Exploring Applications and Practical Examples by Streamlining Material Requirements Planning (MRP) with Python
Abstract
:1. Introduction
2. Literature Review
2.1. Fundamentals of Material Requirement Planning
2.2. Integrating Python’s Capability with MRP Tasks
3. Materials and Methods
4. Results
4.1. Uncover the Potential Applications of Python in Streamlining MRP Operations
4.1.1. Data Aggregation
4.1.2. Demand Prediction
4.1.3. Inventory Optimization
4.1.4. BOM Oversight
4.1.5. MRP Processing
4.1.6. Vendor Collaboration
4.1.7. Visual Insights and Reporting
4.1.8. ERP Fusion
4.2. Conceptual Framework
4.3. Laying down the Foundations for Integrating MRP.py into Existing ERP Systems
4.4. Preliminary Empirical Validation–Practical Examples from Real-Life (Business Cases)
4.5. Summary
5. Conclusions
5.1. Theoretical Contributions
5.2. Managerial Contributions
5.3. Research Limitations
5.4. Future Endeavours
Funding
Data Availability Statement
Conflicts of Interest
References
- Nandhakumar, S.; Thirumalai, R.; Viswaaswaran, J.; Senthil, T.; Vishnuvardhan, V. Investigation of Production Costs in Manufacturing Environment Using Innovative Tools. Mater. Today Proc. 2021, 37, 1235–1238. [Google Scholar] [CrossRef]
- Babatunde, O.; Demola, L. (Eds.) Varying Lot-Sizing Models for Optimum Quantity-Determination in Material Requirement Planning System; IAENG: London, UK, 2018. [Google Scholar]
- Rozario, D. Can Machine Learning Optimize the Efficiency of the Operating Room in the Era of COVID-19? Can. J. Surg. 2020, 63, E527–E529. [Google Scholar] [CrossRef] [PubMed]
- Wiegers, K.E.; Beatty, J. Software Requirements; Pearson Education: Redmond, WA, USA, 2013; ISBN 978-0-7356-7962-7. [Google Scholar]
- Vial, G.; Cameron, A.-F.; Giannelia, T.; Jiang, J. Managing Artificial Intelligence Projects: Key Insights from an AI Consulting Firm. Inf. Syst. J. 2023, 33, 669–691. [Google Scholar] [CrossRef]
- Martelli, A.; Ravenscroft, A.M.; Holden, S.; McGuire, P. Python in a Nutshell; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2023; ISBN 978-1-09-811351-3. [Google Scholar]
- Rajamani, S.K.; Iyer, R.S. Machine Learning-Based Mobile Applications Using Python and Scikit-Learn. In Designing and Developing Innovative Mobile Applications; IGI Global: Hershey, PA, USA, 2023; pp. 282–306. ISBN 978-1-66848-582-8. [Google Scholar]
- Stevenson, W.J. Operations Management, 13th ed.; The McGraw-Hill series in operations and decision sciences; McGraw-Hill Education: New York, NY, USA, 2018; ISBN 978-1-259-66747-3. [Google Scholar]
- Luo, D.; Thevenin, S.; Dolgui, A. A State-of-the-Art on Production Planning in Industry 4.0. Int. J. Prod. Res. 2023, 61, 6602–6632. [Google Scholar] [CrossRef]
- Kashkoush, M.; ElMaraghy, H. Product Family Formation by Matching Bill-of-Materials Trees. CIRP J. Manuf. Sci. Technol. 2016, 12, 1–13. [Google Scholar] [CrossRef]
- Hasanudin, M.; Andwiyan, D.; Yuliana, K.; Tarmizi, R.; Haris; Nugroho, A. E-SCM Based on Material Inventory Management Uses the Material Requirements Planning Method. J. Phys. Conf. Ser. 2020, 1477, 052006. [Google Scholar] [CrossRef]
- Tobon-Valencia, E.; Lamouri, S.; Pellerin, R.; Moeuf, A. Modeling of the Master Production Schedule for the Digital Transition of Manufacturing SMEs in the Context of Industry 4.0. Sustainability 2022, 14, 12562. [Google Scholar] [CrossRef]
- Heizer, J.; Render, B.; Munson, C. Operations Management: Sustainability and Supply Chain Management, 12th ed.; Pearson: Boston, MA, USA, 2017; ISBN 978-0-13-413042-2. [Google Scholar]
- Magad, E.L.; Amos, J.M. The Impact of Material Requirements Planning and Distribution Requirements Planning on Materials Management. In Total Materials Management; Springer: Boston, MA, USA, 1989; pp. 188–221. ISBN 978-1-4684-6568-6. [Google Scholar]
- Bowers, M.R.; Camm, J.D.; Chakraborty, G. The Evolution of Analytics and Implications for Industry and Academic Programs. Interfaces 2018, 48, 487–499. [Google Scholar] [CrossRef]
- Mehta, B.S.; Awasthi, I.C. Industry 4.0 and Future of Work in India. FIIB Bus. Rev. 2019, 8, 9–16. [Google Scholar] [CrossRef]
- Kumar, A.; Shrivastav, S.K.; Oberoi, S.S. Application of Analytics in Supply Chain Management from Industry and Academic Perspective. FIIB Bus. Rev. 2021, 231971452110280. [Google Scholar] [CrossRef]
- Rana, R.L.; Adamashvili, N.; Tricase, C. The Impact of Blockchain Technology Adoption on Tourism Industry: A Systematic Literature Review. Sustainability 2022, 14, 7383. [Google Scholar] [CrossRef]
- Christofi, M.; Vrontis, D.; Thrassou, A.; Shams, S.M.R. Triggering Technological Innovation through Cross-Border Mergers and Acquisitions: A Micro-Foundational Perspective. Technol. Forecast. Soc. Chang. 2019, 146, 148–166. [Google Scholar] [CrossRef]
- Python Welcome to Python.Org. Available online: https://www.python.org/ (accessed on 29 October 2023).
- Mills, A.; Durepos, G.; Wiebe, E. Encyclopedia of Case Study Research; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2010; ISBN 978-1-4129-5670-3. [Google Scholar]
- Rocco, T.S.; Plakhotnik, M.S. Literature Reviews, Conceptual Frameworks, and Theoretical Frameworks: Terms, Functions, and Distinctions. Hum. Resour. Dev. Rev. 2009, 8, 120–130. [Google Scholar] [CrossRef]
- Mohamed, K.S. IoT Physical Layer: Sensors, Actuators, Controllers and Programming. In The Era of Internet of Things: Towards a Smart World; Mohamed, K.S., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 21–47. ISBN 978-3-030-18133-8. [Google Scholar]
- Team, T.P.D. Pandas: Powerful Data Structures for Data Analysis, Time Series, and Statistics. Available online: https://pypi.org/project/pandas/ (accessed on 27 August 2023).
- McKinney, W. Pandas: A Foundational Python Library for Data Analysis and Statistics. Python High Perform. Sci. Comput. 2011, 14, 1–9. [Google Scholar]
- Pajankar, A.; Joshi, A. Introduction to Pandas. In Hands-on Machine Learning with Python; Apress: Berkeley, CA, USA, 2022; pp. 45–61. ISBN 978-1-4842-7920-5. [Google Scholar]
- Mishra, V.K.; Sebastian, S.; Iqbal, M.; Anand, Y. Dealing with Missing Values in a Relation Dataset Using the DROPNA Function in Python. In Mathematics and Computer Science Volume 1; Ghosh, S., Niranjanamurthy, M., Deyasi, K., Mallik, B.B., Das, S., Eds.; Wiley: Hoboken, NJ, USA, 2023; pp. 463–470. ISBN 978-1-119-87967-1. [Google Scholar]
- Mumtaz, R.; Amin, A.; Khan, M.A.; Asif, M.D.A.; Anwar, Z.; Bashir, M.J. Impact of Green Energy Transportation Systems on Urban Air Quality: A Predictive Analysis Using Spatiotemporal Deep Learning Techniques. Energies 2023, 16, 6087. [Google Scholar] [CrossRef]
- Team, T.P.D. Pandas.DataFrame.Astype—Pandas 2.0.3 Documentation. Available online: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.astype.html (accessed on 27 August 2023).
- Chelliah, B.J.; Latchoumi, T.P.; Senthilselvi, A. Analysis of Demand Forecasting of Agriculture Using Machine Learning Algorithm. Environ. Dev. Sustain. 2022, 1–17. [Google Scholar] [CrossRef]
- Duhem, L.; Benali, M.; Martin, G. Parametrization of a Demand-Driven Operating Model Using Reinforcement Learning. Comput. Ind. 2023, 147, 103874. [Google Scholar] [CrossRef]
- Phoon, K.-K.; Zhang, W. Future of Machine Learning in Geotechnics. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2023, 17, 7–22. [Google Scholar] [CrossRef]
- Khan, M.A.; Saqib, S.; Alyas, T.; Ur Rehman, A.; Saeed, Y.; Zeb, A.; Zareei, M.; Mohamed, E.M. Effective Demand Forecasting Model Using Business Intelligence Empowered with Machine Learning. IEEE Access 2020, 8, 116013–116023. [Google Scholar] [CrossRef]
- Elbegzaya, T. Application AI in Traditional Supply Chain Management Decision-Making. Available online: http://dspace.unive.it/handle/10579/17733 (accessed on 1 November 2023).
- Caro, F.; Gallien, J.; Díaz, M.; García, J.; Corredoira, J.M.; Montes, M.; Ramos, J.A.; Correa, J. Zara Uses Operations Research to Reengineer Its Global Distribution Process. Interfaces 2010, 40, 71–84. [Google Scholar] [CrossRef]
- Caro, F.; Gallien, J. Inventory Management of a Fast-Fashion Retail Network. Oper. Res. 2010, 58, 257–273. [Google Scholar] [CrossRef]
- Siegwart, R. PyBOM. Available online: https://github.com/robsiegwart/python-BOM (accessed on 29 August 2023).
- Prajogo, D.; Olhager, J. Supply Chain Integration and Performance: The Effects of Long-Term Relationships, Information Technology and Sharing, and Logistics Integration. Int. J. Prod. Econ. 2012, 135, 514–522. [Google Scholar] [CrossRef]
- Klapita, V. Implementation of Electronic Data Interchange as a Method of Communication Between Customers and Transport Company. Transp. Res. Procedia 2021, 53, 174–179. [Google Scholar] [CrossRef]
- Scala, S.; McGrath, R. Advantages and Disadvantages of Electronic Data Interchange an Industry Perspective. Inf. Manag. 1993, 25, 85–91. [Google Scholar] [CrossRef]
- Basole, R.C. Accelerating Digital Transformation: Visual Insights from the API Ecosystem. IT Prof. 2016, 18, 20–25. [Google Scholar] [CrossRef]
- Matplotlib, T. Matplotlib—Visualization with Python. Available online: https://matplotlib.org/ (accessed on 31 August 2023).
- Plotly, T. Plotly: Low-Code Data App Development. Available online: https://plotly.com/ (accessed on 31 August 2023).
- Lee, Z.; Lee, J. An ERP Implementation Case Study from a Knowledge Transfer Perspective. In Second-Wave Enterprise Resource Planning Systems; Shanks, G., Seddon, P.B., Willcocks, L.P., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 335–350. ISBN 978-0-521-81902-2. [Google Scholar]
- Gupta, M.; Kohli, A. Enterprise Resource Planning Systems and Its Implications for Operations Function. Technovation 2006, 26, 687–696. [Google Scholar] [CrossRef]
- Harjunkoski, I.; Maravelias, C.T.; Bongers, P.; Castro, P.M.; Engell, S.; Grossmann, I.E.; Hooker, J.; Méndez, C.; Sand, G.; Wassick, J. Scope for Industrial Applications of Production Scheduling Models and Solution Methods. Comput. Chem. Eng. 2014, 62, 161–193. [Google Scholar] [CrossRef]
- Parthasarathy, S.; Daneva, M. Customer Requirements Based ERP Customization Using AHP Technique. Bus. Process Manag. J. 2014, 20, 730–751. [Google Scholar] [CrossRef]
- Esteso, A.; Peidro, D.; Mula, J.; Díaz-Madroñero, M. Reinforcement Learning Applied to Production Planning and Control. Int. J. Prod. Res. 2023, 61, 5772–5789. [Google Scholar] [CrossRef]
- SA, O. Openerp-Mrp: MRP. 2014. Available online: https://pypi.org/project/openerp-mrp/ (accessed on 27 August 2023).
- Ganesh, A.; Shanil, K.N.; Sunitha, C.; Midhundas, A.M. OpenERP/Odoo—An Open Source Concept to ERP Solution. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February 2016; IEEE: Bhimavaram, India, 2016; pp. 112–116. [Google Scholar]
- Jay.devs Top 30 Companies That Use Python for Success and Profit. Available online: https://jaydevs.com/top-companies-that-use-python/ (accessed on 1 September 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, J. Exploring Applications and Practical Examples by Streamlining Material Requirements Planning (MRP) with Python. Logistics 2023, 7, 91. https://doi.org/10.3390/logistics7040091
Reis J. Exploring Applications and Practical Examples by Streamlining Material Requirements Planning (MRP) with Python. Logistics. 2023; 7(4):91. https://doi.org/10.3390/logistics7040091
Chicago/Turabian StyleReis, João. 2023. "Exploring Applications and Practical Examples by Streamlining Material Requirements Planning (MRP) with Python" Logistics 7, no. 4: 91. https://doi.org/10.3390/logistics7040091
APA StyleReis, J. (2023). Exploring Applications and Practical Examples by Streamlining Material Requirements Planning (MRP) with Python. Logistics, 7(4), 91. https://doi.org/10.3390/logistics7040091