Blood Lead Levels among Non-Occupationally Exposed Pregnant Women in Southern Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Questionnaire Validation
2.4. Measurement of Blood Lead
2.5. Assessment of Pregnant Women’s Biological Indicators
2.6. Data Analysis Method
3. Results
3.1. Pregnant Women Demographic Characteristics and BLLs
3.2. Consumer Goods and Supplement Intake of Pregnant Women and BLLs
3.3. Pregnant Women’s Health and BLLs
3.4. Predictors of BLLs ≥ 5 µg/dL
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Lead Poisoning. Available online: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health (accessed on 8 August 2022).
- Yadav, G.; Chambial, S.; Agrawal, N.; Gothwal, M.; Kathuria, P.; Singh, P.; Sharma, P.; Sharma, P. Blood Lead Levels in Antenatal Women and Its Association with Iron Deficiency Anemia and Adverse Pregnancy Outcomes. J. Fam. Med. Prim. Care 2020, 9, 3106. [Google Scholar] [CrossRef] [PubMed]
- Nkwunonwo, U.C.; Odika, P.O.; Onyia, N.I. A Review of the Health Implications of Heavy Metals in Food Chain in Nigeria. Sci. World J. 2020, 2020, 6594109. [Google Scholar] [CrossRef] [PubMed]
- Defarge, N.; Spiroux de Vendômois, J.; Séralini, G.E. Toxicity of Formulants and Heavy Metals in Glyphosate-Based Herbicides and Other Pesticides. Toxicol. Rep. 2018, 5, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Mathap, G.; Sujaritvanichpong, S.; Chutimatorn, N.; Thanawadee, R. Direct Determination of Heavy Metal (Pb, Cd, Mn, Cr, Cu, Ni) Contaminants in Lipsticks in Thai Market. Malays. J. Chem. 2011, 13, 23–25. [Google Scholar]
- Ali, M.; Nas, F.S. The effect of lead on plants in terms of growing and biochemical parameters: A review. MOJ Ecol. Environ. Sci. 2018, 3, 265–268. [Google Scholar] [CrossRef]
- Rísová, V. The pathway of lead through the mother’s body to the child. Interdiscip. Toxicol. 2019, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Force, U.P.S.T.; Curry, S.J.; Krist, A.H.; Owens, U.K.; Barry, M.J.; Cabana, M.; Caughey, A.B.; Doubeni, C.A.; Epling, J.W.; Kemper, A.R.; et al. Screening for Elevated Blood Lead Levels in Children and Pregnant Women: US Preventive Services Task Force Recommendation Statement. JAMA 2019, 321, 1502–1509. [Google Scholar] [CrossRef] [Green Version]
- Disha; Sharma, S.; Goyal, M.; Kumar, P.K.; Ghosh, R.; Sharma, P. Association of raised blood lead levels in pregnant women with preeclampsia: A study at tertiary centre. Taiwan. J. Obstet. Gynecol. 2019, 58, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Silver, M.K.; Li, X.; Liu, Y.; Li, M.; Mai, X.; Kaciroti, N.; Kileny, P.; Tardif, T.Z.; Meeker, J.D.; Lozoff, B. Low-level prenatal lead exposure and infant sensory function. Environ. Health 2016, 15, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Téllez-Rojo, M.M.; Bellinger, D.; Smith, D.; Ettinger, A.S.; Lamadrid-Figueroa, H.; Schwartz, J.; Schnaas, L.; Mercado-García, A.; Hernández-Avila, M. Fetal Lead Exposure at Each Stage of Pregnancy as a Predictor of Infant Mental Development. Environ. Health Perspect. 2006, 114, 1730–1735. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.M.; Golding, J.; Hibbeln, J.; Emond, A.M. Environmental Factors Predicting Blood Lead Levels in Pregnant Women in the UK: The ALSPAC Study. PLoS ONE 2013, 8, e72371. [Google Scholar] [CrossRef] [PubMed]
- Polańska, K.; Hanke, W.; Sobala, W.; Trzcinka-Ochocka, M.; Ligocka, D.; Strugała-Stawik, H. Predictors of Environmental Lead Exposure among Pregnant Women–a Prospective Cohort Study in Poland. Ann. Agric. Environ. Med. 2014, 21, 49–54. [Google Scholar]
- Liu, K.-S.; Hao, J.-H.; Shi, J.; Dai, C.-F.; Guo, X.-R. Blood Lead Levels During Pregnancy and Its Influencing Factors in Nanjing, China. Chin. Med. Sci. J. 2013, 28, 95–101. [Google Scholar] [CrossRef]
- Forsyth, J.E.; Islam, M.S.; Parvez, S.M.; Raqib, R.; Rahman, M.S.; Muehe, E.M.; Fendorf, S.; Luby, S.P. Prevalence of elevated blood lead levels among pregnant women and sources of lead exposure in rural Bangladesh: A case control study. Environ. Res. 2018, 166, 1–9. [Google Scholar] [CrossRef]
- Phuapradit, W.; Jetsawangsri, T.; Chaturachinda, K.; Noinongyao, N. Maternal and umbilical cord blood lead levels in Ramathibodi Hospital, 1993. J. Med. Assoc. Thail. 1994, 77, 368–372. [Google Scholar]
- Yimthiang, S.; Waeyang, D.; Kuraeiad, S. Screening for Elevated Blood Lead Levels and Related Risk Factors among Thai Children Residing in a Fishing Community. Toxics 2019, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Decharat, S.; Kongtip, P.; Thampoophasiam, P.; Thetkathuek, A. An Examination of Blood Lead Levels in Thai Nielloware Workers. Saf. Health Work 2012, 3, 216–223. [Google Scholar] [CrossRef]
- Department of Disease Control of Thailand Guidelines for Surveillance, Prevention and Control of Lead Poisoning in the Working Age Group. Available online: http://envocc.ddc.moph.go.th/uploads/media/manual/teom_t560sm.pdf (accessed on 8 August 2022).
- Wells, E.M.; Navas-Acien, A.; Herbstman, J.B.; Apelberg, B.J.; Silbergeld, E.K.; Caldwell, K.L.; Jones, R.L.; Halden, R.U.; Witter, F.R.; Goldman, L.R. Low-Level Lead Exposure and Elevations in Blood Pressure during Pregnancy. Environ. Health Perspect. 2011, 119, 664–669. [Google Scholar] [CrossRef] [Green Version]
- Mondal, H.; Mondal, S. Sample size calculation to data analysis of a correlation study in Microsoft Excel®: A hands-on guide with example. Int. J. Clin. Exp. Physiol. 2016, 3, 180. [Google Scholar] [CrossRef]
- Tran, H.L.T.; Einhellig, K.; Tran, L.T.K.; Pham, O.H.T.; Tran, C.T.T.; To, G.K. Validity and Reliability of the Comfort Behavior Scale in Children Undergoing Wound Dressing Replacement in Vietnam. MedPharmRes 2020, 4, 24–31. [Google Scholar] [CrossRef]
- Navarro, J.A.; Granadillo, V.A.; Parra, O.E.; Romero, R.A. Determination of lead in whole blood by graphite furnace atomic absorption spectrometry with matrix modification. J. Anal. At. Spectrom. 1989, 4, 401–406. [Google Scholar] [CrossRef]
- Karsan, A.; Maclaren, I.; Conn, D.; Wadsworth, L. An Evaluation of Hemoglobin Determination Using Sodium Lauryl Sulfate. Am. J. Clin. Pathol. 1993, 100, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.G.; Cawthon, D. Workplace Lead Exposure. J. Occup. Environ. Med. 2016, 58, e371–e374. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.R.; Hydes, O.D. UK experience in the monitoring and control of lead in drinking water. J. Water Health 2012, 10, 337–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosscher, V.; Lytle, D.A.; Schock, M.R.; Porter, A.; Del Toral, M. POU water filters effectively reduce lead in drinking water: A demonstration field study in flint, Michigan. J. Environ. Sci. Health 2019, 54, 484–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Grady, K.; Perron, A. Reformulating Lead-Based Paint as a Problem in Canada. Am. J. Public Health 2011, 101, S176–S187. [Google Scholar] [CrossRef] [PubMed]
- Barn, P.; Kosatsky, T.; Sahni, V. Lead in School Drinking Water: Canada Can and Should Address This Important Ongoing Exposure Source. Can. J. Public Health 2011, 102, 118–121. [Google Scholar] [CrossRef]
- Hwang, Y.-H.; Hsiao, C.K.; Lin, P.-W. Globally temporal transitions of blood lead levels of preschool children across countries of different categories of Human Development Index. Sci. Total Environ. 2018, 659, 1395–1402. [Google Scholar] [CrossRef]
- Thanapop, C.; Geater, A.F.; Robson, M.G.; Phakthongsuk, P.; Viroonudomphol, D. Exposure to lead of boatyard workers in southern Thailand. J. Occup. Health 2007, 49, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Lormphongs, S.; Miyashita, K.; Morioka, I.; Chaikittiporn, C.; Miyai, N.; Yamamoto, H. Lead exposure and blood lead level of workers in a battery manufacturing plant in Thailand. Ind. Health 2003, 41, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Shkembi, A.; Nambunmee, K.; Jindaphong, S.; Parra-Giordano, D.; Yohannessen, K.; Ruiz-Rudolph, P.; Neitzel, R.L.; Arain, A. Work Task Association with Lead Urine and Blood Concentrations in Informal Electronic Waste Recyclers in Thailand and Chile. Int. J. Environ. Res. Public Health 2021, 18, 10580. [Google Scholar] [CrossRef]
- Chantian, T.; Saetia, W.; Srisaeng, J.; Siripongpokin, P.; Thammawijaya, P.; Siriratanapruk, S. Predicting Blood Lead Levels among Children Living in Households Making Fishing Nets with Lead Weights in Phuket and Phang Nga Provinces. OSIR 2020, 13, 17–25. [Google Scholar]
- Cowell, A.J. The relationship between education and health behavior: Some empirical evidence. Health Econ. 2006, 15, 125–146. [Google Scholar] [CrossRef]
- Ladele, J.I.; Fajolu, I.B.; Ezeaka, V.C. Determination of lead levels in maternal and umbilical cord blood at birth at the Lagos University Teaching Hospital, Lagos. PLoS ONE 2019, 14, e0211535. [Google Scholar] [CrossRef]
- Ishitsuka, K.; Yamamoto-Hanada, K.; Yang, L.; Mezawa, H.; Konishi, M.; Saito-Abe, M.; Sasaki, H.; Nishizato, M.; Sato, M.; Koeda, T.; et al. Association between blood lead exposure and mental health in pregnant women: Results from the Japan environment and children’s study. NeuroToxicol. 2020, 79, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Zentner, L.E.; Rondó, P.H.; Duran, M.C.; Oliveira, J.M. Relationships of blood lead to calcium, iron, and vitamin C intakes in Brazilian pregnant women. Clin. Nutr. 2008, 27, 100–104. [Google Scholar] [CrossRef]
- Ettinger, A.S.; Lamadrid-Figueroa, H.; Téllez-Rojo, M.M.; Mercado-García, A.; Peterson, K.E.; Schwartz, J.; Hu, H.; Hernández-Avila, M. Effect of Calcium Supplementation on Blood Lead Levels in Pregnancy: A Randomized Placebo-Controlled Trial. Environ. Health Perspect. 2009, 117, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Ettinger, A.S.; Hu, H.; Hernandez-Avila, M. Dietary calcium supplementation to lower blood lead levels in pregnancy and lactation. J. Nutr. Biochem. 2007, 18, 172–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. WHO Recommendations on Antenatal Care for a Positive Pregnancy Experience; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Hertz-Picciotto, I.; Schramm, M.; Watt-Morse, M.; Chantala, K.; Anderson, J.; Osterloh, J. Patterns and Determinants of Blood Lead During Pregnancy. Am. J. Epidemiology 2000, 152, 829–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silbergeld, E.K. Lead in Bone: Implications for Toxicology during Pregnancy and Lactation. Environ. Health Perspect. 1991, 91, 63–70. [Google Scholar] [CrossRef] [PubMed]
- White, C.P. Calcium metabolism in pregnancy and lactation. Obstet. Med. 2009, 2, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Gambelunghe, A.; Sallsten, G.; Borné, Y.; Forsgard, N.; Hedblad, B.; Nilsson, P.; Fagerberg, B.; Engström, G.; Barregard, L. Low-level exposure to lead, blood pressure, and hypertension in a population-based cohort. Environ. Res. 2016, 149, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fioresi, M.; Simões, M.R.; Furieri, L.B.; Broseghini-Filho, G.B.; Vescovi, M.V.A.; Stefanon, I.; Vassallo, D.V. Chronic Lead Exposure Increases Blood Pressure and Myocardial Contractility in Rats. PLoS ONE 2014, 9, e96900. [Google Scholar] [CrossRef] [Green Version]
- Vaziri, N.D. Mechanisms of lead-induced hypertension and cardiovascular disease. Am. J. Physiol. Circ. Physiol. 2008, 295, H454–H465. [Google Scholar] [CrossRef]
- Rodrigo, R.; González, J.; Paoletto, F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens. Res. 2011, 34, 431–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Almeida Lopes, A.C.B.; Silbergeld, E.K.; Navas-Acien, A.; Zamoiski, R.; da Cunha Martins, A., Jr.; Camargo, A.E.I.; Urbano, M.; Mesas, A.; Paoliello, M.M.B. Association between blood lead and blood pressure: A population-based study in Brazilian adults. Environ. Health 2017, 16, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La-Llave-León, O.; Pacheco, J.M.S.; Martínez, S.E.; Rodríguez, E.E.; Juárez, F.X.C.; Carrillo, A.S.; Quiñones, A.M.L.; Alanís, F.V.; Vargas, G.G.; Hernández, E.M.M.; et al. The relationship between blood lead levels and occupational exposure in a pregnant population. BMC Public Health 2016, 16, 1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, N.B.; Laden, F.; Guller, U.; Shankar, A.; Kazani, S.; Garshick, E. Relation between Blood Lead Levels and Childhood Anemia in India. Am. J. Epidemiol. 2005, 161, 968–973. [Google Scholar] [CrossRef] [Green Version]
- Hegazy, A.; Zaher, M.M.; El-Hafez, M.A.A.; Morsy, A.; Saleh, R. Relation between anemia and blood levels of lead, copper, zinc and iron among children. BMC Res. Notes 2010, 3, 133. [Google Scholar] [CrossRef] [PubMed]
Characteristics | n (%) | BLLs (µg/dL) | p | |
---|---|---|---|---|
Mean ± SD | 95% CI | |||
Mean BLL | 80 (100.00) | 4.68 ± 1.55 | 4.33–5.02 | - |
Age (year) | ||||
≤25 | 40 (50.00) | 4.77 ± 1.64 | 4.25–5.30 | 0.567 |
>25 | 40 (50.00) | 4.57 ± 1.46 | 4.10–5.04 | |
Trimester | ||||
First trimester | 28 (35.00) | 5.07 ± 1.54 | 4.48–5.67 | 0.111 a |
Second trimester | 26 (32.50) | 4.73 ± 1.84 | 3.99–5.48 | |
Third trimester | 26 (32.50) | 4.19 ± 1.10 | 3.75–4.64 | |
Parity | ||||
Primiparous | 33 (41.25) | 4.75 ± 1.39 | 4.26–5.25 | 0.692 |
Multiparous | 47 (58.75) | 4.61 ± 1.66 | 4.13–5.10 | |
Education | ||||
Primary (7–12 years) | 17 (21.25) | 4.49 ± 1.67 | 4.08–5.80 | 0.049 a* |
Lower-secondary (13–15 years) | 34 (42.50) | 4.76 ± 1.71 | 4.14–5.38 | |
Upper-secondary (16–18 years) | 16 (20.00) | 5.06 ± 1.10 | 4.53–5.59 | |
Higher education (>18 years) | 13 (16.25) | 3.61 ± 0.78 | 3.15–4.08 | |
Pregnant women’s occupation | ||||
Unemployed | 42 (52.50) | 4.74 ± 1.56 | 4.25–5.22 | 0.704 |
Employed | 38 (47.50) | 4.60 ± 1.55 | 4.09–5.11 | |
Risk of lead exposure through husband’s occupation | ||||
No | 61 (76.25) | 4.67 ± 1.62 | 4.26–5.09 | 0.977 |
Yes | 19 (23.75) | 4.68 ± 1.33 | 4.04–5.33 | |
Household income (THB/month) | ||||
<9000 | 31 (38.75) | 4.61 ± 1.45 | 4.08–5.14 | 0.778 |
≥9000 | 49 (61.25) | 4.71 ± 1.62 | 4.25–5.18 | |
Duration of current stay (year) | ||||
<10 | 40 (50.00) | 4.57 ± 1.61 | 4.06–5.09 | 0.567 |
≥10 | 40 (50.00) | 4.77 ± 1.49 | 4.29–5.25 | |
Living with smokers | ||||
No | 23 (28.75) | 5.00 ± 1.68 | 4.27–5.73 | 0.236 |
Yes | 57 (71.25) | 4.54 ± 1.49 | 4.15–4.94 |
Consumer Goods | n (%) | BLLs (µg/dL) | p | |
---|---|---|---|---|
Mean ± SD | 95% CI | |||
Coffee consumption | ||||
No | 74 (92.50) | 4.59 ± 1.55 | 4.23–4.95 | 0.103 |
Yes | 6 (7.50) | 5.66 ± 1.21 | 4.39–6.93 | |
Milk consumption | ||||
No | 3 (3.75) | 4.67 ± 0.58 | 3.23–6.10 | 0.992 |
Yes | 77 (96.25) | 4.67 ± 1.58 | 4.31–5.03 | |
Seafood consumption | ||||
No | 15 (18.75) | 4.80 ± 1.97 | 3.70–5.89 | 0.731 |
Yes | 65 (81.25) | 4.64 ± 1.45 | 4.28–5.00 | |
Eyeliner use | ||||
No | 73 (91.25) | 4.67 ± 1.55 | 4.31–5.03 | 0.945 |
Yes | 7 (8.75) | 4.71 ± 1.70 | 3.14–6.29 | |
Lipstick use | ||||
No | 29 (36.25) | 4.90 ± 1.89 | 4.17–5.61 | 0.387 |
Yes | 51 (63.75) | 4.55 ± 1.32 | 4.18–4.92 | |
Brush on use | ||||
No | 54 (67.50) | 4.76 ± 1.70 | 4.30–5.22 | 0.436 |
Yes | 26 (32.50) | 4.50 ± 1.20 | 4.01–4.99 | |
Nail varnish use | ||||
No | 72 (90.00) | 4.62 ± 1.59 | 4.25–5.00 | 0.390 |
Yes | 8 (10.00) | 5.12 ± 1.12 | 4.18–6.07 | |
Household insecticide use | ||||
No | 70 (87.50) | 4.63 ± 1.60 | 4.25–5.00 | 0.482 |
Yes | 10 (12.50) | 5.00 ± 1.15 | 4.17–5.83 |
Supplement Intake | n (%) | BLLs (µg/dL) | p | |
---|---|---|---|---|
Mean ± SD | 95% CI | |||
Iron | ||||
No | 4 (5.00) | 4.50 ± 1.73 | 1.74–7.25 | 0.847 |
Yes | 76 (95.00) | 4.68 ± 1.55 | 4.33–5.04 | |
Calcium | ||||
No | 17 (21.25) | 4.88 ± 1.45 | 4.13–5.63 | 0.537 |
Yes | 63 (78.75) | 4.62 ± 1.58 | 4.22–5.02 | |
Vitamin C | ||||
No | 66 (82.50) | 4.60 ± 1.57 | 4.22–4.99 | 0.391 |
Yes | 14 (17.50) | 5.00 ± 1.41 | 4.18–5.81 |
Pregnant Women’s Health Factors | r | p |
---|---|---|
Gestational age (weeks) | −0.251 | 0.024 * |
Pre-pregnancy BMI (kgm−2) | −0.124 | 0.272 |
Systolic blood pressure (mmHg) | 0.271 | 0.015 * |
Diastolic blood pressure (mmHg) | 0.075 | 0.506 |
Hemoglobin (g/dL) | 0.012 | 0.916 |
Variable | cOR | 95% CI | p | aOR a | 95% CI | p |
---|---|---|---|---|---|---|
Higher education level | ||||||
No | Ref | Ref | ||||
Yes | 0.20 | 0.04–0.97 | 0.045 * | 0.16 | 0.03–0.80 | 0.027 * |
Trimester | ||||||
First trimester | Ref | Ref | ||||
Second trimester | 2.18 | 0.73–6.53 | 0.164 | 2.23 | 0.69–7.18 | 0.177 |
Third trimester | 1.81 | 0.38–3.65 | 0.773 | 1.40 | 0.42–4.68 | 0.584 |
Systolic blood pressure | ||||||
<120 mmHg | Ref | Ref | ||||
≥120 mmHg | 2.59 | 0.92–7.31 | 0.072 | 5.00 | 1.23–17.16 | 0.023 * |
Diastolic blood pressure | ||||||
<80 mmHg | Ref | Ref | ||||
≥80 mmHg | 1.44 | 0.45–4.59 | 0.533 | 2.47 | 0.62–9.86 | 0.202 |
Hemoglobin level | ||||||
≥11 g/dL | Ref | Ref | ||||
<11 g/dL | 2.47 | 0.55–11.15 | 0.239 | 3.64 | 0.59–22.59 | 0.166 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waeyeng, D.; Khamphaya, T.; Pouyfung, P.; Vattanasit, U.; Yimthiang, S. Blood Lead Levels among Non-Occupationally Exposed Pregnant Women in Southern Thailand. Toxics 2022, 10, 599. https://doi.org/10.3390/toxics10100599
Waeyeng D, Khamphaya T, Pouyfung P, Vattanasit U, Yimthiang S. Blood Lead Levels among Non-Occupationally Exposed Pregnant Women in Southern Thailand. Toxics. 2022; 10(10):599. https://doi.org/10.3390/toxics10100599
Chicago/Turabian StyleWaeyeng, Donrawee, Tanaporn Khamphaya, Phisit Pouyfung, Udomratana Vattanasit, and Supabhorn Yimthiang. 2022. "Blood Lead Levels among Non-Occupationally Exposed Pregnant Women in Southern Thailand" Toxics 10, no. 10: 599. https://doi.org/10.3390/toxics10100599
APA StyleWaeyeng, D., Khamphaya, T., Pouyfung, P., Vattanasit, U., & Yimthiang, S. (2022). Blood Lead Levels among Non-Occupationally Exposed Pregnant Women in Southern Thailand. Toxics, 10(10), 599. https://doi.org/10.3390/toxics10100599