
Citation: Reis, J. Exploring

Applications and Practical Examples

by Streamlining Material

Requirements Planning (MRP) with

Python. Logistics 2023, 7, 91. https://

doi.org/10.3390/logistics7040091

Academic Editor: Robert Handfield

Received: 17 September 2023

Revised: 1 November 2023

Accepted: 27 November 2023

Published: 1 December 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

logistics

Article

Exploring Applications and Practical Examples by Streamlining
Material Requirements Planning (MRP) with Python
João Reis

Industrial Engineering and Management, Faculty of Engineering, Lusófona University, 1749-024 Lisbon, Portugal;
joao.reis@ulusofona.pt

Abstract: Background: Material Requirements Planning (MRP) is critical in Supply Chain Manage-
ment (SCM), facilitating effective inventory management and meeting production demands in the
manufacturing sector. Despite the potential benefits of automating the MRP tasks to meet the demand
for expedited and efficient management, the field appears to be lagging behind in harnessing the
advancements offered by Artificial Intelligence (AI) and sophisticated programming languages. Con-
sequently, this study aims to address this gap by exploring the applications of Python in simplifying
the MRP processes. Methods: This article offers a twofold approach: firstly, it conducts research to
uncover the potential applications of the Python code in streamlining the MRP operations, and the
practical examples serve as evidence of Python’s efficacy in simplifying the MRP tasks; secondly,
this article introduces a conceptual framework that showcases the Python ecosystem, highlighting
libraries and structures that enable efficient data manipulation, analysis, and optimization techniques.
Results: This study presents a versatile framework that integrates a variety of Python tools, including
but not limited to Pandas, Matplotlib, and Plotly, to streamline and actualize an 8-step MRP process.
Additionally, it offers preliminary insights into the integration of the Python-based MRP solution
(MRP.py) with Enterprise Resource Planning (ERP) systems. Conclusions: While the article focuses on
demonstrating the practicality of Python in MRP, future endeavors will entail empirically integrating
MRP.py with the ERP systems in small- and medium-sized companies. This integration will establish
real-time data synchronization between the Python and ERP systems, leading to accurate MRP
calculations and enhanced decision-making processes.

Keywords: data analysis; decision-making process; enterprise resource planning; inventory
management; material requirements planning; Python; real-time data synchronization; supply
chain management

1. Introduction

Material Requirements Planning (MRP) plays a critical role in Supply Chain Man-
agement (SCM) by facilitating efficient inventory management and meeting production
demands in the manufacturing sector. Amidst the significant expansion of the SCM in
recent years, attributed to the swift technological advancements within the manufacturing
sector, a noteworthy impact at the MRP would be anticipated. However, software employ-
ing object-oriented dynamic programming languages such as Python appears to be lagging
in adequately addressing this exigency within the MRP. Henceforth, the landscape presents
an evident scarcity in academia, where the focus is directed toward the MRP to harness
the capabilities of Python. To reinforce the previous argument, a rapid inquiry was con-
ducted using Elsevier’s Scopus database as of 26 August 2023. The search was confined to
Titles–Abstracts–Keywords, deploying the search terms “Material Requirements Planning”
and “Python”. Only two documents resulted from the search, effectively accentuating the
noteworthy scarcity of comprehensive publications within this field. Notably, the work
authored by Nandhakumar et al. [1] emerged as a relevant contender, centering its attention
on harnessing Python’s potential for precise cost estimation during the preliminary phases

Logistics 2023, 7, 91. https://doi.org/10.3390/logistics7040091 https://www.mdpi.com/journal/logistics

https://doi.org/10.3390/logistics7040091
https://doi.org/10.3390/logistics7040091
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/logistics
https://www.mdpi.com
https://orcid.org/0000-0002-8504-0065
https://doi.org/10.3390/logistics7040091
https://www.mdpi.com/journal/logistics
https://www.mdpi.com/article/10.3390/logistics7040091?type=check_update&version=1


Logistics 2023, 7, 91 2 of 19

of production. Through a comparative analysis between the traditional analytical costing
approach and the software-driven cost estimation, a congruity is revealed. This empirical
validation serves to accentuate the software’s precision in handling accurate outcomes,
consequently cementing its status as an instrument for preemptively evaluating costs before
the actual commencement of production. This, in turn, empowers enterprises to chart their
downstream production strategies. The subsequent investigation, authored by Odedairo
and Ladokun [2], aimed to craft an independent lot-sizing module (LST-MOD) complete
with a user-friendly graphical interface (GUI). The module’s purpose was to establish the
optimal ordering policy, a crucial facet of lot sizing, which forms one of the triad input
components for the MRP. In practical scenarios, the application of lot sizing models (LSM)
to address real-world situations is infrequent due to disparate assumptions, thresholds, and
the varying extent of their applicability. Recognizing that lot sizing decisions are exogenous,
the lot sizing facet within the MRP framework was disentangled. This endeavor culminated
in the creation of a stand-alone module using the Python programming language. With
a primary product and its sub-items as the focal point, the LST-MOD was employed to
compute the comprehensive inventory costs. When experimenting with distinct lot-sizing
models, those exhibiting heightened flexibility showcased superior performance over their
less-flexible counterparts. This pioneering approach underscores the feasibility of con-
structing an in-house lot-sizing module, especially pertinent for organizations with limited
financial prowess.

Considering the mentioned points, we have identified the following gaps: (1) The
theoretical gap pertains to the misalignment between the advancements offered by Python
and the need to automate the MRP tasks in the field of supply chain management. Despite
Python being widely recognized as a powerful language with extensive capabilities, its
applications in streamlining the MRP processes remain largely unexplored and underuti-
lized. Thus, there is a theoretical gap in comprehending and harnessing the potential of
the Python code in optimizing the MRP operations. This argument is justified by our men-
tioned preliminary search on Elsevier Scopus, while this search yielded only two relevant
documents. Consequently, contrary to our anticipation of a substantial body of literature,
our findings revealed an unexpectedly scant amount of relevant material. While there
exists, solid theoretical knowledge regarding the MRP and Python resources individually,
the practical knowledge integrating both domains, is considerably limited; and (2) the
practical gap relates to the scarcity of practical examples and real-world implementation
of the Python code in the MRP processes. In other words, despite the anticipated ad-
vantages that the automation of the MRP through Python is poised to bring in terms of
swiftness, efficiency, and cost savings for the implementing enterprises [3], our research
has revealed a conspicuous absence of reports on the subject from renowned consulting
entities, such as the McKinsey Global Institute, Deloitte, among others. Furthermore, it has
become increasingly apparent that organizations are progressively seeking bespoke soft-
ware and AI solutions tailored to their specific requirements [4,5], while also emphasizing
cost-effectiveness. This stands in contrast to the use of generic MRP software, which often
proves to be a costly investment and may not adequately cater to the nuanced demands of
these organizations.

Consequently, there is a need to develop scenarios that provide tangible evidence of
the effectiveness of the Python code in simplifying the MRP tasks and enhancing decision-
making processes. Bridging this practical gap necessitates presenting practical use cases
that demonstrate the advantages of employing the Python code in the MRP calculations,
inventory management, and other relevant aspects of supply chain management. In
sum, the problem identified in this study is the underutilization of the capabilities of
Python programming in streamlining the MRP tasks within the SCM domain. Despite the
recognition of Python as a powerful language with extensive capabilities [6,7], its potential
in optimizing the MRP processes remains largely unexplored. This study recognizes the
lack of comprehensive literature and practical examples integrating Python and MRP,
thereby highlighting the need to address this gap. By addressing these gaps, this article not



Logistics 2023, 7, 91 3 of 19

only highlights the viability of Python in the MRP but also lays the groundwork for future
advancements in empirically integrating these systems with Enterprise Resource Planning
(ERP), thereby enabling real-time supply chain management.

The primary objectives of this study are: (1) to explore the potential applications
in streamlining the MRP operations and provide practical examples demonstrating the
efficacy of Python in simplifying the MRP tasks; (2) to introduce a conceptual framework
that showcases the integration of Python within the MRP ecosystem, emphasizing the use of
specific libraries and structures for efficient data manipulation, analysis and optimization
techniques; (3) to present a versatile framework that integrates various Python tools,
such as Pandas, Matplotlib, and Plotly, to streamline an 8-step MRP process and provide
preliminary insights into integrating the MRP.py with ERP systems; and (4) to lay the
groundwork for future empirical integration of the MRP.py with ERP systems in small- and
medium-sized companies, enabling real-time data synchronization and improved decision-
making processes in supply chain management. Following the mentioned objectives, we
drafted the following research question: How can the applications of Python be effectively
utilized to automate and simplify the MRP processes in supply chain management?

To address the research question, this article initiates by establishing a foundational
conceptual framework. Herein, we expound upon the fundamental principles around MRP,
concurrently delineating the integration of Python’s computational capabilities into the
MRP operations. Subsequently, our focus goes toward the employed research methodology,
presenting a succinct yet comprehensive delineation of the article configuration. Successive
sections of the manuscript progressively explore a comprehensive discussion, systematically
unraveling an 8-step framework that constitutes the basis of the Python-enabled MRP
solution. The discussion is complemented by a well-defined conceptual framework and
empirical validation through real-world commercial scenarios. In the final section, the
conclusion includes the article’s key theoretical and managerial contributions. Concurrently,
it acknowledges the research’s limitations and future endeavors.

2. Literature Review

This section comprehensively discusses the fundamental principles that form the basis
of the MRP. Moreover, it undertakes an exploration of Python’s computational capabilities
about the diverse tasks and operations of the MRP.

2.1. Fundamentals of Material Requirement Planning

MRP is a methodology employed to plan the production of assembled products,
ranging from computers to automobiles and a diverse array of other products that are
assembled. In this dynamic process, certain items undergo repetitive production cycles,
whereas others are crafted in well-defined batches. This systematic approach commences
with the formulation of a master schedule (Figure 1), which outlines the required quantity
and the timeline for each assembled product, often denoted as the end item. Subsequently,
the MRP expands by generating a comprehensive production plan tailored to the end item.
This plan delineates the optimal quantities and the synchronized timing of subassemblies,
essential parts, and raw materials, essential to the assembly of the final product. According
to Stevenson [8] and Lou et al. [9], the MRP includes three principal inputs. First, the
BOM (Bill of Materials) is a guide detailing the composition of the final product [10].
This is combined with the “master schedule”, a strategic document outlining the desired
quantum of finished products and when. Third, the “inventory record file”, tells the
existing inventory on hand and pending orders [11]. The planner analyzes the provided
information to determine the net requirements for every interval within the designated
planning horizon. Process outputs include planned order schedules, order releases, changes,
performance tracking reports, planning reports, and exception reports [8].



Logistics 2023, 7, 91 4 of 19

Logistics 2023, 7, x FOR PEER REVIEW 4 of 20 
 

 

planning horizon. Process outputs include planned order schedules, order releases, 
changes, performance tracking reports, planning reports, and exception reports [8]. 

 
Figure 1. MRP inputs, processing, and output [8]. 

Examining Figure 1, we encounter the Master Schedule, otherwise referred to as the 
Master Production Schedule (MPS). This schedule plays the role of a compass, indicating 
the specific end items for production, their deadlines, and the corresponding quantities 
needed [12]. The quantities on the MPS come from various origins, including customer 
orders, predictive forecasts, and warehouse requisitions designed to build seasonal inven-
tory reserves. The MPS effectively divides the planning horizon into discrete periods or 
time intervals, frequently delineated in weeks. However, these temporal divisions do not 
need to be uniform. While the immediate short-term section of the MPS may be structured 
in weekly units, subsequent periods might be organized in monthly or quarterly incre-
ments. Although the MPS does not adhere to a predefined time frame, managers generally 
chart its course to encompass a sufficiently distant future, allowing for a preliminary grasp 
of anticipated demands in the upcoming stretch. Equally vital is the inclusion of stacked 
or cumulative lead times essential for end-item production. Another essential input is the 
BOM, which encompasses a comprehensive roster of assemblies, sub-assemblies, individ-
ual parts, associated costs, and raw materials indispensable to produce a single unit of the 
final product. Consequently, each final product has its own dedicated BOM. This listing 
within the BOM adheres to a hierarchical structure, detailing the requisite quantities of 
each element necessary to complete a solitary unit of its parent item. The inherent nature 
of this facet within a BOM becomes clear upon exploring a product structure tree—a 
graphical diagram of the subassemblies and constituents needed for the assembly of a 
product. The top of the tree features the final product, followed by the subsequent strata 
subassemblies or significant components needed for crafting the final product. Beneath 
each major component are the corresponding minor elements. Progressing down the tiers 
of the tree reveals the components (parts, materials) necessary for manufacturing a single 
unit of the higher-tier item. A product structure tree serves as a tool for illustrating how 

Figure 1. MRP inputs, processing, and output [8].

Examining Figure 1, we encounter the Master Schedule, otherwise referred to as the
Master Production Schedule (MPS). This schedule plays the role of a compass, indicating
the specific end items for production, their deadlines, and the corresponding quantities
needed [12]. The quantities on the MPS come from various origins, including customer or-
ders, predictive forecasts, and warehouse requisitions designed to build seasonal inventory
reserves. The MPS effectively divides the planning horizon into discrete periods or time
intervals, frequently delineated in weeks. However, these temporal divisions do not need
to be uniform. While the immediate short-term section of the MPS may be structured in
weekly units, subsequent periods might be organized in monthly or quarterly increments.
Although the MPS does not adhere to a predefined time frame, managers generally chart
its course to encompass a sufficiently distant future, allowing for a preliminary grasp of
anticipated demands in the upcoming stretch. Equally vital is the inclusion of stacked or
cumulative lead times essential for end-item production. Another essential input is the
BOM, which encompasses a comprehensive roster of assemblies, sub-assemblies, individual
parts, associated costs, and raw materials indispensable to produce a single unit of the
final product. Consequently, each final product has its own dedicated BOM. This listing
within the BOM adheres to a hierarchical structure, detailing the requisite quantities of each
element necessary to complete a solitary unit of its parent item. The inherent nature of this
facet within a BOM becomes clear upon exploring a product structure tree—a graphical
diagram of the subassemblies and constituents needed for the assembly of a product. The
top of the tree features the final product, followed by the subsequent strata subassem-
blies or significant components needed for crafting the final product. Beneath each major
component are the corresponding minor elements. Progressing down the tiers of the tree
reveals the components (parts, materials) necessary for manufacturing a single unit of the
higher-tier item. A product structure tree serves as a tool for illustrating how the bill of
materials is wielded to ascertain the quantities of each constituent (requirements) mandated
to attain a desired volume of end items. Components situated at the lowermost levels of
the tree typically encompass raw materials or procured parts, whereas those positioned



Logistics 2023, 7, 91 5 of 19

at higher tiers predominantly constitute assemblies or subassemblies. For suppliers, the
product structure trees about items at lower tiers present pertinent considerations. On the
bottom left in Figure 1, we find the inventory records. These encompass recorded data
on the condition of each item over designated time intervals, referred to as time intervals.
This repository encompasses vital aspects such as current stock levels and outstanding
orders. It further encompasses additional particulars concerning each item, such as supplier
details, lead times, and batch size policies. The file logs all movements due to stock receipts,
withdrawals, canceled orders, and analogous occurrences. Like the precision demanded
for the bill of materials, the accuracy of inventory records is paramount. Any inaccuracies
concerning requirements or lead times hold the potential to cast adverse reverberations on
the MRP process.

The MRP processing (vide Figure 1) involves taking the end item requirements stipu-
lated by the master schedule into a phased arrangement of requisites for assemblies, parts,
and raw materials. The MRP process execution included the synchronization of time phases
with a sequence termed an “explosion”, which is partitioned into distinct sections within a
spreadsheet framework. Key spreadsheet terminologies are delineated as follows [8,13]:
(1) Gross Requirements: This signifies the total expected demand for an item or raw ma-
terial during each period, irrespective of the quantity already available; (2) Scheduled
Receipts: These denote open orders, representing orders that have been placed and are
anticipated to arrive mainly from suppliers; (3) Projected on hand: This metric reflects
the anticipated inventory level at the start of each period; (4) Net Requirements: These
represent the actual quantity required for each period, calculated by considering demand
and subtracting the available inventory and scheduled receipts; (5) Planned Order Receipt:
This denotes the expected quantity to be received by the beginning of the specific period
it pertains to; (6) Planned Order Releases: These entries signify planned order quantities
for each period. The indispensability of the computerization of the MRP comes to the fore
when one ponders over the fact that a typical company deals with numerous end items,
each necessitating its unique material requirements plan replete with individual compo-
nents. The ongoing maintenance of on-hand and on-demand inventory levels, schedules,
order releases, and other relevant factors necessitates constant updates due to changes and
rescheduling. In the absence of computerized aid, this task would be overwhelmingly ar-
duous; however, the prowess of programming languages empowers planners to undertake
these responsibilities with significantly reduced complexity.

The MRP systems possess the capacity to provide management with a wide range
of primary and secondary reports. Within primary reports, which encompass production
and inventory planning and control, the following components are commonly included:
Planned Orders, a schedule that indicates the quantity and timing of forthcoming orders.
Order Releases, authorizing the execution of planned orders. Lastly in Figure 1, Changes
to Planned Orders [14], which incorporate alterations to planned orders, ranging from
adjustments to due dates and order quantities to outright cancellations. The secondary
reports encompass performance tracking, scheduling, and exceptions, the following aspects
hold significance. In this regard, we highlight the Performance Control Reports that assess
the operation of system operations. Planning Reports that are anticipating future inventory
requisites. Lastly, the Exception Reports highlight significant discrepancies such as late
and overdue orders, warranting immediate attention. In summary, the MRP systems
deliver a spectrum of critical and supplementary outcomes and reports that collectively
equip management with the requisite tools for informed decision-making and effective
operational oversight.

2.2. Integrating Python’s Capability with MRP Tasks

In recent years, the field of Supply Chain Analysis (SCA) has undergone a remarkable
transformation, driven by the rapid advances in Information and Communication Tech-
nologies (ICT) in the manufacturing industry. This evolution has led to a growing demand
for skilled professionals who can explore the complexities of the SCA and management.



Logistics 2023, 7, 91 6 of 19

However, despite this increased interest, there remains a critical shortage of experts in this
field [15,16].

Recognizing the urgency of this skills gap, several leading global institutions have
taken steps to incorporate Supply Chain Analytics Courses into their academic curricula.
These efforts, whether as mandatory or optional subjects, are valuable, as they represent
important first steps towards addressing the pressing need for supply chain expertise [17].

However, it is important to acknowledge that these initiatives, while commendable,
are not sufficient to bridge the existing skill gap. A study by Kumar et al. [17] highlights this
point by noting that the use of practical tools such as R-studio and Python-based exercises
in the SCA courses is still limited to a small number of prestigious higher education
institutions, such as the Massachusetts Institute of Technology and Rutgers University.

The scarcity of such practical tools in supply chain education is a concerning trend,
as it leaves a significant portion of aspiring professionals without exposure to the real-
world tools and technologies they need to succeed in this field. The demand for skilled
supply chain analysts is not limited to elite institutions; it spans a wide range of indus-
tries and regions, making it essential that education in this area becomes more accessible
and widespread.

To truly prepare the next generation of professionals for success in the SCA, there is a
need for a more comprehensive and inclusive approach. By integrating Python into the
MRP tasks, educational institutions can empower students with a versatile and in-demand
skillset that is aligned with the dynamic nature of modern supply chains. This approach not
only equips students with practical skills but also fosters innovation and problem-solving
abilities, which are essential in an ever-evolving industry.

Furthermore, Python’s open-source nature ensures that access to these tools is not
limited by financial constraints, democratizing the learning process, and providing oppor-
tunities for aspiring professionals from all backgrounds to enter the field.

In conclusion, the integration of Python’s capabilities with the MRP tasks presents a
promising solution to address the shortage of skilled professionals in the SCA. By expanding
the reach of practical tools and technology-enabled learning to a broader spectrum of
educational institutions and aspiring analysts, we can make a significant contribution to
the growth and sustainability of the global supply chain ecosystem.

3. Materials and Methods

Originally, we planned to conduct a Systematic Literature Review (SLR) by using a
PRISMA statement (Preferred Reporting Items for Systematic Reviews and Meta-Analyses).
The SLR stands out as an optimal methodology, characterized by a systematic approach
encompassing the detection, selection, categorization, and analysis of pertinent articles
pertaining to a defined topic [18]. This method is executed with a rigorous, transparent, and
replicable procedure, fostering a comprehensive and meticulous appraisal of the research
subject, ultimately yielding an extensive, high-quality review [19]. Notwithstanding, as
detailed in the introduction section, after conducting an initial inquiry on Elsevier Scopus
using the specified search terms “Material Requirements Planning” and “Python”, which
yielded a meager two relevant documents, our attention pivoted towards the construction
of a theoretical framework based on the existing MRP model [8]. Thus, unable to conduct
an SLR, due to the scarcity of peer-reviewed articles, we chose to ensure transparency
by adhering to an academic guide widely utilized by scholars globally. The academic
manual [8] that served as the basis for the preexisting MRP model is widely recognized as
a foundational text in the field of Operations Management (OM) and Production Planning
and Control (PPC). The manual has been adopted and adapted by many scholars for
educational and scientific purposes.

Thus, the purpose of this article is to address a gap in the current literature by explor-
ing the various applications of Python in streamlining the MRP processes. We aimed to
demonstrate the tangible benefits of Python implementation through practical illustrations.
To achieve this, we adopted a twofold approach. First, we conducted conventional research



Logistics 2023, 7, 91 7 of 19

using a variety of sources, including scientific-academic manuals, blinded peer-reviewed
articles, conference proceedings, and the Python official website [20]. The selection of manu-
als and peer-reviewed journal articles substantiates our decision, as they provide invaluable
and credible insights into the understanding of a specific discipline [21]. This allowed us to
uncover the many applications of Python programming in simplifying MRP operations.
The practical examples we provide (Section 4.1.4) serve as empirical evidence of Python’s ef-
fectiveness in enhancing the MRP tasks. Second, we introduce a conceptual framework [22]
that provides an in-depth overview of the Python ecosystem. This framework highlights
key libraries and frameworks that facilitate seamless data manipulation, advanced analysis,
and optimization techniques. These components collectively contribute to the refinement
of the MRP processes. Finally, we present an exploratory showcase of real-world business
cases (Section 4.3) and additional exploratory case research (Section 4.4). While real-world
cases only partially validate the proposed framework model, it underscores the potential
advantages of using Python and paves the way for future empirical validation. It is im-
portant to note that the adoption of a high-level, general-purpose programming language
like Python [23] to enhance the MRP systems and ERP is still relatively unexplored by
companies. However, our work lays the groundwork for understanding the potential of
Python in this domain.

4. Results

In this section, we aim to elaborate on how the Python programming optimizes
the MRP operations. Presented below is an 8-step application guide, accompanied by
a variety of applications that exemplify Python’s effectiveness in simplifying the MRP
tasks. Furthermore, we also provide a foundational code snippet for one of the 8 steps in
the Python-based MRP solution (MRP.py). Through this article, our goal is to encourage
fellow scholars to pursue similar endeavors. Such endeavors collectively contribute to
strengthening or improving the conceptual framework presented later in this section.

4.1. Uncover the Potential Applications of Python in Streamlining MRP Operations

The versatile potential of Python in building tailored MRP systems or enhancing
pre-existing ones involves coupling Python’s expansive libraries and its integration with
diverse technologies. These factors collectively underscore Python’s aptitude for sculpting
the MRP solutions attuned to individual business exigencies. The utilization of Python to
streamline the MRP operations can be divided into an 8-step framework:

4.1.1. Data Aggregation

Python efficiently aggregates data from various sources, such as sales orders, stock
levels, production schedules, and supplier delivery times. For instance, it can be used to
integrate sales order data, inventory levels, production schedules, and supplier lead times
from various sources into a single, consistent dataset. Preprocessing is often a prerequisite
before conducting the MRP calculations. This preprocessing involves tasks such as handling
missing values, accomplished through either estimation or statistical methods; eliminating
duplicates by identifying and removing redundant records; transforming data types, which
entails converting data from one type to another, like converting string values to numeric;
and, addressing outliers, encompassing the identification and elimination of data points
that deviate significantly from the norm. Hence, as a fundamental principle, the MRP
demands the integration of data from diverse sources to ensure precise calculations. The
adaptability offered by the Python libraries, exemplified by Pandas, proves instrumental in
refining and preprocessing data, preparing it for comprehensive analysis. The code first
imports the Pandas library, a Python package providing fast, flexible, and expressive data
structures designed to work with relational or labeled data [24,25]. Subsequently, a Pandas
DataFrame is established to store the data [26]. The code proceeds with utilizing the dropna
() method to remove missing values from the DataFrame [27], followed by drop_duplicates
() to remove duplicate records [28] and astype () to facilitate data type conversion [29]



Logistics 2023, 7, 91 8 of 19

within the DataFrame. Finally, the script prints the DataFrame to exhibit the outcomes of
preprocessing. Having aggregated and cleansed the data, Python stands primed for the
ensuing MRP calculations, as elaborated in the following steps.

4.1.2. Demand Prediction

Employing data analytics and Python’s Machine Learning (ML) libraries facilitates
demand prognostication [30]. This dynamic procedure converges historical sales data,
seasonal patterns, and other relevant variables to yield forecasted demand–a fundamental
input for the MRP calculations [31]. However, demand forecasting presents some com-
plexity, as some machine learning algorithms are diverse and more complex than others,
requiring more data to be trained. Additionally, the availability of data can be a limiting
factor, as some ML algorithms require a large amount of data for training. For instance,
the Generative Pre-trained Transformer 3 (GPT-3) by OpenAI is trained on hundreds of
billions of words [32]. The number of computational resources required can also vary,
with some algorithms placing greater demands on computing power. Once an ML library
has been chosen, the next step is to collect the data that will be used to train the model.
This dataset should include historical sales data, seasonal patterns, and any other relevant
variables that could affect demand. This data then becomes the foundation for training
the ML model. The training phase can take a significant amount of time, depending on
the complexity of the model and the volume of data. Once the model is trained, it can
be used to make predictions about future demand [33]. These forecasts can then be used
to make informed decisions about inventory management, production scheduling, and
marketing strategies. In the context of the MRP, demand forecasting is essential for de-
termining the optimal quantities of raw materials and finished goods to produce to meet
future demand. This helps to prevent supply-demand imbalances and ensures that the
company has sufficient inventory to meet demand without overstocking. This section
aligns with Elbegzaya’s thesis [34], emphasizing the increasing significance of seamlessly
integrating and orchestrating the complete spectrum of end-to-end supply chain processes
in the face of market complexities and uncertain demand. Elbegzaya [34] highlights the
growing importance of data sourcing, management, and manipulation as a key advantage
for businesses. Notably, leading organizations have extensively explored the boundaries
of ML and AI to enhance operational excellence. The widespread use of AI is particularly
evident in comprehensive computational modeling for tasks such as reasoning, pattern
recognition, extensive calculations, experiential learning, and adept comprehension to
cater to diverse requirements. Despite its prominence in demand planning and forecasting,
the comprehensive integration of AI and/or machine learning within other supply chain
sub-applications, including the MRP and MPS, remains an area of ongoing focus within
this discourse.

4.1.3. Inventory Optimization

Inventory optimization is the process of finding the right balance between having
enough inventory to meet customer demand and not having too much inventory that costs
money to store. This is a complex task that considers factors such as product demand, lead
time, holding cost, and purchase cost. The goal of inventory optimization is to determine
the optimal reorder points and order quantities for different products.

Python scripts can be used to automate the calculation of optimal reorder points and
order quantities. The programming language is well-suited for this task, as it can handle
the complex calculations and considerations involved in inventory optimization efficiently
and accurately. Zara is a well-known case study in inventory optimization. The company
is known for its quick response, high-fashion products, competitive prices, and many
stores. To strike a good balance between keeping inventory on display to drive sales and
eliminating the impact of excessive shipping orders, Zara focuses on improving its global
distribution process. In mid-2005, Zara created a new process that has shipped quantities
as the main decision variables and the maximization of global sales as its objective [35].



Logistics 2023, 7, 91 9 of 19

The new process consisted of two models: the prediction model and the optimization
model [36]. To this end, Zara used commercial Mixed Integer Programming (MIP) software.
However, there is no record of using a high-level, general-purpose programming language
such as Python [23].

4.1.4. BOM Oversight

As mentioned earlier, a BOM is an exhaustive list of all materials, components, sub-
assemblies, and their corresponding quantities required to manufacture a given product
(Figure 2). In manufacturing, particularly in sectors such as the automotive industry, pro-
duction efficiency depends on BOM oversight. This implies vigilant monitoring of BOM
components and their availability throughout the production continuum, ensuring compli-
ance with production deadlines and preventing potential problems related to shortages.
In this regard, Python can be leveraged as a powerful tool for BOM oversight. Python’s
versatile capabilities can be harnessed to guarantee the accessibility of essential components
and harmonize their synchronization with production schedules. For example, Python
can be used to create scripts (the Python script below as an example) or software tools
that automatically synchronize the BOM with production schedules. This ensures that
the materials and components needed for each production phase are available on time,
mitigating delays and bottlenecks. Additionally, Python can be integrated with various
data sources and sensors to enable real-time monitoring of the status of materials and
components. This provides manufacturers with timely updates on inventory levels, usage
trends, and potential shortages. By capitalizing on Python’s capabilities, manufacturers can
obtain a comprehensive and up-to-date understanding of their BOMs, which can lead to
improved operational efficiency, productivity, and profitability. To provide a clear industrial
example, we used a simple instance from Stevenson [8]. This simple example illustrates the
bill of materials (BOM) for product X, which requires the calculation of the quantities of
components B, C, D, E, and F needed to assemble a single unit of X.

Logistics 2023, 7, x FOR PEER REVIEW 9 of 20 
 

 

Python scripts can be used to automate the calculation of optimal reorder points and 
order quantities. The programming language is well-suited for this task, as it can handle 
the complex calculations and considerations involved in inventory optimization effi-
ciently and accurately. Zara is a well-known case study in inventory optimization. The 
company is known for its quick response, high-fashion products, competitive prices, and 
many stores. To strike a good balance between keeping inventory on display to drive sales 
and eliminating the impact of excessive shipping orders, Zara focuses on improving its 
global distribution process. In mid-2005, Zara created a new process that has shipped 
quantities as the main decision variables and the maximization of global sales as its objec-
tive [35]. The new process consisted of two models: the prediction model and the optimi-
zation model [36]. To this end, Zara used commercial Mixed Integer Programming (MIP) 
software. However, there is no record of using a high-level, general-purpose program-
ming language such as Python [23]. 

4.1.4. BOM Oversight 
As mentioned earlier, a BOM is an exhaustive list of all materials, components, sub-

assemblies, and their corresponding quantities required to manufacture a given product 
(Figure 2). In manufacturing, particularly in sectors such as the automotive industry, pro-
duction efficiency depends on BOM oversight. This implies vigilant monitoring of BOM 
components and their availability throughout the production continuum, ensuring com-
pliance with production deadlines and preventing potential problems related to short-
ages. In this regard, Python can be leveraged as a powerful tool for BOM oversight. Py-
thon’s versatile capabilities can be harnessed to guarantee the accessibility of essential 
components and harmonize their synchronization with production schedules. For exam-
ple, Python can be used to create scripts (the Python script below as an example) or soft-
ware tools that automatically synchronize the BOM with production schedules. This en-
sures that the materials and components needed for each production phase are available 
on time, mitigating delays and bottlenecks. Additionally, Python can be integrated with 
various data sources and sensors to enable real-time monitoring of the status of materials 
and components. This provides manufacturers with timely updates on inventory levels, 
usage trends, and potential shortages. By capitalizing on Python’s capabilities, manufac-
turers can obtain a comprehensive and up-to-date understanding of their BOMs, which 
can lead to improved operational efficiency, productivity, and profitability. To provide a 
clear industrial example, we used a simple instance from Stevenson [8]. This simple ex-
ample illustrates the bill of materials (BOM) for product X, which requires the calculation 
of the quantities of components B, C, D, E, and F needed to assemble a single unit of X. 

 
Figure 2. Bill of Materials (BOM) of product X (adapted from Stevenson [8]). 

According to Figure 3, product X will require 2 units of B, 1 unit of C, 6 units of D, 28 
units of E (note that E occurs in three places, with requirements of 24 + 2 + 2 = 28), and 2 

Figure 2. Bill of Materials (BOM) of product X (adapted from Stevenson [8]).

According to Figure 3, product X will require 2 units of B, 1 unit of C, 6 units of D,
28 units of E (note that E occurs in three places, with requirements of 24 + 2 + 2 = 28),
and 2 units of F. Stevenson’s work [8] underscores that the process of calculating total
requirements is more complex than what Figure 2 might initially convey. This complexity
arises from various factors. Firstly, many products boast a significantly greater number of
components than illustrated. Additionally, the factor of timing proves crucial—determining
when components need to be ordered or produced—and this temporal aspect must factor
into the analysis. Lastly, several components or subassemblies could already be in stock,
creating a need to account for these existing quantities in the calculations. The accuracy
of the BOM is of paramount importance as it dictates the composition of a product. This
significance stems from the fact that errors introduced at one level can be magnified through
the multiplication process used to determine quantity requirements.



Logistics 2023, 7, 91 10 of 19

Logistics 2023, 7, x FOR PEER REVIEW 10 of 20 
 

 

units of F. Stevenson’s work [8] underscores that the process of calculating total require-
ments is more complex than what Figure 2 might initially convey. This complexity arises 
from various factors. Firstly, many products boast a significantly greater number of com-
ponents than illustrated. Additionally, the factor of timing proves crucial—determining 
when components need to be ordered or produced—and this temporal aspect must factor 
into the analysis. Lastly, several components or subassemblies could already be in stock, 
creating a need to account for these existing quantities in the calculations. The accuracy of 
the BOM is of paramount importance as it dictates the composition of a product. This 
significance stems from the fact that errors introduced at one level can be magnified 
through the multiplication process used to determine quantity requirements. 

 
Figure 3. Materials needed to assemble X (adapted from Stevenson [8]). 

While most companies have specialized software applications, the manufacturing 
sector is increasingly realizing the need for skilled industrial engineers. These experts can 
design custom software solutions that meet the unique needs of their industries. This can 
help to prevent errors that can accumulate over time. In this context, Python software can 
give a company a competitive advantage. As demonstrated by the example from Steven-
son’s [3] scholarly guide, we have developed a concise set of code lines that can automat-
ically execute the task. While this program is designed for a straightforward educational 
and scientific purpose and can be used by a wide range of readers, including beginners 
and experts, the code can be further enhanced to be more complex, like the examples 
available on platforms like pyBOM [37]. 

The Python code in Figure 4 calculates the quantities of components needed to as-
semble a single unit of the top-level item ‘X’, based on the BOM shown in Figure 2. The 
code has the following key aspects: The BOM is represented as a dictionary, where each 
key is a component, and the corresponding value is a dictionary of the required sub-com-
ponents to assemble that component along with their quantities. For example, to assemble 
‘X’, we need 2 units of ‘B’ and 1 unit of ‘C’. The function ‘calculate_quantities’ takes three 
parameters–the BOM, the current item being processed, and the quantity of the current 
item. It returns a dictionary of the quantities of all components needed to assemble the 
given item. If the current ‘item’ is not found in the BOM (i.e., it is a basic component), the 
function returns a dictionary with just the current component and its quantity. If the cur-
rent ‘item’ is in the ‘BOM’, the function first creates a dictionary to store the component’s 
quantities. Then, it loops through each sub-component of the current ‘item’ in the BOM. 
For each sub-component, its function recursively calls ‘calculate_quantities’ with the sub-
component as the new ‘item’, the quantity required for the sub-component (calculated by 
multiplying the ‘qty_needed’ from the BOM by the current ‘quantity’), and the ‘availa-
ble_quantity’ dictionary. The quantities are then updated. The calculated ‘quantities’ from 
the sub-components are used to update the ‘quantities’ dictionary. If a component already 
exists in the ‘quantities’ dictionary, the calculated quantity is added to the existing 

Figure 3. Materials needed to assemble X (adapted from Stevenson [8]).

While most companies have specialized software applications, the manufacturing
sector is increasingly realizing the need for skilled industrial engineers. These experts can
design custom software solutions that meet the unique needs of their industries. This can
help to prevent errors that can accumulate over time. In this context, Python software
can give a company a competitive advantage. As demonstrated by the example from
Stevenson’s [3] scholarly guide, we have developed a concise set of code lines that can
automatically execute the task. While this program is designed for a straightforward
educational and scientific purpose and can be used by a wide range of readers, including
beginners and experts, the code can be further enhanced to be more complex, like the
examples available on platforms like pyBOM [37].

The Python code in Figure 4 calculates the quantities of components needed to assem-
ble a single unit of the top-level item ‘X’, based on the BOM shown in Figure 2. The code
has the following key aspects: The BOM is represented as a dictionary, where each key is a
component, and the corresponding value is a dictionary of the required sub-components
to assemble that component along with their quantities. For example, to assemble ‘X’,
we need 2 units of ‘B’ and 1 unit of ‘C’. The function ‘calculate_quantities’ takes three
parameters–the BOM, the current item being processed, and the quantity of the current
item. It returns a dictionary of the quantities of all components needed to assemble the
given item. If the current ‘item’ is not found in the BOM (i.e., it is a basic component),
the function returns a dictionary with just the current component and its quantity. If the
current ‘item’ is in the ‘BOM’, the function first creates a dictionary to store the compo-
nent’s quantities. Then, it loops through each sub-component of the current ‘item’ in the
BOM. For each sub-component, its function recursively calls ‘calculate_quantities’ with the
sub-component as the new ‘item’, the quantity required for the sub-component (calculated
by multiplying the ‘qty_needed’ from the BOM by the current ‘quantity’), and the ‘avail-
able_quantity’ dictionary. The quantities are then updated. The calculated ‘quantities’ from
the sub-components are used to update the ‘quantities’ dictionary. If a component already
exists in the ‘quantities’ dictionary, the calculated quantity is added to the existing quantity.
Otherwise, a new entry is created with the calculated quantity. The code starts by calling
‘calculate_quantities’ for the top-level item ‘X’ with a quantity of 1. These initiatives are
a recursive calculation of the quantities needed to assemble ‘X’, resulting in a dictionary
containing these quantities. Finally, the final quantities for each component are printed
using a simple loop that iterates through the dictionary returned by ‘calculate_quantities’.
By recursively traversing the BOM and calculating quantities for each component, the
code accurately determines the quantities of ‘B’, ‘C’, ‘D’, ‘E’, and ‘F’ needed to assemble
one single unit of ‘X’. In other words, the code prints the final quantities for each compo-
nent, and by employing this recursive approach to step through the BOM and calculate
quantities for each component, the code accurately determines the quantities of ‘B’, ‘C’,
‘D’, ‘E’ and ‘F’ that is needed to construct a single unit of ‘X’. The recursive approach
handles the multi-level structure of the BOM, ensuring that all necessary quantities are
appropriately aggregated and computed. This enables a comprehensive understanding of



Logistics 2023, 7, 91 11 of 19

the quantities required to produce the top-level item, considering all its sub-components
and their respective quantities.

Logistics 2023, 7, x FOR PEER REVIEW 11 of 20 
 

 

quantity. Otherwise, a new entry is created with the calculated quantity. The code starts 
by calling ‘calculate_quantities’ for the top-level item ‘X’ with a quantity of 1. These initi-
atives are a recursive calculation of the quantities needed to assemble ‘X’, resulting in a 
dictionary containing these quantities. Finally, the final quantities for each component are 
printed using a simple loop that iterates through the dictionary returned by ‘calcu-
late_quantities’. By recursively traversing the BOM and calculating quantities for each 
component, the code accurately determines the quantities of ‘B’, ‘C’, ‘D’, ‘E’, and ‘F’ 
needed to assemble one single unit of ‘X’. In other words, the code prints the final quanti-
ties for each component, and by employing this recursive approach to step through the 
BOM and calculate quantities for each component, the code accurately determines the 
quantities of ‘B’, ‘C’, ‘D’, ‘E’ and ‘F’ that is needed to construct a single unit of ‘X’. The 
recursive approach handles the multi-level structure of the BOM, ensuring that all neces-
sary quantities are appropriately aggregated and computed. This enables a comprehen-
sive understanding of the quantities required to produce the top-level item, considering 
all its sub-components and their respective quantities. 

 
Figure 4. Foundational code snippet for one of the 8 steps in the Python-based MRP solution 
(MRP.py). 

4.1.5. MRP Processing 
The MRP processing is a part of the PPC that ensures timely and efficient order ful-

fillment while minimizing resource wastage and delays [9]. Python can be used to auto-
mate and optimize orders to create material timetables by accounting for lead times in 
procurement, calculating reorder points, and triggering timely alerts. It can also evaluate 
resource availability by considering current inventory and incoming orders, preventing 
production disruptions from material shortages. Python can optimize order quantities 
and reorder points to reduce costs while ensuring material availability. It can also generate 
reordering cues based on demand fluctuations in the MRP. Finally, it manages materials 
efficiently by curbing excess inventory and stockouts. Overall, Python can be a valuable 
tool for improving the efficiency and effectiveness of order scheduling. 

Figure 4. Foundational code snippet for one of the 8 steps in the Python-based MRP solution
(MRP.py).

4.1.5. MRP Processing

The MRP processing is a part of the PPC that ensures timely and efficient order
fulfillment while minimizing resource wastage and delays [9]. Python can be used to
automate and optimize orders to create material timetables by accounting for lead times in
procurement, calculating reorder points, and triggering timely alerts. It can also evaluate
resource availability by considering current inventory and incoming orders, preventing
production disruptions from material shortages. Python can optimize order quantities and
reorder points to reduce costs while ensuring material availability. It can also generate
reordering cues based on demand fluctuations in the MRP. Finally, it manages materials
efficiently by curbing excess inventory and stockouts. Overall, Python can be a valuable
tool for improving the efficiency and effectiveness of order scheduling.

4.1.6. Vendor Collaboration

Collaboration with suppliers is essential for a smooth flow of materials and information
in the supply chain and it was one of the main issues identified in our readings of the
literature [38]. Python can play a valuable role in this collaboration by automating the
creation and submission of purchase orders (POs). POs are formal documents that a
buyer issues to a supplier, specifying the items to be purchased, quantities, prices, and
delivery conditions. Python can be used to automate the creation of POs by integrating
with a company’s MRP system. Once the POs have been created, Python can be used to
submit them to suppliers in a variety of ways. For example, POs can be sent via email,
where Python can automate the email generation process and attach the relevant documents.
Alternatively, Python can be used to facilitate the use of EDI (Electronic Data Interchange), a
standardized format for exchanging business documents electronically [39]. EDI eliminates
the need for manual data entry and reduces errors, which can further streamline the
collaboration process [40].



Logistics 2023, 7, 91 12 of 19

In summary, Python’s capabilities in automating processes, performing computations,
and facilitating communication make it a valuable tool for improving collaboration with
suppliers. By automating the creation and submission of POs, Python can help to improve
procurement efficiency, accuracy, and collaboration.

4.1.7. Visual Insights and Reporting

One of the most important outputs of the MRP is the data it generates (vide Fig-
ure 1). In today’s data-driven world, the ability to effectively convey insights from complex
datasets is crucial [41]. Python offers powerful visualization libraries such as Matplotlib [42]
and Plotly [43] that can help us do just that. Matplotlib and Plotly are industry-standard
libraries that are known for their versatility in generating a wide variety of visualiza-
tions [42,43]. Matplotlib is a good choice for creating static graphs, while Plotly offers
interactivity and dynamic features that allow users to explore data interactively. Visual-
izations can help to reveal hidden patterns and trends in data that would otherwise be
difficult to see, it also improves the communication of complex insights to stakeholders
and enables data-driven decisions.

In conclusion, using Matplotlib and Plotly to visualize the MRP data is an essential skill
for modern decision-makers. The insights gained from these visualizations can help orga-
nizations make informed decisions, optimize processes, and stay ahead of the competition.

4.1.8. ERP Fusion

The last phase we identified was the merger of MRP with the Enterprise Resource
Planning (ERP) systems. ERP application is an enterprise-wide package that plays a key
role in managing various business processes, including purchasing [44], inventory man-
agement [45], and production scheduling [46], just to name a few. However, even the most
robust ERP systems may not provide all the advanced visualization and analytical tools
needed for in-depth analysis of the MRP data. This is where Python´s fusion with the ERP
systems comes into play. By integrating Python with the ERP systems, a wide range of tools
can be leveraged to perform complex data transformations, predictive modeling, and ad-
vanced analytics on the MRP-related data. While ERP systems offer standardized reporting
and analytics, they can fall short when it comes to specific, customized analytics that meet
unique business needs [47]. In that regard, Python can help to develop custom analysis
workflows that align with each organization´s specific MRP requirements. Overall, the
integration of Python with the ERP systems can provide organizations with several benefits
that can help them improve their production processes and achieve their business goals.

4.2. Conceptual Framework

In Figure 5, we provide an overview of the key concepts discussed in Section 4. The
below figure visually incorporates the transformation of the conceptual model depicted
in Figure 1 into a practical Python implementation, seamlessly integrated with the ERP
systems. As previously highlighted, Python empowers the integration of innovative tech-
niques for information retrieval and data aggregation. This, in turn, leads to highly efficient
data manipulation, analysis, and optimization, all of which significantly enhance the MRP
(Materials Requirement Planning) processes. Additionally, the Python’s capabilities facili-
tate the generation of both primary and secondary reports, offering insightful visualizations
that empower stakeholders to make well-informed decisions.

Significant enhancements in Figure 1 primarily go around data aggregation facili-
tated by Python. While there is a lack of literature that specifically outlines a conceptual
framework for the MRP utilizing Python, recent publications by reputable scholars [48]
have emphasized the integration of programming languages within the PPC. Notably,
Esteso et al. [48] underscores the shift from conventional programming languages like C++,
MATLAB, JAVA, Visual Basic.NET, and Delphi, alongside simulation tools such as ARENA,
to contemporary ML platforms like TensorFlow and PyTorch, which are referenced in
this article. The accessibility of Python’s APIs within these platforms has subsequently



Logistics 2023, 7, 91 13 of 19

positioned Python as the dominant language for agent development. This development
landscape serves as the impetus for our present study. In consideration of the framework
depicted in Figure 1, Python effectively integrates data from various sources, encompassing,
yet not limited to, sales orders and inventory levels. We emphasized the role of the Pandas
library in this context, offering swift, adaptable, and expressive data structures tailored for
handling relational or labeled data. This capability has facilitated efficient data analysis and
seamless handling of complex data sets, fostering a more streamlined and comprehensive
approach to data management. Furthermore, we have preserved the integrity of the Bill
of Materials (BOM) and inventory optimization components, albeit with requisite tech-
nological refinements. By incorporating the latest technological advancements, we have
managed to streamline and refine the process of handling the BOMs and inventory, enhanc-
ing the overall efficiency and productivity of the system–this includes the foundational
code snippet for one of the 8-steps in the Python-based MRP solution. Regarding reporting,
the principal alterations focus on leveraging visual insights tools like Matplotlib and Plotly.
The integration of these visualization tools has not only enhanced the interpretability of
complex data sets but has also provided a user-friendly interface, enabling stakeholders to
comprehend and interpret data effortlessly, thereby enhancing the decision-making process.
Overall, these tools empower stakeholders with data-driven insights, facilitating informed
decision-making. Lastly, a crucial highlight centers on the symbiotic relationship between
the MRP and ERP fostered through the Python’s integration. This fusion of Python is
arguably one of the most relevant facets of our system, bringing cohesion and synergy to
the overall framework.

Logistics 2023, 7, x FOR PEER REVIEW 13 of 20 
 

 

4.2. Conceptual Framework 
In Figure 5, we provide an overview of the key concepts discussed in Section 4. The 

below figure visually incorporates the transformation of the conceptual model depicted 
in Figure 1 into a practical Python implementation, seamlessly integrated with the ERP 
systems. As previously highlighted, Python empowers the integration of innovative tech-
niques for information retrieval and data aggregation. This, in turn, leads to highly effi-
cient data manipulation, analysis, and optimization, all of which significantly enhance the 
MRP (Materials Requirement Planning) processes. Additionally, the Python’s capabilities 
facilitate the generation of both primary and secondary reports, offering insightful visu-
alizations that empower stakeholders to make well-informed decisions. 

 
Figure 5. Conceptual framework on Material Requirements Planning (MRP) with Python. 

Significant enhancements in Figure 1 primarily go around data aggregation facili-
tated by Python. While there is a lack of literature that specifically outlines a conceptual 
framework for the MRP utilizing Python, recent publications by reputable scholars [48] 
have emphasized the integration of programming languages within the PPC. Notably, 
Esteso et al. [48] underscores the shift from conventional programming languages like 
C++, MATLAB, JAVA, Visual Basic.NET, and Delphi, alongside simulation tools such as 
ARENA, to contemporary ML platforms like TensorFlow and PyTorch, which are refer-
enced in this article. The accessibility of Python’s APIs within these platforms has subse-
quently positioned Python as the dominant language for agent development. This devel-
opment landscape serves as the impetus for our present study. In consideration of the 
framework depicted in Figure 1, Python effectively integrates data from various sources, 
encompassing, yet not limited to, sales orders and inventory levels. We emphasized the 
role of the Pandas library in this context, offering swift, adaptable, and expressive data 
structures tailored for handling relational or labeled data. This capability has facilitated 
efficient data analysis and seamless handling of complex data sets, fostering a more 
streamlined and comprehensive approach to data management. Furthermore, we have 
preserved the integrity of the Bill of Materials (BOM) and inventory optimization compo-
nents, albeit with requisite technological refinements. By incorporating the latest 

Figure 5. Conceptual framework on Material Requirements Planning (MRP) with Python.

4.3. Laying down the Foundations for Integrating MRP.py into Existing ERP Systems

This section seeks to achieve a balance between generalization and practical appli-
cation, providing a foundational framework for the seamless integration of the MRP.py
into the established ERP systems. While the focus of this article remains on a generalizable
model applicable to researchers at varying levels of expertise in MRP, ERP, and Python, we
have also sought to present some further details about how to integrate the MRP.py into
the ERP systems.



Logistics 2023, 7, 91 14 of 19

Presently, our research efforts are concentrated within two distinct teams, one operat-
ing within the Portuguese electronic sector and the other within the automotive industry.
Our commitment lies in the empirical validation of the fundamental groundwork. While
the integration of the MRP.py into dedicated ERP systems is still in the exploratory phase,
this section presents preliminary empirical findings derived from our ongoing research en-
deavor. Specifically, through collaboration with industrial and computer engineers from the
mentioned sectors, we formulated comprehensive integration guidelines for the MRP.py
within the ERP systems. The guidelines will be empirically explored in the upcoming
months, yielding fresh insights, and reinforcing the ongoing research by supporting the
development of specific models within the mentioned organizations.

During the current phase, the integration of the MRP.py code into the ERP systems
required collaborative brainstorming among key individuals in the companies, led by
engineers with extensive experience in both the MRP and ERP systems. As such, the
generic guidelines presented herein are a collective effort between the two teams, from the
electronic and automotive industries. To ensure clarity and systematic implementation, we
have categorized the guidelines into four primary phases (p-phases) and an additional four
secondary phases (s-phases), for effectively integrating the MRP.py into the ERP systems.

Initiating the integration process, we initially underscored the critical requirement for
system analysis and compatibility verification (p-phase I), requiring an in-depth under-
standing of the existing ERP system’s architecture and its compatibility with the developed
MRP.py. Subsequently, we emphasized the integration of API and data exchange protocols
(p-phase II), exploring the use of application programming interfaces (APIs) and data
exchange protocols to streamline communication and data transfer between the MRP.py
and the ERP system. For smaller enterprises, the integration of the MRP.py through the
Microsoft Excel document outputs from the ERP system might offer a simpler data process-
ing solution. Nevertheless, we anticipate the development of more robust and secure data
transfer protocols, especially for larger corporations. In such cases, implementing a data
mapping strategy becomes essential, ensuring seamless data transformation processes that
accurately interpret and process data from both systems. This becomes particularly crucial
as the MRP systems often incorporate external information such as supplier deliveries,
requiring an efficient data conversion process.

Furthermore, it is imperative to establish event-driven integration mechanisms (p-
phase III) that facilitate real-time updates and notifications between the MRP.py code and
the ERP system, ensuring continuous system synchronization. To prevent unwarranted
discrepancies, configuring event triggers and automated workflows is necessary, guarantee-
ing that any changes or updates within one system are immediately reflected in the other,
thereby maintaining data consistency and accuracy. Finally, an effective error-handling
strategy (p-phase IV) should be devised to address data inconsistencies, processing errors,
and system failures during the integration process. Implementing a robust logging and
monitoring mechanism is crucial, enabling the capture and analysis of errors, facilitating
effective troubleshooting, and preventing future discrepancies.

In conjunction with the primary measures, we delineate four pivotal secondary phases.
First and foremost, ensuring robust security protocols and access control measures (s-phase
I) is imperative to safeguard the integrity and confidentiality of all data, especially sensitive
information pertaining to employees and stakeholders. This involves assigning specific
user roles and permissions, ensuring that employees can only access the data relevant
to their roles within the organization. Given the escalating prominence of cybersecurity
threats, the implementation of encryption techniques and secure authentication mecha-
nisms (s-phase II) is paramount to fortify the system against potential security breaches.
The secure authentication mechanisms phase can include methods such as multi-factor
authentication, biometric authentication, or other secure login protocols that verify the
identity of users before granting access. Regular testing and validation of procedures are
also necessary to uphold the reliability of the integrated MRP.py and ERP system. In this
regard, scenario-based testing plays a pivotal role in identifying and resolving potential



Logistics 2023, 7, 91 15 of 19

issues or discrepancies, ensuring the continuous accuracy and functionality of the systems
over time. This involves carrying out security audits, penetration tests, and vulnerability
assessments to ensure that the security measures in place are effective and up to date.

Additionally, safeguarding the knowledge acquired through the integration process
is critical (s-phase III). Thorough documentation of all developments and the creation
of comprehensive training materials are essential to facilitate users’ and stakeholders’
understanding of the integrated MRP.py and ERP system. Lastly, the implementation of
continuous monitoring and maintenance practices (s-phase IV) is vital for overseeing the
performance, scalability, and sustainability of the integrated system. Employing monitoring
tools such as dashboards and routine maintenance procedures, including timely software
updates, is instrumental in ensuring the seamless integration of the entire process.

By adhering to these guidelines, organizations can seamlessly integrate the MRP.py
code into their existing ERP systems, thereby optimizing their manufacturing processes. As
underscored earlier, the current guidelines are of a preliminary nature, thereby necessitating
a more comprehensive elucidation. Specifically, a thorough investigation is imperative to
discern the most appropriate encryption techniques and secure authentication mechanisms
tailored to various industries. For instance, an in-depth analysis is required to determine
the compatibility of multi-factor authentication within the automotive sector, or whether a
dynamic and expedient protocol, capable of authenticating users prior to granting access,
would be more efficacious. This inquiry represents merely a fraction of the manifold queries
that underscore the persistent relevance of this subject, underscoring its exigency for further
scholarly inquiry.

4.4. Preliminary Empirical Validation–Practical Examples from Real-Life (Business Cases)

While the utilization of Python in the MRP may not yet be widely recognized, there
are compelling instances that underscore its value within this framework. We would like
to elucidate two cases. The first instance revolves around the Python software known as
“openerp-mrp” [49], specifically focusing on the manufacturing module. This module seam-
lessly handles critical aspects of the manufacturing process, including planning, ordering,
inventory management, and the production or assembly of products using raw materials
and components. Some features of this solution include versatile capabilities such as Make
to Stock/Make to Order and support for multi-level Bills of material, without imposing
any limits. The second case centers on the evolution of open-source ERP systems. Through
an in-depth comparative analysis between OpenERP (leveraging open-source technologies)
and other prominent ERP systems, it becomes clear that OpenERP surpasses expectations
when pitted against its competitors. The introduction of Odoo/OpenERP marked a pivotal
moment in ERP systems [50], as it introduced elements such as a Content Management
System (CMS), an e-commerce system, and integrated Business Intelligence (BI) capabilities
into the system. However, this expanded functionality necessitates a thorough examination
and adaptation to address the increased system complexity. A real-world illustration of
Python’s efficacy in this context can be seen in the case of Made.com [51], a substantial
online furniture retailer boasting a vast array of products. Collaborating directly with
designers and manufacturers, they have steadily expanded their network of partners (ven-
dors). Faced with the need for ambitious warehouse integrations, Made.com embarked on
a journey to reconstruct its ERP system incrementally, adopting a microservices architecture
developed in Python and interconnected through Event Sourcing. The choice of Python in
this endeavor not only mitigated risks but also facilitated rapid software development—a
testament to Python’s agility and effectiveness. In summary, Python’s relevance in the
MRP-ERP is underscored by these instances, which highlight its versatility, adaptability,
and efficiency in addressing the evolving demands of modern manufacturing processes.

4.5. Summary

Although Python is a versatile tool, implementing an MRP system remains complex
due to several salient factors. Primarily, building custom MRP systems or amplifying extant



Logistics 2023, 7, 91 16 of 19

ones necessitates multidisciplinary competencies, encompassing not only programming
skills but also an in-depth comprehension of supply chains and business processes. Conse-
quently, organizations should recruit professionals such as industrial engineers, individuals
equipped not only with programming proficiency but also profound insights into supply
chains and logistics. Furthermore, the construction of personalized MRP systems through
Python mandates the fragmentation of the mentioned 8-step framework into multiple
projects, given the size of the task and its complexity. Lastly, the narrative of real-time data
synchronization, scalability, security fortification, and continuous upkeep should also find
resonance during the Python-driven MRP system’s journey.

5. Conclusions

This article’s findings indicate that leveraging Python in the MRP simplifies the
planning process, reduces human error, increases efficiency, and enables organizations to
make data-driven decisions. Automating the MRP tasks allows supply chain professionals
to focus on strategic activities and proactively address potential disruptions.

5.1. Theoretical Contributions

Our article introduces an innovative conceptual framework (Figure 5) to investigate the
MRP method using Python. While the foundational procedures of the MRP are not novel,
the application of a high-level, general-purpose programming language such as Python
represents a distinct and inventive approach [23]. The framework integrates a variety of
Python tools, including Pandas, Matplotlib, and Plotly, to facilitate the operationalization
of an 8-step MRP process. The framework differs from prevailing standardized corporate
solutions in two ways: it uses a comprehensive set of tools that can be adapted to the
dynamic complexity of different organizational environments; and, in addition, it supports
a multidimensional analysis of complexity, suggesting the development of MRP.py into
discrete projects. This allows the use of varied tools and a more nuanced understanding
of the complex dynamics of the MRP systems (e.g., exhaustive BOMs). In such cases,
a stratagem involving modular designs, while seemingly ostensibly simplistic, may be
considered an appropriate course of action. By partitioning the implementation into
discrete projects, the assimilation of varied techniques becomes not only sustainable but
also instrumental. This approach generates a more nuanced understanding of the complex
dynamics inherent in these systems.

In short, the framework elaborated herein, although apparently simple, serves as a
complex combination of techniques–a characteristic shared with other scholarly authors [8].
Through this multifaceted stance, the framework enriches our discernment of the rela-
tionship between the MRP and ERP, particularly in industries that manage a wide range
of materials.

5.2. Managerial Contributions

This article makes several contributions to the field of management. First, it recognizes
that each company has unique MRP practical requirements. For example, some companies
may need to focus on improving their supplier relationships, while others may need to focus
on managing the complex BOM. As a result, different parts of the conceptual framework
(Figure 5) will need to be developed to different degrees. This article encourages industrial
engineers to empirically validate the conceptual framework presented here within the
context of their own organizations. Once the conceptual framework has been validated
and/or adapted, engineers can develop separate Python programs for each component of
the framework, treating each component as a distinct and independent project. The goal is
to integrate these projects into a unified whole, which we call the MRP.py, and deploy it
within the ERP system.

Second, this article also highlights the importance of the Python developer commu-
nity. The community is large and active, and it is constantly releasing new libraries and
tools. This makes it possible for industrial engineers to flexibly adapt and refine their



Logistics 2023, 7, 91 17 of 19

reporting and analytical solutions in response to changing business needs. By combining
the MRP, ERP, and Python, companies can transform ordinary processes into strategic
assets. Python’s analytical capabilities can release new insights, agility, and optimiza-
tion opportunities that go beyond the capabilities of traditional ERP systems. This inte-
gration can help companies extract more value from their ERP investments and remain
adaptable in a dynamic business environment. In that regard, this article provides prac-
tical examples, including the case of OpenERP and the evolution of open-source ERP
systems like Odoo/OpenERP, which serve as real-life testaments to the efficacy and adapt-
ability of Python in addressing the complexities of modern manufacturing and SCM.
Odoo/OpenERP marked a pivotal moment in ERP systems, as it introduced elements such
as CMS, an e-commerce system, and integrated BI capabilities into the system. Moreover,
the operational framework of Made.com serves as an additional tangible exemplification of
Python’s efficacy. Made.com strategically undertook a phased modernization of its ERP
system, implementing a microservices architecture founded on the Python programming
language. The application of Python not only reduced potential risks but also sped up
software development, thus reaffirming the language’s exceptional adaptability and profi-
ciency. Projections indicate the imminent emergence of noteworthy cases showcasing the
integration of Python, thereby justifying its relevance for in-depth academic analysis.

5.3. Research Limitations

This article outlines several research limitations that warrant careful consideration. We
aim to highlight three key issues that, from our perspective, hold significant importance.

First, the conceptual framework is limited in its relevance over time. It is based on
existing literature, but the field of AI and computer science is constantly evolving. As a
result, the framework may become outdated as new technologies and techniques emerge.
Thus, the framework may become outdated as new technologies and techniques emerge.
For example, the reference to the Python libraries in this article may need to be updated to
reflect the latest developments. Second, the framework is also designed to be generic, so it
may not apply to all specific business domains. For example, a company in the automotive
industry may have different needs than a company in the electronic industry. Third, the
identified 8-step framework needs to be disaggregated into discrete projects. This is because
managing a complex technological initiative is challenging and requires careful planning
and execution. Breaking the initiative down into smaller, more manageable projects can
help mitigate risks and ensure that the initiative is successful.

By consciously acknowledging and proactively mitigating these research limitations, we
can formulate a resilient and adaptable approach to the dynamic technological landscape.

5.4. Future Endeavours

While the focus of this article is to showcase the practical applications of Python
in the MRP, upcoming endeavors will revolve around the empirical incorporation of
Python-based MRP solutions (referred to as MRP.py) into Enterprise Resource Planning
(ERP) systems utilized by small and medium-sized enterprises. This integration aims to
establish seamless real-time data synchronization between the Python and ERP systems,
culminating in precise MRP computations and elevated decision-making processes. By
bridging the divide between Python programming and MRP automation, this article not
only underscores the effectiveness of Python code in the MRP but also paves the way for
future innovations in harmonizing the MRP.py with the ERP systems. This progress lays
the foundation for a more efficient and accurate management of the supply chain.

Funding: This research received no external funding.

Data Availability Statement: All data is contained in the article.

Conflicts of Interest: The author declares no conflict of interest.



Logistics 2023, 7, 91 18 of 19

References
1. Nandhakumar, S.; Thirumalai, R.; Viswaaswaran, J.; Senthil, T.; Vishnuvardhan, V. Investigation of Production Costs in Manufac-

turing Environment Using Innovative Tools. Mater. Today Proc. 2021, 37, 1235–1238. [CrossRef]
2. Babatunde, O.; Demola, L. (Eds.) Varying Lot-Sizing Models for Optimum Quantity-Determination in Material Requirement Planning

System; IAENG: London, UK, 2018.
3. Rozario, D. Can Machine Learning Optimize the Efficiency of the Operating Room in the Era of COVID-19? Can. J. Surg. 2020, 63,

E527–E529. [CrossRef] [PubMed]
4. Wiegers, K.E.; Beatty, J. Software Requirements; Pearson Education: Redmond, WA, USA, 2013; ISBN 978-0-7356-7962-7.
5. Vial, G.; Cameron, A.-F.; Giannelia, T.; Jiang, J. Managing Artificial Intelligence Projects: Key Insights from an AI Consulting Firm.

Inf. Syst. J. 2023, 33, 669–691. [CrossRef]
6. Martelli, A.; Ravenscroft, A.M.; Holden, S.; McGuire, P. Python in a Nutshell; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2023;

ISBN 978-1-09-811351-3.
7. Rajamani, S.K.; Iyer, R.S. Machine Learning-Based Mobile Applications Using Python and Scikit-Learn. In Designing and

Developing Innovative Mobile Applications; IGI Global: Hershey, PA, USA, 2023; pp. 282–306. ISBN 978-1-66848-582-8.
8. Stevenson, W.J. Operations Management, 13th ed.; The McGraw-Hill series in operations and decision sciences; McGraw-Hill

Education: New York, NY, USA, 2018; ISBN 978-1-259-66747-3.
9. Luo, D.; Thevenin, S.; Dolgui, A. A State-of-the-Art on Production Planning in Industry 4.0. Int. J. Prod. Res. 2023, 61, 6602–6632.

[CrossRef]
10. Kashkoush, M.; ElMaraghy, H. Product Family Formation by Matching Bill-of-Materials Trees. CIRP J. Manuf. Sci. Technol. 2016,

12, 1–13. [CrossRef]
11. Hasanudin, M.; Andwiyan, D.; Yuliana, K.; Tarmizi, R.; Haris; Nugroho, A. E-SCM Based on Material Inventory Management

Uses the Material Requirements Planning Method. J. Phys. Conf. Ser. 2020, 1477, 052006. [CrossRef]
12. Tobon-Valencia, E.; Lamouri, S.; Pellerin, R.; Moeuf, A. Modeling of the Master Production Schedule for the Digital Transition of

Manufacturing SMEs in the Context of Industry 4.0. Sustainability 2022, 14, 12562. [CrossRef]
13. Heizer, J.; Render, B.; Munson, C. Operations Management: Sustainability and Supply Chain Management, 12th ed.; Pearson: Boston,

MA, USA, 2017; ISBN 978-0-13-413042-2.
14. Magad, E.L.; Amos, J.M. The Impact of Material Requirements Planning and Distribution Requirements Planning on Materials

Management. In Total Materials Management; Springer: Boston, MA, USA, 1989; pp. 188–221. ISBN 978-1-4684-6568-6.
15. Bowers, M.R.; Camm, J.D.; Chakraborty, G. The Evolution of Analytics and Implications for Industry and Academic Programs.

Interfaces 2018, 48, 487–499. [CrossRef]
16. Mehta, B.S.; Awasthi, I.C. Industry 4.0 and Future of Work in India. FIIB Bus. Rev. 2019, 8, 9–16. [CrossRef]
17. Kumar, A.; Shrivastav, S.K.; Oberoi, S.S. Application of Analytics in Supply Chain Management from Industry and Academic

Perspective. FIIB Bus. Rev. 2021, 231971452110280. [CrossRef]
18. Rana, R.L.; Adamashvili, N.; Tricase, C. The Impact of Blockchain Technology Adoption on Tourism Industry: A Systematic

Literature Review. Sustainability 2022, 14, 7383. [CrossRef]
19. Christofi, M.; Vrontis, D.; Thrassou, A.; Shams, S.M.R. Triggering Technological Innovation through Cross-Border Mergers and

Acquisitions: A Micro-Foundational Perspective. Technol. Forecast. Soc. Chang. 2019, 146, 148–166. [CrossRef]
20. Python Welcome to Python.Org. Available online: https://www.python.org/ (accessed on 29 October 2023).
21. Mills, A.; Durepos, G.; Wiebe, E. Encyclopedia of Case Study Research; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2010;

ISBN 978-1-4129-5670-3.
22. Rocco, T.S.; Plakhotnik, M.S. Literature Reviews, Conceptual Frameworks, and Theoretical Frameworks: Terms, Functions, and

Distinctions. Hum. Resour. Dev. Rev. 2009, 8, 120–130. [CrossRef]
23. Mohamed, K.S. IoT Physical Layer: Sensors, Actuators, Controllers and Programming. In The Era of Internet of Things: Towards a

Smart World; Mohamed, K.S., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 21–47. ISBN 978-3-030-18133-8.
24. Team, T.P.D. Pandas: Powerful Data Structures for Data Analysis, Time Series, and Statistics. Available online: https://pypi.org/

project/pandas/ (accessed on 27 August 2023).
25. McKinney, W. Pandas: A Foundational Python Library for Data Analysis and Statistics. Python High Perform. Sci. Comput. 2011,

14, 1–9.
26. Pajankar, A.; Joshi, A. Introduction to Pandas. In Hands-on Machine Learning with Python; Apress: Berkeley, CA, USA, 2022;

pp. 45–61. ISBN 978-1-4842-7920-5.
27. Mishra, V.K.; Sebastian, S.; Iqbal, M.; Anand, Y. Dealing with Missing Values in a Relation Dataset Using the DROPNA Function

in Python. In Mathematics and Computer Science Volume 1; Ghosh, S., Niranjanamurthy, M., Deyasi, K., Mallik, B.B., Das, S., Eds.;
Wiley: Hoboken, NJ, USA, 2023; pp. 463–470. ISBN 978-1-119-87967-1.

28. Mumtaz, R.; Amin, A.; Khan, M.A.; Asif, M.D.A.; Anwar, Z.; Bashir, M.J. Impact of Green Energy Transportation Systems on
Urban Air Quality: A Predictive Analysis Using Spatiotemporal Deep Learning Techniques. Energies 2023, 16, 6087. [CrossRef]

29. Team, T.P.D. Pandas.DataFrame.Astype—Pandas 2.0.3 Documentation. Available online: https://pandas.pydata.org/docs/
reference/api/pandas.DataFrame.astype.html (accessed on 27 August 2023).

30. Chelliah, B.J.; Latchoumi, T.P.; Senthilselvi, A. Analysis of Demand Forecasting of Agriculture Using Machine Learning Algorithm.
Environ. Dev. Sustain. 2022, 1–17. [CrossRef]

https://doi.org/10.1016/j.matpr.2020.06.433
https://doi.org/10.1503/cjs.016520
https://www.ncbi.nlm.nih.gov/pubmed/33180692
https://doi.org/10.1111/isj.12420
https://doi.org/10.1080/00207543.2022.2122622
https://doi.org/10.1016/j.cirpj.2015.09.004
https://doi.org/10.1088/1742-6596/1477/5/052006
https://doi.org/10.3390/su141912562
https://doi.org/10.1287/inte.2018.0955
https://doi.org/10.1177/2319714519830489
https://doi.org/10.1177/23197145211028041
https://doi.org/10.3390/su14127383
https://doi.org/10.1016/j.techfore.2019.05.026
https://www.python.org/
https://doi.org/10.1177/1534484309332617
https://pypi.org/project/pandas/
https://pypi.org/project/pandas/
https://doi.org/10.3390/en16166087
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.astype.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.astype.html
https://doi.org/10.1007/s10668-022-02783-9


Logistics 2023, 7, 91 19 of 19

31. Duhem, L.; Benali, M.; Martin, G. Parametrization of a Demand-Driven Operating Model Using Reinforcement Learning. Comput.
Ind. 2023, 147, 103874. [CrossRef]

32. Phoon, K.-K.; Zhang, W. Future of Machine Learning in Geotechnics. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2023, 17,
7–22. [CrossRef]

33. Khan, M.A.; Saqib, S.; Alyas, T.; Ur Rehman, A.; Saeed, Y.; Zeb, A.; Zareei, M.; Mohamed, E.M. Effective Demand Forecasting
Model Using Business Intelligence Empowered with Machine Learning. IEEE Access 2020, 8, 116013–116023. [CrossRef]

34. Elbegzaya, T. Application AI in Traditional Supply Chain Management Decision-Making. Available online: http://dspace.unive.
it/handle/10579/17733 (accessed on 1 November 2023).

35. Caro, F.; Gallien, J.; Díaz, M.; García, J.; Corredoira, J.M.; Montes, M.; Ramos, J.A.; Correa, J. Zara Uses Operations Research to
Reengineer Its Global Distribution Process. Interfaces 2010, 40, 71–84. [CrossRef]

36. Caro, F.; Gallien, J. Inventory Management of a Fast-Fashion Retail Network. Oper. Res. 2010, 58, 257–273. [CrossRef]
37. Siegwart, R. PyBOM. Available online: https://github.com/robsiegwart/python-BOM (accessed on 29 August 2023).
38. Prajogo, D.; Olhager, J. Supply Chain Integration and Performance: The Effects of Long-Term Relationships, Information

Technology and Sharing, and Logistics Integration. Int. J. Prod. Econ. 2012, 135, 514–522. [CrossRef]
39. Klapita, V. Implementation of Electronic Data Interchange as a Method of Communication Between Customers and Transport

Company. Transp. Res. Procedia 2021, 53, 174–179. [CrossRef]
40. Scala, S.; McGrath, R. Advantages and Disadvantages of Electronic Data Interchange an Industry Perspective. Inf. Manag. 1993,

25, 85–91. [CrossRef]
41. Basole, R.C. Accelerating Digital Transformation: Visual Insights from the API Ecosystem. IT Prof. 2016, 18, 20–25. [CrossRef]
42. Matplotlib, T. Matplotlib—Visualization with Python. Available online: https://matplotlib.org/ (accessed on 31 August 2023).
43. Plotly, T. Plotly: Low-Code Data App Development. Available online: https://plotly.com/ (accessed on 31 August 2023).
44. Lee, Z.; Lee, J. An ERP Implementation Case Study from a Knowledge Transfer Perspective. In Second-Wave Enterprise Resource

Planning Systems; Shanks, G., Seddon, P.B., Willcocks, L.P., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 335–350.
ISBN 978-0-521-81902-2.

45. Gupta, M.; Kohli, A. Enterprise Resource Planning Systems and Its Implications for Operations Function. Technovation 2006, 26,
687–696. [CrossRef]

46. Harjunkoski, I.; Maravelias, C.T.; Bongers, P.; Castro, P.M.; Engell, S.; Grossmann, I.E.; Hooker, J.; Méndez, C.; Sand, G.; Wassick, J.
Scope for Industrial Applications of Production Scheduling Models and Solution Methods. Comput. Chem. Eng. 2014, 62, 161–193.
[CrossRef]

47. Parthasarathy, S.; Daneva, M. Customer Requirements Based ERP Customization Using AHP Technique. Bus. Process Manag. J.
2014, 20, 730–751. [CrossRef]

48. Esteso, A.; Peidro, D.; Mula, J.; Díaz-Madroñero, M. Reinforcement Learning Applied to Production Planning and Control. Int. J.
Prod. Res. 2023, 61, 5772–5789. [CrossRef]

49. SA, O. Openerp-Mrp: MRP. 2014. Available online: https://pypi.org/project/openerp-mrp/ (accessed on 27 August 2023).
50. Ganesh, A.; Shanil, K.N.; Sunitha, C.; Midhundas, A.M. OpenERP/Odoo—An Open Source Concept to ERP Solution. In

Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February
2016; IEEE: Bhimavaram, India, 2016; pp. 112–116.

51. Jay.devs Top 30 Companies That Use Python for Success and Profit. Available online: https://jaydevs.com/top-companies-that-
use-python/ (accessed on 1 September 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.compind.2023.103874
https://doi.org/10.1080/17499518.2022.2087884
https://doi.org/10.1109/ACCESS.2020.3003790
http://dspace.unive.it/handle/10579/17733
http://dspace.unive.it/handle/10579/17733
https://doi.org/10.1287/inte.1090.0472
https://doi.org/10.1287/opre.1090.0698
https://github.com/robsiegwart/python-BOM
https://doi.org/10.1016/j.ijpe.2011.09.001
https://doi.org/10.1016/j.trpro.2021.02.023
https://doi.org/10.1016/0378-7206(93)90050-4
https://doi.org/10.1109/MITP.2016.105
https://matplotlib.org/
https://plotly.com/
https://doi.org/10.1016/j.technovation.2004.10.005
https://doi.org/10.1016/j.compchemeng.2013.12.001
https://doi.org/10.1108/BPMJ-04-2013-0044
https://doi.org/10.1080/00207543.2022.2104180
https://pypi.org/project/openerp-mrp/
https://jaydevs.com/top-companies-that-use-python/
https://jaydevs.com/top-companies-that-use-python/

	Introduction 
	Literature Review 
	Fundamentals of Material Requirement Planning 
	Integrating Python’s Capability with MRP Tasks 

	Materials and Methods 
	Results 
	Uncover the Potential Applications of Python in Streamlining MRP Operations 
	Data Aggregation 
	Demand Prediction 
	Inventory Optimization 
	BOM Oversight 
	MRP Processing 
	Vendor Collaboration 
	Visual Insights and Reporting 
	ERP Fusion 

	Conceptual Framework 
	Laying down the Foundations for Integrating MRP.py into Existing ERP Systems 
	Preliminary Empirical Validation–Practical Examples from Real-Life (Business Cases) 
	Summary 

	Conclusions 
	Theoretical Contributions 
	Managerial Contributions 
	Research Limitations 
	Future Endeavours 

	References

