Sakila Afroz, Mostofa Golam, Omar Sharif, Mohammad Rahman, Quazi Quamruzzaman, David C. Christiani, and et al. 2022. "Testing the Limit: Evaluating Drinking Water Arsenic Regulatory Levels Based on Adverse Pregnancy Outcomes in Bangladesh" Toxics 10, no. 10: 600. https://doi.org/10.3390/toxics10100600