Demographic Scenarios of Future Environmental Footprints of Healthy Diets in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Forecasting China’s Population Structure toward 2100
2.2. Food Systems Environmental Footprint
2.3. Deriving Food Consumption Data from Dietary Guidelines
2.4. Environmental Footprints of Age-Gender Specified Food Consumption
3. Results
3.1. Future Population Size and Structure in China until 2100
3.2. Age-Gender Specified Food Pattern of the Chinese Population
3.3. Environmental Footprints of Age-Gender Specified Dietaries
3.4. Environmental Footprints for Food Consumption of Chinese Population toward 2100
4. Discussion
4.1. Linking the Food System and Its Environmental Footprints
4.2. Adopting Age-Gender Specified Food Requirements and Population Scenarios
4.3. Main Contributions and Policy Recommendations
4.4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. 2015. Available online: https://www.un.org (accessed on 17 January 2020).
- World Economic Forum. 2016. Available online: https://www.weforum.org (accessed on 15 January 2020).
- China State Council. 1996. Available online: http://www.gov.cn (accessed on 12 November 2019).
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Whitmee, S.; Haines, A.; Beyrer, C.; Boltz, F.; Capon, A.G.; Dias, B.F.D.S.; Ezeh, A.; Frumkin, H.; Gong, P.; Head, P.; et al. Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet 2015, 386, 1973–2028. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. In Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge Town, UK, 2015.
- Song, G.; Li, M.; Fullana-I-Palmer, P.; Williamson, D.; Wang, Y. Dietary changes to mitigate climate change and benefit public health in China. Sci. Total. Environ. 2017, 577, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Gao, X.; Fullana-I-Palmer, P.; Lv, D.; Zhu, Z.; Wang, Y.; Bayer, L.B. Shift from feeding to sustainably nourishing urban China: A crossing-disciplinary methodology for global environment-food-health nexus. Sci. Total. Environ. 2019, 647, 716–724. [Google Scholar] [CrossRef]
- Behrens, P.; Jong, J.C.K.-D.; Bosker, T.; Rodrigues, J.F.D.; De Koning, A.; Tukker, A. Evaluating the environmental impacts of dietary recommendations. Proc. Natl. Acad. Sci. USA 2017, 114, 13412–13417. [Google Scholar] [CrossRef]
- Hong, Y. Research on the Impact of Universal Two-Child Policy on China’s Population Structure. J. Ezhou Univ. 2019, 26, 19–24. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Fu, F. Ecological Footprint and Water Footprint of Food Consumption in Beijing. Res. Sci. 2011, 33, 1145–1152. [Google Scholar]
- Behrens, J.H.; Barcellos, M.N.; Frewer, L.J.; Nunes, T.; Franco, B.D.G.M.; Destro, M.T.; Landgraf, M. Consumer purchase habits and views on food safety: A Brazilian study. Food Control. 2010, 21, 963–969. [Google Scholar] [CrossRef]
- Kumar, M.D.; Sivamohan, M.V.K.; Narayanamoorthy, A. The food security challenge of the food-land-water nexus in India. Food Secur. 2012, 4, 539e–556e. [Google Scholar] [CrossRef]
- FAO. Food Balances of China from 1961 to 2017. Available online: http://www.fao.org/faostat/en/#data/FBSH (accessed on 5 March 2020).
- Yang, G.; Wang, Y.; Zeng, Y.; Gao, G.F.; Liang, X.; Zhou, M.; Wan, X.; Yu, S.; Jiang, Y.; Naghavi, M.; et al. Rapid health transition in China, 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2013, 381, 1987–2015. [Google Scholar] [CrossRef]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A. Consumptive water footprint and virtual water trade scenarios for China — With a focus on crop production, consumption and trade. Environ. Int. 2016, 94, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Savenije, H.H.G. Food consumption patterns and their effect on water requirement in China. Hydrol. Earth Syst. Sci. Discuss. 2008, 5, 27e–50e. [Google Scholar] [CrossRef]
- Springmann, M.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow. Environmental Issues and Options; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2006. [Google Scholar]
- Tubiello, F.N.; Salvatore, M.; Cóndor Golec, R.D.; Ferrara, A.; Rossi, S.; Biancalani, R.; Federici, S.; Jacobs, H.; Flammini, A. Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks: 1990–2011 Analysis; FAO Statistics Division: Rome, Italy, 2014. [Google Scholar]
- Raney, T.; Steinfeld, H.; Skoet, J. The state of food and agriculture 2009: Livestock in the balance. FAO Agric. 2009, 79, 572e–574e. [Google Scholar]
- Li, G.; Zhao, Y.; Cui, S. Effects of urbanization on arable land requirements in China, based on food consumption patterns. Food Secur. 2013, 5, 439–449. [Google Scholar] [CrossRef]
- Cao, Y.; Chai, L.; Yan, X.; Liang, Y. Drivers of the Growing Water, Carbon and Ecological Footprints of the Chinese Diet from 1961 to 2017. Int. J. Environ. Res. Public Health 2020, 17, 1803. [Google Scholar] [CrossRef]
- Chinese Nutrition Society. 2016. Available online: https://www.cnsoc.org (accessed on 11 January 2020).
- He, P.; Baiocchi, G.; Hubacek, K.; Feng, K.; Yu, Y. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nat. Sustain. 2018, 1, 122–127. [Google Scholar] [CrossRef]
- González-García, S.; Esteve-Llorens, X.; Moreira, M.T.; Feijoo, G. Carbon footprint and nutritional quality of different human dietary choices. Sci. Total. Environ. 2018, 644, 77–94. [Google Scholar] [CrossRef]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects 2015. Available online: https://esa.un.org/unpd/wpp/Download/Standard/Population/ (accessed on 5 January 2020).
- National Health and Family Planning Commission of PRC. 2016. Available online: http://www.nhfpc.gov.c (accessed on 7 January 2020).
- National Development and Reform Commission of China. 2015. Available online: https://www.ndrc.gov.cn (accessed on 7 January 2020).
- United Nations Development Programme. 2020. Available online: https://www.undp.org (accessed on 6 January 2020).
- Zhai, Z.; Li, L.; Chen, J.; Chen, W. Application of population prediction in PADIS-INT software—Comparative analysis of MORTPAK, Spectrum and PADIS-INT. Pop. Res. 2017, 41, 84–97. [Google Scholar]
- Zhou, W. Forecasting China’s Population Trend in the Next 30 Years under the Comprehensive Two-Child Policy. Stat. Decis. 2018, 34, 109–112. [Google Scholar]
- Li, X.; Xu, Y.; Wu, X. Prediction of the Impact of the ‘Selective Two-child Policy’ on the Natural Changes in China’s Population. Econom. Manag. Rev. 2014, 5, 47–53. [Google Scholar]
- Zhai, Z.; Zhang, X.; Jin, Y. Demographic Consequences Analysis of the Immediate Release of Two-child Policy. Demograph. Res. 2014, 38, 3–17. [Google Scholar]
- National Bureau of Statistics of China. Available online: http://www.stats.gov.cn/tjsj/ndsj/ (accessed on 10 January 2020).
- Liu, Y.; Wu, S.; Wu, X. Analysis of the impact of universal two-child policy on population structure based on Leslie model. Software 2017, 38, 145–150. [Google Scholar] [CrossRef]
- Keyfitz, N. A Life Table That Agrees with the Data. J. Am. Stat. Assoc. 1966, 61, 305–312. [Google Scholar] [CrossRef]
- Andreev, E.M.; Kingkade, W.W. Average Age at Death in Infancy and Infant Mortality Level: Reconsidering the Coale-Demeny Formulas at Current Levels of Low Mortality. Demograph. Res. 2015, 33, 363–390. [Google Scholar] [CrossRef]
- The Sixth National Census, National Bureau of Statistics of China. Available online: http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm (accessed on 21 January 2020).
- Wang, Q. A Study on the Cyclical Fluctuation of Sex Ratio at Birth. J. Demograph. 2012, 3, 3–5. [Google Scholar]
- DFEP. The Literature Database of Reviewed LCA Studies on Foods. 2013. Available online: http://www.barillacfn.com/wpcontent/uploads/2013/05/BCFN_DATABASE_FOR_DOUBLE_PYRAMID_2012.zip (accessed on 21 January 2020).
- Chapagain, A.K.; Hoekstra, A.Y. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecolog. Econom. 2011, 70, 749–758. [Google Scholar] [CrossRef]
- Hess, T.; Andersson, U.; Mena, C.; Williams, A. The impact of healthier dietary scenarios on the global blue water scarcity footprint of food consumption in the UK. Food Policy 2015, 50, 1–10. [Google Scholar] [CrossRef]
- Liao, X.; Chai, L.; Xu, X.; Lu, Q.; Ji, J. “Grey water footprint and interprovincial virtual grey water transfers for China’s final electricity demands”. J. Clean. Product. 2019, 227, 111–118. [Google Scholar] [CrossRef]
- Galli, A.; Wiedmann, T.; Ercin, U.; Knoblauch, U.; Edwin, B.; Giljum, S. “Integrating Ecological, Carbon and Water footprint into a ‘Footprint Family’ of indicators: Definition and role in tracking human pressure on the planet”. Ecolog. Indicat. 2012, 16, 100–112. [Google Scholar] [CrossRef]
- Kyoto Protocol. 1997. Available online: https://unfccc.int/kyoto_protocol (accessed on 2 February 2020).
- Wackernagel, M.; Schulz, N.B.; Deumling, D.; Linares, A.C.; Jenkins, M.; Kapos, V.; Mo nfreda, C.; Loh, J.; Myers, N.; Norgaard, R.; et al. Tracking the ecological overshoot of the human economy. Proceed. Nat. Acad. Sci. USA 2012, 14, 9266–9271. [Google Scholar] [CrossRef]
- The Chinese Dietary Guidelines. 2016. Available online: https://www.cnsoc.org. (accessed on 2 February 2020).
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; Willett, W. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Beletshachew, S.; Verrill, L.; Booth, H.; Shelley, M.; Zansky, D.M.; Norton, S.C.; Heneo, O.L. Sex-Based Differences in Food Consumption: Foodborne Diseases Active Surveillance Network (FoodNet) Population Survey 2006–2007. Clin. Infect. Dis. 2012, 54 (Suppl. 5), S453–S457. [Google Scholar] [CrossRef]
- Zhang, W.; Li, M. “Navigating the Chinese Agricultural Economy through the Lens of Iowa”. Ag. Decis. Mak. 2018, 22, 1–6. [Google Scholar]
- Larrea-Gallegos, G.; Vázquez-Rowe, I. Optimization of the environmental performance of food diets in Peru combining linear programming and life cycle methods. Sci. Total Environ. 2020, 699, 134231. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Reay, D.S.; Higgins, P. The impact of global dietary guidelines on climate change. Glob. Environ. Chang. 2018, 49, 46–55. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Kahhat, R.; Larrea-Gallegos, G.; Ziegler-Rodriguez, K. Peru’s road to climate action: Are we on the right path? The role of life cyclemethods to improve Peruvian national contributions. Sci. Total Environ. 2019, 659, 249–266. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, K.; Lal, R. Environmental Impact of Organic Agriculture. Adv. Agron. 2016, 139, 99–152. [Google Scholar] [CrossRef]
- Zeng, Y.; Hesketh, T. The effects of China’s universal two-child policy. Lancet 2016, 388, 1930–1938. [Google Scholar] [CrossRef]
- Garnett, T. Livestock-related greenhouse gas emissions: Impacts and options for policy makers. Environ. Sci. Policy 2009, 12, 491–503. [Google Scholar] [CrossRef]
- Sarti, M.; John, S.K.S. Raising Long-Term Awareness: EU Environmental Policy and Education. In Education and Public Policy in the European Union; Springer: Cham, Switzerland, 2019; pp. 165–181. [Google Scholar]
- Chai, L.; Han, Z.; Liang, Y.; Su, Y.; Huang, G. Understanding the blue water footprint of households in China from a perspective of consumption expenditure. J. Clean. Prod. 2020, 262, 121321. [Google Scholar] [CrossRef]
- Aldaco, R.; Hoehn, D.; Margallo, M.; Aldaco, R.; Bala, A.; Batlle-Bayer, L.; Fullana-I-Palmer, P.; Vazquez-Rowe, I.; Gonzalez, M.; Durá, M.; et al. On the estimation of potential food waste reduction to support sustainable production and consumption policies. Food Policy 2018, 80, 24–38. [Google Scholar] [CrossRef]
- Chai, B.C.; Van Der Voort, J.R.; Grofelnik, K.; Eliasdottir, H.G.; Klöss, I.; Perez-Cueto, F. Which Diet has the Least Environmental Impact on our Planet? A Systematic Review of Vegan, Vegetarian and Omnivorous Diets. Sustainability 2019, 11, 4110. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; Declerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
Parameters | 2018 | 2030 | 2100 | |
---|---|---|---|---|
Total fertility rate | Scenario 1 | 1.637 | 1.500 | 1.500 |
Scenario 2 | 1.637 | 1.800 | 1.600 | |
Scenario 3 | 1.637 | 2.000 | 2.000 | |
Life expectancy | Male | 74.6 | 82.46 | 82.46 |
Female | 77.6 | 85.38 | 85.38 | |
Death patterns | Coale-Demeny mortality table | |||
Sex ratio | 118. 06 | 107.00 | 107.00 |
Food Item | WFC (m3kg−1) | CFC (kg CO2ekg−1) | EFC (gm2kg−1) |
---|---|---|---|
wheat | 1.62 | 0.94 | 10.63 |
rice | 1.50 | 2.51 | 7.80 |
maize | 1.05 | 0.66 | 7.50 |
other cereals | 1.50 | 1.33 | 8.76 |
tubers | 0.56 | 0.18 | 3.00 |
other legumes | 2.44 | 1.00 | 21.50 |
soybean products | 2.44 | 1.00 | 21.50 |
nuts | 2.44 | 1.00 | 21.50 |
vegetables | 0.27 | 0.93 | 2.10 |
fruits | 1.05 | 0.67 | 4.05 |
dairy | 2.32 | 1.43 | 30.00 |
eggs | 3.28 | 3.23 | 14.41 |
beef | 15.41 | 21.36 | 112.63 |
lamb | 5.26 | 10.44 | 76.00 |
pork | 5.99 | 4.19 | 24.58 |
poultry | 4.33 | 3.41 | 24.50 |
aquatic products | 1.63 | 3.85 | 78.25 |
cooking oils | 6.25 | 2.97 | 43.97 |
sugars | 0.52 | 1.35 | 4.57 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, A.; Chai, L.; Liao, X. Demographic Scenarios of Future Environmental Footprints of Healthy Diets in China. Foods 2020, 9, 1021. https://doi.org/10.3390/foods9081021
Han A, Chai L, Liao X. Demographic Scenarios of Future Environmental Footprints of Healthy Diets in China. Foods. 2020; 9(8):1021. https://doi.org/10.3390/foods9081021
Chicago/Turabian StyleHan, Aixi, Li Chai, and Xiawei Liao. 2020. "Demographic Scenarios of Future Environmental Footprints of Healthy Diets in China" Foods 9, no. 8: 1021. https://doi.org/10.3390/foods9081021
APA StyleHan, A., Chai, L., & Liao, X. (2020). Demographic Scenarios of Future Environmental Footprints of Healthy Diets in China. Foods, 9(8), 1021. https://doi.org/10.3390/foods9081021