Amylose-Lipid Complex as a Fat Replacement in the Preparation of Low-Fat White Pan Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of the Amylose-Lipid Complex (ALC)
2.3. Complexing Index (CI) of the Amylose-Lipid Complexes
2.4. Separation of the Amylose-Lipid Complexes
2.5. X-Ray Diffraction (XRD)
2.6. In Vitro Starch Digestibility
SDS (%) = (G120 − G20) × 0.9/TG
RS (%) = [TG − (RDS + SDS)]/TG.
2.7. Preparing White Pan Bread with the Amylose-Lipid Complexes
2.8. Proximate Analysis and Physical Properties of Bread
2.9. Differential Scanning Calorimetry (DSC)
2.10. Statistical Analysis
3. Results
3.1. Complexing Index of the Starch-Lipid Complexes
3.2. X-Ray Diffraction of the Amylose-Lipid Complexes
3.3. Thermal Properties of the Amylose-Lipid Complexes
3.4. In Vitro Digestibility of the Amylose-Lipid Complexes
3.5. Characteristics of Bread Prepared with the Amylose-Lipid Complexes
3.6. Starch Retrogradation in Bread during Storage
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gray, J.; Bemiller, J. Bread staling: Molecular basis and control. Compr. Rev. Food Sci. Food Saf. 2003, 2, 1–21. [Google Scholar] [CrossRef]
- Mert, B.; Demirkesen, I. Evaluation of highly unsaturated oleogels as shortening replacer in a short dough product. LWT Food Sci. Technol. 2016, 68, 477–484. [Google Scholar] [CrossRef]
- Chin, N.L.; Rahman, R.A.; Hashim, D.M.; Kowng, S.Y. Palm oil shortening effects on baking performance of white bread. J. Food Process Eng. 2010, 33, 413–433. [Google Scholar] [CrossRef]
- Tamstorf, S.; Jonsson, T.; Krog, N. Role of fats and emulsifiers in baked products. In Proceedings of the Chemistry and Physics of Baking: Materials, Processes, and Products, Sutton Bonington, UK, 10–12 April 1985; Blanshard, J.M.V., Frazier, P.J., Galliard, T., Eds.; Royal Society of Chemistry: London, UK, 1986. [Google Scholar]
- Desai, G.N.; Bodor, J. Reduced Fat Shortening Substitute for Bakery Products. U.S. Patent 5,360,627, 1 November 1994. [Google Scholar]
- Jang, A.; Bae, W.; Hwang, H.-S.; Lee, H.G.; Lee, S. Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food Chem. 2015, 187, 525–529. [Google Scholar] [CrossRef]
- Tardy, A.-L.; Morio, B.; Chardigny, J.-M.; Malpuech-Brugere, C. Ruminant and industrial sources of trans-fat and cardiovascular and diabetic diseases. Nutr. Res. Rev. 2011, 24, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Charlton, O.; Sawyer-Morse, M.K. Effect of fat replacement on sensory attributes of chocolate chip cookies. J. Acad. Nutr. Diet. 1996, 96, 1288–1290. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.; Inglett, G.E. Effect of shortening replacement with oatrim on the physical and rheological properties of cakes. Cereal Chem. 2005, 82, 120–124. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lim, J.; Lee, J.; Hwang, H.S.; Lee, S. Utilization of oleogels as a replacement for solid fat in aerated baked goods: Physicochemical, rheological, and tomographic characterization. J. Food Sci. 2017, 82, 445–452. [Google Scholar] [CrossRef]
- Hahn, N.I. Replacing Fat With Food Technology. J. Am. Diet. Assoc. 1997, 97, 15–16. [Google Scholar] [CrossRef]
- Wu, B.-C.; Degner, B.; McClements, D.J. Creation of reduced fat foods: Influence of calcium-induced droplet aggregation on microstructure and rheology of mixed food dispersions. Food Chem. 2013, 141, 3393–3401. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.I. Advances in the design and production of reduced-fat and reduced-cholesterol salad dressing and mayonnaise: A review. Food Bioprocess Technol. 2013, 6, 648–670. [Google Scholar] [CrossRef]
- Rangrej, V.; Shah, V.; Patel, J.; Ganorkar, P. Effect of shortening replacement with flaxseed oil on physical, sensory, fatty acid and storage characteristics of cookies. J. Food Sci. Technol. 2015, 52, 3694–3700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanti, R.; Barbut, S.; Marangoni, A.G. Hydroxypropyl methylcellulose and methylcellulose structured oil as a replacement for shortening in sandwich cookie creams. Food Hydrocoll. 2016, 61, 329–337. [Google Scholar] [CrossRef]
- Godet, M.; Buleon, A.; Tran, V.; Colonna, P. Structural features of fatty acid-amylose complexes. Carbohydr. Polym. 1993, 21, 91–95. [Google Scholar] [CrossRef]
- Reddy, C.K.; Choi, S.M.; Lee, D.J.; Lim, S.T. Complex formation between starch and stearic acid: Effect of enzymatic debranching for starch. Food Chem. 2018, 244, 136–142. [Google Scholar] [CrossRef]
- Fanta, G.; Felker, F.; Eskins, K.; Baker, F. Aqueous starch–oil dispersions prepared by steam jet cooking. Starch films at the oil–water interface. Carbohydr. Polym. 1999, 39, 25–35. [Google Scholar] [CrossRef]
- Seo, T.-R.; Kim, J.-Y.; Lim, S.-T. Preparation and characterization of crystalline complexes between amylose and C18 fatty acids. LWT Food Sci. Technol. 2015, 64, 889–897. [Google Scholar] [CrossRef]
- Obiro, W.C.; Sinha Ray, S.; Emmambux, M.N. V-amylose structural characteristics, methods of preparation, significance, and potential applications. Food Rev. Int. 2012, 28, 412–438. [Google Scholar] [CrossRef] [Green Version]
- Hasjim, J.; Lee, S.O.; Hendrich, S.; Setiawan, S.; Ai, Y.; Jane, J.L. Characterization of a novel resistant-starch and its effects on postprandial plasma-glucose and insulin responses. Cereal Chem. 2010, 87, 257–262. [Google Scholar] [CrossRef]
- Mariscal-Moreno, R.M.; Figueroa-Cárdenas, J.d.D.; Santiago-Ramos, D.; Rayas-Duarte, P. Amylose lipid complexes formation as an alternative to reduce amylopectin retrogradation and staling of stored tortillas. Int. J. Food Sci. Tehcnol. 2019, 54, 1651–1657. [Google Scholar] [CrossRef]
- Chang, F.; He, X.; Huang, Q. The physicochemical properties of swelled maize starch granules complexed with lauric acid. Food Hydrocoll. 2013, 32, 365–372. [Google Scholar] [CrossRef]
- Kaur, K.; Singh, N. Amylose-lipid complex formation during cooking of rice flour. Food Chem. 2000, 71, 511–517. [Google Scholar] [CrossRef]
- De Pilli, T.; Jouppila, K.; Ikonen, J.; Kansikas, J.; Derossi, A.; Severini, C. Study on formation of starch–lipid complexes during extrusion-cooking of almond flour. J. Food Eng. 2008, 87, 495–504. [Google Scholar] [CrossRef]
- Englyst, K.N.; Englyst, H.N.; Hudson, G.J.; Cole, T.J.; Cummings, J.H. Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response. Am. J. Clin. Nutr. 1999, 69, 448–454. [Google Scholar] [CrossRef] [PubMed]
- AACCI. AACC methods 10-10.03 (Optimized Straight-Dough Bread-Making Method). In Approved Methods of American Association of Cereal Chemists, 10th ed.; AACCI: St Paul, MN, USA, 2000. [Google Scholar]
- Horwitz, W. Official Methods of Analysis of AOAC International, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Zhang, B.; Huang, Q.; Luo, F.-x.; Fu, X. Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid. Food Hydrocoll. 2012, 28, 174–181. [Google Scholar] [CrossRef]
- Rios, R.V.; Pessanha, M.D.F.; Almeida, P.F.D.; Viana, C.L.; Lannes, S.C.D.S. Application of fats in some food products. Food Sci. Technol. 2014, 34, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Kawai, K.; Takato, S.; Sasaki, T.; Kajiwara, K. Complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch–fatty acid mixtures. Food Hydrocoll. 2012, 27, 228–234. [Google Scholar] [CrossRef]
- Panyoo, A.E.; Emmambux, M.N. Amylose–lipid complex production and potential health benefits: A mini-review. Starch-Stärke 2017, 69, 1600203. [Google Scholar] [CrossRef]
- Liu, H.; Yu, L.; Simon, G.; Dean, K.; Chen, L. Effects of annealing on gelatinization and microstructures of corn starches with different amylose/amylopectin ratios. Carbohydr. Polym. 2009, 77, 662–669. [Google Scholar] [CrossRef]
- Lesmes, U.; Cohen, S.H.; Shener, Y.; Shimoni, E. Effects of long chain fatty acid unsaturation on the structure and controlled release properties of amylose complexes. Food Hydrocoll. 2009, 23, 667–675. [Google Scholar] [CrossRef]
- Zabar, S.; Lesmes, U.; Katz, I.; Shimoni, E.; Bianco-Peled, H. Structural characterization of amylose-long chain fatty acid complexes produced via the acidification method. Food Hydrocoll. 2010, 24, 347–357. [Google Scholar] [CrossRef]
- Hasjim, J.; Ai, Y.; Jane, J.L. Novel applications of amylose-lipid complex as resistant starch type 5. Resist. Starch Sources Appl. Health Benefits 2013, 79–94. [Google Scholar]
- Ai, Y.; Nelson, B.; Birt, D.F.; Jane, J.L. In vitro and in vivo digestion of octenyl succinic starch. Carbohydr. Polym. 2013, 98, 1266–1271. [Google Scholar] [CrossRef]
- Young, T.J.; Crosby, G.A. Bakery Shortening Substitute, Bakery Products Containing the Same, and Preparation Method. U.S. Patent 6,048,564, 11 April 2000. [Google Scholar]
- Kweon, M.; Park, C.; Auh, J.; Cho, B.; Yang, N.; Park, K. Phospholipid hydrolysate and antistaling amylase effects on retrogradation of starch in bread. J. Food Sci. 1994, 59, 1072–1076. [Google Scholar] [CrossRef]
Conditions | Complexing Index (%) | ||
---|---|---|---|
55 °C | 5% * | 30 min | 67.86 ± 0.73 a |
60 min | 71.21 ± 0.08 bc | ||
120 min | 68.87 ± 3.75 ab | ||
65 °C | 5% * | 30 min | 69.25 ± 0.57 ab |
60 min | 75.53 ± 0.25 d | ||
120 min | 72.48 ± 0.43 c | ||
75 °C | 5% * | 30 min | 77.64 ± 1.81 d |
60 min | 84.95 ± 0.06 f | ||
120 min | 81.55 ± 1.46 e |
Conditions | Complexing Index (%) | ||
---|---|---|---|
55 °C | 1% * | 60 min | 22.90 ± 1.66 a |
3% | 60 min | 65.66 ± 0.65 de | |
5% | 60 min | 71.21 ± 0.08 f | |
7% | 60 min | 66.13 ± 0.31 de | |
65 °C | 1% | 60 min | 31.62 ± 1.99 c |
3% | 60 min | 64.69 ± 0.83 d | |
5% | 60 min | 75.53 ± 0.24 h | |
7% | 60 min | 67.46 ± 0.36 e | |
75 °C | 1% | 60 min | 27.96 ± 2.01 b |
3% | 60 min | 73.82 ± 0.63 gh | |
5% | 60 min | 84.95 ± 0.06 i | |
7% | 60 min | 73.44 ± 0.39 g |
Conditions | ALC Peak | ||||
---|---|---|---|---|---|
To (°C) | Tp (°C) | Tc (°C) | ΔH (J/g) | ||
55 °C | 1% | 92.98 ± 0.41 | 100.88 ± 0.28 | 106.33 ± 1.45 | 1.68 ± 0.73 a |
3% | 95.06 ± 3.99 | 102.73 ± 1.17 | 107.76 ± 0.14 | 2.63 ± 0.30 ab | |
5% | 91.30 ± 2.37 | 101.64 ± 0.58 | 107.70 ± 0.93 | 2.24 ± 0.75 ab | |
7% | 94.63 ± 1.31 | 101.92 ± 0.88 | 107.63 ± 0.68 | 2.21 ± 0.50 ab | |
65 °C | 1% | 90.84 ± 3.09 | 100.80 ± 0.33 | 106.29 ± 0.76 | 1.72 ± 0.04 a |
3% | 92.02 ± 1.58 | 101.40 ± 0.10 | 107.22 ± 0.44 | 2.21 ± 0.28 ab | |
5% | 92.76 ± 2.25 | 101.61 ± 0.52 | 107.16 ± 0.78 | 2.15 ± 0.39 ab | |
7% | 94.11 ± 0.76 | 102.07 ± 0.81 | 107.93 ± 0.87 | 2.14 ± 0.75 ab | |
75 °C | 1% | 93.32 ± 1.58 | 101.57 ± 0.41 | 106.98 ± 0.98 | 2.37 ± 0.94 ab |
3% | 92.17 ± 1.51 | 102.12 ± 0.41 | 107.96 ± 0.23 | 3.18 ± 0.51 b | |
5% | 93.76 ± 0.92 | 101.95 ± 0.59 | 107.63 ± 0.13 | 3.97 ± 0.12 b | |
7% | 93.79 ± 0.54 | 102.58 ± 0.43 | 108.29 ± 0.57 | 2.90 ± 0.26 b |
Corn Starch | Amylose-Lipid Complex(ALC) | Polydextrose | |
---|---|---|---|
RDS (%) | 80.2 ± 0.61 c | 76.6 ± 1.66 b | 4.30 ± 0.41 a |
SDS (%) | 5.50 ± 0.38 a | 7.10 ± 1.98 a | 0.50 ± 0.39 b |
RS (%) | 0.30 ± 0.23 a | 1.30 ± 0.09 b | 94.60 ± 0.25 c |
BreadSamples | CrudeProtein (%) | Crude Fat (%) | Ash (%) | Calorie (cal/g) | Specific Volume (mL/g) |
---|---|---|---|---|---|
Control | 9.77 ± 0.04 a | 4.99 ± 0.21 b | 1.06 ± 0.05 a | 4515.20 ± 5.50 c | 6.66 ± 0.11 c |
ALC 50% | 9.80 ± 0.03 a | 3.04 ± 0.21 ab | 1.08 ± 0.07 a | 4338.00 ± 12.21 b | 6.39 ± 0.09 b |
ALC 100% | 9.65 ± 0.13 a | 1.28 ± 0.18 a | 1.03 ± 0.07 a | 4186.25 ± 4.58 a | 5.16 ± 0.03 a |
Peak 1 | Peak 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
To (°C) | Tp (°C) | Tc (°C) | ΔH (J/g) | To (°C) | Tp (°C) | Tc (°C) | ΔH (J/g) | ||
Day 2 | Control | 45.4 ± 0.38 | 53.8 ± 1.13 | 59.5 ± 0.41 | 1.1 ± 0.12 a | 92.8 ± 1.19 | 98.1 ± 0.63 | 102.9 ± 0.29 | 0.3 ± 0.03 a |
ALC 50% | 44.0 ± 2.24 | 53.9 ± 0.87 | 59.6 ± 0.13 | 1.2 ± 0.10 a | 91.0 ± 0.68 | 97.6 ± 0.39 | 103.2 ± 0.68 | 0.6 ± 0.08 b | |
ALC 100% | 48.1 ± 1.68 | 54.5 ± 0.27 | 59.4 ± 0.71 | 1.0 ± 0.28 a | 91.8 ± 0.34 | 98.7 ± 0.34 | 103.5 ± 0.12 | 0.9 ± 0.06 c | |
Day 3 | Control | 45.0 ± 0.81 | 53.9 ± 0.49 | 59.7 ± 0.46 | 1.7 ± 0.17 a | 91.7 ± 0.40 | 97.8 ± 1.09 | 103.3 ± 0.56 | 0.4 ± 0.08 a |
ALC 50% | 45.4 ± 0.23 | 53.5 ± 0.63 | 59.5 ± 0.11 | 1.6 ± 0.19 a | 91.7 ± 1.81 | 98.1 ± 0.74 | 103.1 ± 0.29 | 0.6 ± 0.06 b | |
ALC 100% | 45.7 ± 0.80 | 54.2 ± 0.30 | 59.8 ± 0.61 | 1.5 ± 0.22 a | 92.4 ± 0.44 | 99.0 ± 0.10 | 103.6 ± 0.09 | 0.9 ± 0.08 c | |
Day4 | Control | 45.3 ± 0.27 | 53.7 ± 0.39 | 59.4 ± 0.24 | 1.9 ± 0.05 b | 93.2 ± 2.63 | 97.7 ± 0.43 | 103.3 ± 0.24 | 0.4 ± 0.01 a |
ALC 50% | 45.1 ± 0.03 | 54.1 ± 0.19 | 59.6 ± 0.42 | 1.7 ± 0.06 a | 91.9 ± 0.96 | 97.7 ± 2.33 | 103.4 ± 0.33 | 0.6 ± 0.06 b | |
ALC 100% | 45.5 ± 0.65 | 53.9 ± 0.59 | 59.8 ± 0.06 | 1.7 ± 0.10 a | 92.2 ± 0.42 | 98.6 ± 0.51 | 103.4 ± 0.16 | 0.9 ± 0.03 c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-S.; Kim, K.-H.; Park, S.-H.; Hur, S.-W.; Auh, J.-H. Amylose-Lipid Complex as a Fat Replacement in the Preparation of Low-Fat White Pan Bread. Foods 2020, 9, 194. https://doi.org/10.3390/foods9020194
Lee H-S, Kim K-H, Park S-H, Hur S-W, Auh J-H. Amylose-Lipid Complex as a Fat Replacement in the Preparation of Low-Fat White Pan Bread. Foods. 2020; 9(2):194. https://doi.org/10.3390/foods9020194
Chicago/Turabian StyleLee, Hee-Seon, Kyung-Heon Kim, Sung-Hoon Park, Sung-Won Hur, and Joong-Hyuck Auh. 2020. "Amylose-Lipid Complex as a Fat Replacement in the Preparation of Low-Fat White Pan Bread" Foods 9, no. 2: 194. https://doi.org/10.3390/foods9020194