Prenatal Household Air Pollution Exposure, Cord Blood Mononuclear Cell Telomere Length and Age Four Blood Pressure: Evidence from a Ghanaian Pregnancy Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Prenatal CO and PM2.5 Measurements
2.3. Stove Interventions
2.4. Telomere Length Measurement
2.5. Resting Blood Pressure at Child Age Four Years
2.6. Covariates
2.7. Statistical Analysis
3. Results
3.1. Exposure-Response Associations between Prenatal CO and CBMC Relative TL
3.2. Exposure-Response Associations between Prenatal PM2.5 and CBMC Relative TL
3.3. Effect of Cookstove Intervention on CBMC Relative TL
3.4. Exposure-Response Relationship between CBMC Relative TL and Blood Pressure at Age Four Years
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonjour, S.; Adhair-Rohani, H.; Wolf, J.; Bruce, N.G.; Mehta, S.; Prüss-Ustün, A.; Lahiff, M.; Rehfuess, E.A.; Mishra, V.; Smith, K.R. Solid fuel use for household cooking: Country and regional estimates for 1980–2010. Environ. Health Perspect. 2013, 121, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.J.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- World Development Indicators. Secondary DataBank: World Development Indicators 2020: Access to Clean Fuels and Technologies for Cooking (% of Population). The World Bank. Available online: https://databank.worldbank.org/reports.aspx?source=2&series=EG.CFT.ACCS.ZS&country= (accessed on 30 May 2021).
- World Health Organization. Household Air Pollution and Health. 2018. Available online: https://www.who.int/en/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 27 June 2019).
- Bové, H.; Bongaerts, E.; Slenders, E.; Bijnens, E.M.; Saenen, N.D.; Gyselaers, W.; Van Eyken, P.; Plusquin, M.; Roeffaers, M.B.; Ameloot, M.; et al. Ambient black carbon particles reach the fetal side of human placenta. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nagiah, S.; Phulukdaree, A.; Naidoo, D.; Ramcharan, K.; Naidoo, R.N.; Moodley, D.; Chuturgoon, A. l Oxidative stress and air pollution exposure during pregnancy: A molecular assessment. Hum. Exp. Toxicol. 2015, 34, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.J.; Brunst, K.J. Programming of respiratory health in childhood: Influence of outdoor air pollution. Curr. Opin. Pediatr. 2013, 25, 232–239. [Google Scholar] [CrossRef]
- Kaali, S.; Jack, D.W.; Delimini, R.; Hu, L.; Burkart, K.; Opoku-Mensah, J.; Quinn, A.; Ae-Ngibise, K.A.; Wylie, B.J.; Boamah-Kaali, E.A.; et al. Prenatal Household Air Pollution Alters Cord Blood Mononuclear Cell Mitochondrial DNA Copy Number: Sex-Specific Associations. Int. J. Environ. Res. Public Health 2019, 16, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackburn, E.H. Switching and signaling at the telomere. Cell 2001, 106, 661–673. [Google Scholar] [CrossRef] [Green Version]
- Entringer, S.; de Punder, K.; Buss, C.; Wadhwa, P.D. The fetal programming of telomere biology hypothesis: An update. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170151. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, A.G.; Ouellette, M.; Frolkis, M.; Holt, S.E.; Chiu, C.P.; Morin, G.B.; Harley, C.B.; Shay, J.W.; Lichtsteiner, S.; Wright, W.E. Extension of life-span by introduction of telomerase into normal human cells. Science 1998, 279, 349–352. [Google Scholar] [CrossRef] [Green Version]
- Martens, D.S.; Van Der Stukken, C.; Derom, C.; Thiery, E.; Bijnens, E.M.; Nawrot, T.S. Newborn telomere length predicts later life telomere length: Tracking telomere length from birth to child-and adulthood. EBioMedicine 2021, 63, 103164. [Google Scholar] [CrossRef]
- Benetos, A.; Verhulst, S.; Labat, C.; Lai, T.P.; Girerd, N.; Toupance, S.; Zannad, F.; Rossignol, P.; Aviv, A. Telomere length tracking in children and their parents: Implications for adult onset diseases. FASEB J. 2019, 33, 14248–14253. [Google Scholar] [CrossRef] [Green Version]
- Willeit, P.; Willeit, J.; Brandstatter, A.; Ehrlenbach, S.; Mayr, A.; Gasperi, A.; Weger, S.; Oberhollenzer, F.; Reindl, M.; Kronenberg, F.; et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1649–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carty, C.L.; Kooperberg, C.; Liu, J.; Herndon, M.; Assimes, T.; Hou, L.; Kroenke, C.H.; LaCroix, A.Z.; Kimura, M.; Aviv, A.; et al. Leukocyte telomere length and risks of incident coronary heart disease and mortality in a racially diverse population of postmenopausal women. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2225–2231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haycock, P.C.; Heydon, E.E.; Kaptoge, S.; Butterworth, A.S.; Thompson, A.; Willeit, P. Leucocyte telomere length and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2014, 349, g4227. [Google Scholar] [CrossRef] [Green Version]
- Rode, L.; Bojesen, S.E.; Weischer, M.; Vestbo, J.; Nordestgaard, B.G. Short telomere length, lung function and chronic obstructive pulmonary disease in 46 396 individuals. Thorax 2013, 68, 429–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozturk, S.; Sozen, B.; Demir, N. Elomere length and telomerase activity during oocyte maturation and early embryo development in mammalian species. Mol. Hum. Reprod. 2014, 20, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Rosa, M.J.; Leon Hsu, H.H.; Just, A.C.; Brennan, K.J.; Bloomquist, T.; Kloog, I.; Pantic, I.; García, A.M.; Wilson, A.; Coull, B.A.; et al. Association between prenatal particulate air pollution exposure and telomere length in cord blood: Effect modification by fetal sex. Environ. Res. 2019, 1, 495–501. [Google Scholar] [CrossRef]
- Martens, D.S.; Cox, B.; Janssen, B.G.; Clemente, D.B.; Gasparrini, A.; Vanpoucke, C.; Lefebvre, W.; Roels, H.A.; Plusquin, M.; Nawrot, T.S. Prenatal Air Pollution and Newborns’ Predisposition to Accelerated Biological Aging. JAMA Pediatr. 2017, 171, 1160–1167. [Google Scholar] [CrossRef]
- Lee, A.G.; Cowell, W.; Kannan, S.; Ganguri, H.B.; Nentin, F.; Wilson, A.; Coull, B.A.; Wright, R.O.; Baccarelli, A.; Bollati, V.; et al. Prenatal particulate air pollution and newborn telomere length: Effect modification by maternal antioxidant intakes and infant sex. Environ. Res. 2020, 187, 109707. [Google Scholar] [CrossRef]
- Song, L.; Zhang, B.; Liu, B.; Wu, M.; Zhang, L.; Wang, L.; Xu, S.; Cao, Z.; Wang, Y. Effects of maternal exposure to ambient air pollution on newborn telomere length. Environ. Int. 2019, 128, 254–260. [Google Scholar] [CrossRef]
- Slagboom, P.E.; Droog, S.; Boomsma, D.I. Genetic determination of telomere size in humans: A twin study of three age groups. Am. J. Hum. Genet. 1994, 55, 876. [Google Scholar]
- Benetos, A.; Okuda, K.; Lajemi, M.; Kimura, M.; Thomas, F.; Skurnick, J.; Labat, C.; Bean, K.; Aviv, A. Telomere length as an indicator of biological aging: The gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 2001, 37, 381–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, N.; Mu, X.; Wang, G.; Su, S.; Li, Z.; Wang, B.; Tao, S. Accumulative effects of indoor air pollution exposure on leukocyte telomere length among non-smokers. Environ. Pollut. 2017, 227, 1–7. [Google Scholar] [CrossRef]
- Li, S.; Yang, M.; Carter, E.; Schauer, J.J.; Yang, X.; Ezzati, M.; Goldberg, M.S.; Baumgartner, J. Exposure–Response Associations of Household Air Pollution and Buccal Cell Telomere Length in Women Using Biomass Stoves. Environ. Health Perspect. 2019, 127, 087004. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., III; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillman, M.W. Primordial prevention of cardiovascular disease. Circulation 2015, 131, 599–601. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, Y. Tracking of blood pressure from childhood to adulthood: A systematic review and meta-regression analysis. Circulation 2008, 117, 3171. [Google Scholar] [CrossRef] [Green Version]
- Perng, W.; Rifas-Shiman, S.L.; Kramer, M.S.; Haugaard, L.K.; Oken, E.; Gillman, M.W.; Belfort, M.B. Early weight gain, linear growth, and mid-childhood blood pressure: A prospective study in project viva. Hypertension 2016, 67, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Li, S.; Bazzano, L.; He, J.; Whelton, P.; Chen, W. Trajectories of childhood blood pressure and adult left ventricular hypertrophy: The Bogalusa Heart Study. Hypertension 2018, 72, 93–101. [Google Scholar] [CrossRef]
- Bao, W.; Threefoot, S.A.; Srinivasan, S.R.; Berenson, G.S. Essential hypertension predicted by tracking of elevated blood pressure from childhood to adulthood: The Bogalusa Heart Study. Am. J. Hypertens. 1995, 8, 657–665. [Google Scholar] [CrossRef]
- Toprak, A.; Wang, H.; Chen, W.; Paul, T.; Srinivasan, S.; Berenson, G. Relation of childhood risk factors to left ventricular hypertrophy (eccentric or concentric) in relatively young adulthood (from the Bogalusa Heart Study). Am. J. Cardiol. 2008, 101, 1621–1625. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Matthews, C.; Gorenne, I.; Scott, S.; Figg, N.; Kirkpatrick, P.; Ritchie, A.; Goddard, M.; Bennett, M. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: Effects of telomerase and oxidative stress. Circ. Res. 2006, 99, 156–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jack, D.W.; Asante, K.P.; Wylie, B.J.; Chillrud, S.N.; Whyatt, R.M.; Quinn, A.K.; Yawson, A.K.; Boamah, E.A.; Agyei, O.; Mujtaba, M.; et al. Ghana randomized air pollution and health study (GRAPHS): Study protocol for a randomized controlled trial. Trials 2015, 16, 420. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.G.; Kaali, S.; Quinn, A.; Delimini, R.; Burkart, K.; Opoku-Mensah, J.; Wylie, B.J.; Yawson, A.K.; Kinney, P.L.; Ae-Ngibise, K.A.; et al. Prenatal Household Air Pollution Is Associated with Impaired Infant Lung Function with Sex-Specific Effects. Evidence from GRAPHS, a Cluster Randomized Cookstove Intervention Trial. Am. J. Respir. Crit. Care Med. 2019, 199, 738–746. [Google Scholar] [CrossRef]
- Quinn, A.K.; Ayuurebobi, K.; Kinney, P.L.; Kaali, S.; Wylie, B.J.; Boamah, E.; Shimbo, D.; Agyei, O.; Chillrud, S.N.; Mujtaba, M.; et al. Ambulatory monitoring demonstrates an acute association between cookstove-related carbon monoxide and blood pressure in a Ghanaian cohort. Environ. Health 2017, 16, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cawthon, R.M. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009, 37, e21. [Google Scholar] [CrossRef] [Green Version]
- Pavanello, S.; Hoxha, M.; Dioni, L.; Bertazzi, P.A.; Snenghi, R.; Nalesso, A.; Ferrara, S.D.; Montisci, M.; Baccarelli, A. Shortened telomeres in individuals with abuse in alcohol consumption. Int. J. Cancer 2011, 129, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Epel, E.; Cheon, J.; Kroenke, C.; Sinclair, E.; Bigos, M.; Wolkowitz, O.; Mellon, S.; Blackburn, E. Analyses and comparisons of telomerase activity and telomere length in human T and B cells: Insights for epidemiology of telomere maintenance. J. Immunol. Methods 2010, 352, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Gunnsteinsson, S.; Labrique, A.B.; West, K.P., Jr.; Christian, P.; Mehra, S.; Shamim, A.A.; Rashid, M.; Katz, J.; Klemm, R.D. Constructing indices of rural living standards in Northwestern Bangladesh. J. Health Popul. Nutr. 2010, 28, 509–519. [Google Scholar]
- Boamah, E.A.; Asante, K.P.; Ae-Ngibise, K.A.; Kinney, P.L.; Jack, D.W.; Manu, G.; Azindow, I.T.; Owusu-Agyei, S.; Wylie, B.J. Gestational age assessment in the Ghana Randomized Air Pollution and Health Study (GRAPHS): Ultrasound capacity building, fetal biometry protocol development, and ongoing quality control. JMIR Res. Protoc. 2014, 3, e77. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Lin, C.J.; Qu, L.; Tang, D. Shorter telomere length in cord blood associated with prenatal air pollution exposure: Benefits of intervention. Environ. Int. 2018, 113, 335–340. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines for Indoor Air Quality: Household Fuel Combustion; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, F.J. Oxidative stress: Its role in air pollution and adverse health effects. Occup. Environ. Med. 2003, 60, 612–616. [Google Scholar] [CrossRef] [Green Version]
- Rehkopf, D.H.; Needham, B.L.; Lin, J.; Blackburn, E.H.; Zota, A.R.; Wojcicki, J.M.; Epel, E.S. Leukocyte telomere length in relation to 17 biomarkers of cardiovascular disease risk: A cross-sectional study of US adults. PLoS Med. 2016, 13, e1002188. [Google Scholar] [CrossRef]
- O’Donnell, C.J.; Demissie, S.; Kimura, M.; Levy, D.; Gardner, J.P.; White, C.; D’Agostino, R.B.; Wolf, P.A.; Polak, J.; Cupples, L.A.; et al. Leukocyte telomere length and carotid artery intimal medial thickness: The Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1165–1171. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Hägg, S. Telomere length and cardiovascular disease risk. Curr. Opin. Cardiol. 2019, 34, 270–274. [Google Scholar] [CrossRef]
- Factor-Litvak, P.; Susser, E.; Kezios, K.; McKeague, I.; Kark, J.D.; Hoffman, M.; Kimura, M.; Wapner, R.; Aviv, A. Leukocyte telomere length in newborns: Implications for the role of telomeres in human disease. Pediatrics 2016, 137, e20153927. [Google Scholar] [CrossRef] [Green Version]
- Tellechea, M.L.; Pirola, C.J. The impact of hypertension on leukocyte telomere length: A systematic review and meta-analysis of human studies. J. Hum. Hypertens. 2017, 31, 99–105. [Google Scholar] [CrossRef]
- Wojcicki, J.M.; Elwan, D.; Lin, J.; Blackburn, E.; Epel, E. Chronic obesity and incident hypertension in Latina women are associated with accelerated telomere length loss over a 1-year period. Metab. Syndr. Relat. Disord. 2018, 16, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Demissie, S.; Levy, D.; Benjamin, E.J.; Cupples, L.A.; Gardner, J.P.; Herbert, A.; Kimura, M.; Larson, M.G.; Meigs, J.B.; Keaney, J.F.; et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging cell 2006, 5, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Skilton, M.R.; Nakhla, S.; Ayer, J.G.; Harmer, J.A.; Toelle, B.G.; Leeder, S.R.; Jones, G.; Marks, G.B.; Celermajer, D.S.l. Telomere length in early childhood: Early life risk factors and association with carotid intima-media thickness in later childhood. Eur. J. Prev. Cardiol. 2016, 23, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.T.; Vryer, R.; Ranganathan, S.; Lycett, K.; Grobler, A.; Dwyer, T.; Juonala, M.; Saffery, R.; Burgner, D.; Wake, M. Telomere Length and Vascular Phenotypes in a Population-Based Cohort of Children and Midlife Adults. J. Am. Heart Assoc. 2019, 8, e012707. [Google Scholar] [CrossRef] [PubMed]
- Metoki, H.; Ohkubo, T.; Kikuya, M.; Asayama, K.; Obara, T.; Hara, A.; Hirose, T.; Hashimoto, J.; Totsune, K.; Hoshi, H.; et al. Prognostic significance of night-time, early morning, and daytime blood pressures on the risk of cerebrovascular and cardiovascular mortality: The Ohasama Study. J. Hypertens. 2006, 24, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
Continuous Variables (Median, Interquartile Range) | All (n = 97) | Male (n = 48) | Female (n = 49) |
---|---|---|---|
Cord blood mononuclear cell telomere length * | 0.68 (0.55–0.88) | 0.63 (0.48–0.81) | 0.71 (0.59–0.98) |
CBMC storage time (years) | 2.57 (2.41–2.84) | 2.62 (2.41–2.84) | 2.57 (2.40–2.78) |
Prenatal household air pollution exposure ** | |||
Carbon monoxide (CO), ppm | 0.85 (0.49, 1.42) | 0.83 (40, 1.27) | 0.94 (0.60, 1.54) |
Fine particulate matter (PM2.5), μg/m3 | 58.3 (37.3, 84.3) | 50.1 (35.8, 85.3) | 60.8 (41.3, 79.0) |
Systolic blood pressure at age four yearsΩ, mmHg | 91 (86, 97) | 91 (86.9, 95) | 90.5 (84, 97) |
Diastolic blood pressure at age four yearsΩ, mmHg | 64 (58, 70.5) | 62.8 (58, 69.8) | 65 (58, 71) |
Gestational age at delivery, weeks | 39.7 (39.0, 40.6) | 39.7 (39.0, 40.3) | 39.9 (39.1, 40.7) |
Maternal characteristics | |||
Age, years | 26 (22, 33) | 27 (23, 34) | 24.5 (21, 32) |
Body mass index, Kg/m2 | 22.5 (21.1, 24.1) | 23.0 (21.6, 24.6) | 22.2 (20.8, 23.7) |
Categorical variables (n, %) | |||
Cookstove intervention arm | |||
Control | 46 (47.4) | 21 (43.8) | 25 (51) |
Improved biomass | 27 (27.8) | 14 (29.2) | 13 (26.5) |
Liquefied petroleum gas | 24 (24.7) | 13 (27.1) | 11 (22.4) |
Maternal education | |||
None | 38 (39.2) | 18 (37.5) | 20 (40.8) |
Primary school or higher | 59 (60.8) | 30 (62.5) | 29 (59.2) |
Ethnicity | |||
1 | 28 (28.9) | 14 (29.2) | 14 (28.6) |
2 | 19 (19.6) | 10 (20.8) | 9 (18.4) |
3 | 26 (26.8) | 13 (27.1) | 13 (26.5) |
4 (other) | 24 (24.7) | 11 (22.9) | 13 (26.5) |
HAP Exposure ** | n | Univariate Model | Multivariable Model * | ||
---|---|---|---|---|---|
β (95% CI) | p-Value | β (95% CI) | p-Value | ||
Average prenatal CO | 97 | −1.0 (−6.8, 6.2) | 0.82 | −3.0 (−9.5, 4.1) | 0.46 |
Average prenatal PM2.5 | 60 | −3.9 (−7.7, 0.5) | 0.08 | −4.9 (−8.6, −0.4) | 0.03 |
Sex-specific Associations | |||||
Boys | |||||
Average prenatal CO | 48 | −0.3 (−11.2, 13.3) | 0.96 | −4.3 (−15.6, 8.6) | 0.49 |
Average prenatal PM2.5 | 32 | −5.2 (−11.1, 1.1) | 0.10 | −7.4 (−13.8, −0.5) | 0.04 |
Girls | |||||
Average prenatal CO | 49 | −1.8 (−9.7, 6.7) | 0.66 | −4.5 (−13.2, 5.1) | 0.34 |
Average prenatal PM2.5 | 28 | −3.2 (−9.0, 3.0) | 0.29 | −3.4 (−11, 4.9) | 0.39 |
Cookstove Intervention Arm | |||||
Control (open fire) | 46 | Ref | – | Ref | – |
Improved biomass stove | 27 | 23.4 (–4.9, 61.6) | 0.12 | 25.9 (−4.9, 68.2) | 0.11 |
LPG | 24 | 44.8 (9.4, 89.6) | <.01 | 55.3 (16.2, 109.6) | <.01 |
Resting Blood Pressure | n | Univariate Model | Multivariable Model | ||
---|---|---|---|---|---|
β (95% CI) | p-Value | β (95% CI) | p-Value | ||
All Children * | |||||
Systolic blood pressure, mmHg | 97 | −0.34 (−0.68, −0.09) | 0.04 | −0.35 (−0.71, −0.001) | 0.05 |
Diastolic blood pressure, mmHg | 97 | −0.16 (−0.49, 0.17) | 0.35 | −0.18 (−0.54, 0.17) | 0.31 |
Sex-specific Associations ** | |||||
Boys | |||||
Systolic blood pressure, mmHg | 48 | −0.61 (−1.09, −0.12) | 0.01 | −0.73 (−1.24, −0.22) | <.01 |
Diastolic blood pressure, mmHg | 48 | −0.24 (−0.75, 0.26) | 0.34 | −0.28 (−0.84, 0.29) | 0.33 |
Girls | |||||
Systolic blood pressure, mmHg | 49 | −0.09 (−0.58, 0.40) | 0.71 | −0.09 (−0.62, 0.44) | 0.74 |
Diastolic blood pressure, mmHg | 49 | −0.13 (−0.60, 0.35) | 0.59 | −0.23 (−0.32, 0.32) | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaali, S.; Jack, D.; Opoku-Mensah, J.; Bloomquist, T.; Aanaro, J.; Quinn, A.; Boamah-Kaali, E.A.; Kinney, P.; Mujtaba, M.N.; Agyei, O.; et al. Prenatal Household Air Pollution Exposure, Cord Blood Mononuclear Cell Telomere Length and Age Four Blood Pressure: Evidence from a Ghanaian Pregnancy Cohort. Toxics 2021, 9, 169. https://doi.org/10.3390/toxics9070169
Kaali S, Jack D, Opoku-Mensah J, Bloomquist T, Aanaro J, Quinn A, Boamah-Kaali EA, Kinney P, Mujtaba MN, Agyei O, et al. Prenatal Household Air Pollution Exposure, Cord Blood Mononuclear Cell Telomere Length and Age Four Blood Pressure: Evidence from a Ghanaian Pregnancy Cohort. Toxics. 2021; 9(7):169. https://doi.org/10.3390/toxics9070169
Chicago/Turabian StyleKaali, Seyram, Darby Jack, Jones Opoku-Mensah, Tessa Bloomquist, Joseph Aanaro, Ashlinn Quinn, Ellen Abrafi Boamah-Kaali, Patrick Kinney, Mohammed Nuhu Mujtaba, Oscar Agyei, and et al. 2021. "Prenatal Household Air Pollution Exposure, Cord Blood Mononuclear Cell Telomere Length and Age Four Blood Pressure: Evidence from a Ghanaian Pregnancy Cohort" Toxics 9, no. 7: 169. https://doi.org/10.3390/toxics9070169