Innovations in Smart Packaging Concepts for Food: An Extensive Review
Abstract
:1. Introduction
2. Definition and Regulatory Aspects
3. Active Packaging
3.1. Moisture Regulators
3.2. Ethylene Removal Systems
3.2.1. Ethylene Adsorbents
3.2.2. Ethylene Scavenger
3.3. Carbon Dioxide Scavengers
3.4. Antimicrobial Active Packaging
3.4.1. Carbon Dioxide
3.4.2. Ethanol
3.4.3. Preservatives
3.4.4. Inorganic Nanoparticles
3.5. Synthetic Antioxidants and Oxygen Scavengers
3.6. Agents for Active Packaging from Natural Products
3.6.1. Bacteriocins and Enzymes
3.6.2. Phytochemicals
3.6.3. Challenges and Solutions
3.7. Phase Change Materials
4. Intelligent Packaging
4.1. Indicators
4.1.1. Time-Temperature Indicators
4.1.2. Freshness Indicators
4.1.3. Gas Indicators
4.2. Sensors
4.2.1. Chemical Sensors
4.2.2. Electrochemical-Based Sensors
4.2.3. Optical-Based Sensors
4.2.4. Biosensors
4.2.5. Electrochemical-Based Biosensors
4.2.6. Optical-Based Biosensors
4.2.7. Edible Sensors
4.3. Data Carriers
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brody, A.L.; Bugusu, B.; Han, J.H.; Sand, C.K.; McHugh, T.H. Innovative food packaging solutions. J. Food Sci. 2008, 73. [Google Scholar] [CrossRef]
- Ahvenainen, R. Novel Food Packaging Techniques; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Biji, K.B.; Ravishankar, C.N.; Mohan, C.O.; Srinivasa Gopal, T.K. Smart packaging systems for food applications: A review. J. Food Sci. Technol. 2015, 52, 6125–6135. [Google Scholar] [CrossRef] [PubMed]
- Fabech, B.; Hellstrøm, T.; Henrysdotter, G.; Hjulmand-Lassen, M.; Nilsson, J.; Rüdinger, L.; Sipiläinen-Malm, T.; Solli, E.; Svensson, K.; Thorkelsson, Á.E.; et al. Active and Intelligent Food Packaging—A Nordic Report on the Legislative Aspects; TemaNord: Stockholm, Sweden, 2000; ISBN 9289305207. [Google Scholar]
- Han, J.H.; Ho, C.H.L.; Rodrigues, E.T. Intelligent Packaging; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 9780123116321. [Google Scholar]
- Yam, K.L.; Takhistov, P.T.; Miltz, J. Intelligent packaging: Concepts and applications. J. Food Sci. 2005, 70. [Google Scholar] [CrossRef]
- Vanderroost, M.; Ragaert, P.; Devlieghere, F.; De Meulenaer, B. Intelligent food packaging: The next generation. Trends Food Sci. Technol. 2014, 39, 47–62. [Google Scholar] [CrossRef]
- Müller, P.; Schmid, M. Intelligent packaging in the food sector: A brief overview. Foods 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Dainelli, D.; Gontard, N.; Spyropoulos, D.; Zondervan-van den Beuken, E.; Tobback, P. Active and intelligent food packaging: Legal aspects and safety concerns. Trends Food Sci. Technol. 2008, 19, S103–S112. [Google Scholar] [CrossRef]
- European Commission Regulation No. 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into contact with food. Off. J. Eur. Union 2009, 135, 3–11.
- European Commission Regulation No 1935/2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC. Off. J. Eur. Union 2004, 338, 4–17.
- European Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union 2011, 12, 1–89.
- European Commission Regulation (EU) 2016/1416 of 24 August 2016 amending and correcting Regulation (EU) No 10/2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union 2016, 230, 22–42. [CrossRef]
- European Parliament and the Concil of the European Union Regulation (EC) No 1333/2008 of the European Parliament ans of the Council of 16 December 2998 on food additives. Off. J. Eur. Union 2008, 354, 16–33.
- Restuccia, D.; Spizzirri, U.G.; Parisi, O.I.; Cirillo, G.; Curcio, M.; Iemma, F.; Puoci, F.; Vinci, G.; Picci, N. New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control 2010, 21, 1425–1435. [Google Scholar] [CrossRef]
- Dainelli, D. Global Legislation for Active and Intelligent Packaging Materials; Elsevier: Amsterdam, The Netherlands, 2015; Volume 2004, ISBN 978-782420231. [Google Scholar]
- Rulibikiye, A.; Nielsen, C.R. Food packaging law in Canada—Draft. In Global Legislation for Food Packaging Materials; Rijk, R., Veraart, R., Eds.; Wiley-Vch: Weinheim, Germany, 2010; pp. 243–254. ISBN 9783527324682. [Google Scholar]
- Gaikwad, K.K.; Singh, S.; Ajji, A. Moisture absorbers for food packaging applications. Environ. Chem. Lett. 2019, 17, 609–628. [Google Scholar] [CrossRef]
- Bovi, G.G.; Caleb, O.J.; Linke, M.; Rauh, C.; Mahajan, P.V. Transpiration and moisture evolution in packaged fresh horticultural produce and the role of integrated mathematical models: A review. Biosyst. Eng. 2016, 150, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active packaging applications for food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Lin, H.; Zou, L.; Brody, A.L.; Li, Z.; Qazi, I.M.; Pavase, T.R.; Lv, L. A comprehensive review on the application of active packaging technologies to muscle foods. Food Control 2017, 82, 163–178. [Google Scholar] [CrossRef]
- Utto, W.; Mawson, J.; Bronlund, J.E.; Wong, K.K.Y. Active packaging technologies for horticultural produce. Food New Zeal. 2005, 1–12. [Google Scholar]
- López-Rubio, A.; Almenar, E.; Hernandez-Muñoz, P.; Lagarón, J.M.; Catalá, R.; Gavara, R. Overview of active polymer-based packaging technologies for food applications. Food Rev. Int. 2004, 20, 357–387. [Google Scholar] [CrossRef]
- Rux, G.; Mahajan, P.V.; Linke, M.; Pant, A.; Sängerlaub, S.; Caleb, O.J.; Geyer, M. Humidity-regulating trays: Moisture absorption kinetics and applications for fresh produce packaging. Food Bioprocess Technol. 2016, 9, 709–716. [Google Scholar] [CrossRef]
- Ozdemir, M.; Floros, J.D. Active food packaging technologies. Crit. Rev. Food Sci. Nutr. 2004, 44, 185–193. [Google Scholar] [CrossRef]
- Bovi, G.G.; Caleb, O.J.; Klaus, E.; Tintchev, F.; Rauh, C.; Mahajan, P.V. Moisture absorption kinetics of FruitPad for packaging of fresh strawberry. J. Food Eng. 2018, 223, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Gong, T.; Zhang, K.; Lee, C. Graphene oxide papers with high water adsorption capacity for air dehumidification. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, K.; Lee, Y.; Seo, J. Ethylene scavenging systems in packaging of fresh produce: A review. Food Rev. Int. 2019, 3, 1–22. [Google Scholar] [CrossRef]
- Gaikwad, K.K.; Lee, Y.S. Current scenario of gas scavenging systems used in active packaging—A review. Korean J. Packag. Sci. Technol. 2017, 23, 109–117. [Google Scholar] [CrossRef]
- Hu, B.; Sun, D.W.; Pu, H.; Wei, Q. Recent advances in detecting and regulating ethylene concentrations for shelf-life extension and maturity control of fruit: A review. Trends Food Sci. Technol. 2019, 91, 66–82. [Google Scholar] [CrossRef]
- Sirimuangjinda, A.; Hemra, K.; Atong, D.; Pechyen, C. Production and characterization of activated carbon from waste tire by H 3PO 4 treatment for ethylene adsorbent used in active packaging. Adv. Mater. Res. 2012, 506, 214–217. [Google Scholar] [CrossRef]
- Gaikwad, K.K.; Singh, S.; Negi, Y.S. Ethylene scavengers for active packaging of fresh food produce. Environ. Chem. Lett. 2019. [Google Scholar] [CrossRef]
- Vilela, C.; Kurek, M.; Hayouka, Z.; Röcker, B.; Yildirim, S.; Antunes, M.D.C.; Nilsen-Nygaard, J.; Pettersen, M.K.; Freire, C.S.R. A concise guide to active agents for active food packaging. Trends Food Sci. Technol. 2018, 80, 212–222. [Google Scholar] [CrossRef]
- Gaikwad, K.K.; Singh, S.; Lee, Y.S. High adsorption of ethylene by alkali-treated halloysite nanotubes for food-packaging applications. Environ. Chem. Lett. 2018, 16, 1055–1062. [Google Scholar] [CrossRef]
- Tabari, L.; Farmanzadeh, D. Yttrium doped graphene oxide as a new adsorbent for H2O, CO, and ethylene molecules: Dispersion-corrected DFT calculations. Appl. Surf. Sci. 2020, 500, 144029. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Kaewklin, P. Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocoll. 2018, 84, 125–134. [Google Scholar] [CrossRef]
- Lee, D.S. Carbon dioxide absorbers for food packaging applications. Trends Food Sci. Technol. 2016, 57, 146–155. [Google Scholar] [CrossRef]
- Han, J.W.; Ruiz-Garcia, L.; Qian, J.P.; Yang, X.T. Food packaging: A comprehensive review and future trends. Compr. Rev. Food Sci. Food Saf. 2018, 17, 860–877. [Google Scholar] [CrossRef] [Green Version]
- Vermeiren, L.; Devlieghere, F.; Van Beest, M.; De Kruijf, N.; Debevere, J. Developments in the active packaging of foods. Trends Food Sci. Technol. 1999, 10, 77–86. [Google Scholar] [CrossRef]
- Wyrwa, J.; Barska, A. Innovations in the food packaging market: Active packaging. Eur. Food Res. Technol. 2017, 243, 1681–1692. [Google Scholar] [CrossRef]
- Mangalassary, S. Advances in packaging of poultry meat products. In Food Safety in Poultry Meat Production. Food Microbiology and Food Safety; Venkitanarayanan, K., Thakur, S., Ricke, S., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Suppakul, P.; Miltz, J.; Sonneveld, K.; Bigger, S.W. Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Concise Rev. Hypotheses Food Sci. 2003, 68, 408–420. [Google Scholar] [CrossRef] [Green Version]
- Sung, S.Y.; Sin, L.T.; Tee, T.T.; Bee, S.T.; Rahmat, A.R.; Rahman, W.A.W.A.; Tan, A.C.; Vikhraman, M. Antimicrobial agents for food packaging applications. Trends Food Sci. Technol. 2013, 33, 110–123. [Google Scholar] [CrossRef]
- Mu, H.; Gao, H.; Chen, H.; Fang, X.; Han, Q. A novel controlled release ethanol emitter: Preparation and effect on some postharvest quality parameters of Chinese bayberry during storage. J. Sci. Food Agric. 2017, 97, 4929–4936. [Google Scholar] [CrossRef]
- Day, B.P.F. Active packaging of food. In Smart Packaging Technologies for Fast Moving Consumer Good; Kerry, J., Butler, P., Eds.; Wiley: Hoboken, NJ, USA, 2008; pp. 1–18. [Google Scholar] [CrossRef]
- Nguyen Van Long, N.; Joly, C.; Dantigny, P. Active packaging with antifungal activities. Int. J. Food Microbiol. 2016, 220, 73–90. [Google Scholar] [CrossRef]
- Vera, P.; Echegoyen, Y.; Canellas, E.; Nerín, C.; Palomo, M.; Madrid, Y.; Cámara, C. Nano selenium as antioxidant agent in a multilayer food packaging material. Anal. Bioanal. Chem. 2016, 408, 6659–6670. [Google Scholar] [CrossRef]
- Otoni, C.G.; Espitia, P.J.P.; Avena-Bustillos, R.J.; McHugh, T.H. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Res. Int. 2016, 83, 60–73. [Google Scholar] [CrossRef]
- Basavegowda, N.; Mandal, T.K.; Baek, K.H. Bimetallic and trimetallic nanoparticles for active food packaging applications: A review. Food Bioprocess Technol. 2019, 13, 1–15. [Google Scholar] [CrossRef]
- Byun, Y.; Darby, D.; Cooksey, K.; Dawson, P.; Whiteside, S. Development of oxygen scavenging system containing a natural free radical scavenger and a transition metal. Food Chem. 2011, 124, 615–619. [Google Scholar] [CrossRef]
- Dey, A.; Neogi, S. Oxygen scavengers for food packaging applications: A review. Trends Food Sci. Technol. 2019, 90, 26–34. [Google Scholar] [CrossRef]
- Gaikwad, K.K.; Singh, S.; Lee, Y.S. Oxygen scavenging films in food packaging. Environ. Chem. Lett. 2018, 16, 523–538. [Google Scholar] [CrossRef]
- Yildirim, B.S.; Röcker, B.; Rüegg, N.; Lohwasser, W. Development of palladium-based oxygen scavenger: Optimization of substrate and palladium layer thickness. Packag. Technol. Sci. 2015, 28, 710–718. [Google Scholar] [CrossRef]
- Michiels, Y.; Van Puyvelde, P.; Sels, B. Barriers and chemistry in a bottle: Mechanisms in today’s oxygen barriers for tomorrow’s materials. Appl. Sci. 2017, 7, 665. [Google Scholar] [CrossRef]
- Bagde, P.; Nadanathangam, V. Improving the stability of bacteriocin extracted from Enterococcus faecium by immobilization onto cellulose nanocrystals. Carbohydr. Polym. 2019, 209, 172–180. [Google Scholar] [CrossRef]
- Holcapkova, P.; Hurajova, A.; Bazant, P.; Pummerova, M.; Sedlarik, V. Thermal stability of bacteriocin nisin in polylactide-based films. Polym. Degrad. Stab. 2018, 158, 31–39. [Google Scholar] [CrossRef]
- Santos, J.C.P.; Sousa, R.C.S.; Otoni, C.G.; Moraes, A.R.F.; Souza, V.G.L.; Medeiros, E.A.A.; Espitia, P.J.P.; Pires, A.C.S.; Coimbra, J.S.R.; Soares, N.F.F. Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innov. Food Sci. Emerg. Technol. 2018, 48, 179–194. [Google Scholar] [CrossRef]
- Martínez, B.; Rodríguez, A.; Suárez, E. Antimicrobial peptides produced by bacteria: The Bacteriocins. In New Weapons to Control Bacterial Growth; Villa, T.G., Vinas, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 15–38. ISBN 9783319283685. [Google Scholar]
- Woraprayote, W.; Pumpuang, L.; Tosukhowong, A.; Zendo, T. Antimicrobial biodegradable food packaging impregnated with Bacteriocin 7293 for control of pathogenic bacteria in pangasius fish fillets. LWT Food Sci. Technol. 2018, 89, 427–433. [Google Scholar] [CrossRef]
- Irkin, R.; Esmer, O.K. Novel food packaging systems with natural antimicrobial agents. J. Food Sci. Technol. 2015, 52, 6095–6111. [Google Scholar] [CrossRef]
- Maris, S.; Meira, M.; Zehetmeyer, G.; Orlandini, J.; Brandelli, A. A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocoll. 2017, 63, 561–570. [Google Scholar] [CrossRef]
- Lee, D.S. Packaging Containing Natural Antimicrobial or Antioxidative Agents; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 9780123116321. [Google Scholar]
- Tumbarski, Y.; Lante, A.; Krastanov, A. Immobilization of Bacteriocins from lactic acid bacteria and possibilities for application in food biopreservation. Open Biotechnol. J. 2018, 12, 25–32. [Google Scholar] [CrossRef]
- Yildirim, S. Active packaging for food biopreservation. In Protective Cultures, Antimicrobial Metabolites and Bacteriophages for Food and Beverage Biopreservation; Lacroix, C., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 460–489. [Google Scholar]
- Kapetanakou, A.E.; Skandamis, P.N. Applications of active packaging for increasing microbial stability in foods: Natural volatile antimicrobial compounds. Curr. Opin. Food Sci. 2016, 12, 1–12. [Google Scholar] [CrossRef]
- Atarés, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Heras-Mozos, R.; Muriel-Galet, V.; López-Carballo, G.; Catalá, R.; Hernández-Muñoz, P.; Gavara, R. Development and optimization of antifungal packaging for sliced pan loaf based on garlic as active agent and bread aroma as aroma corrector. Int. J. Food Microbiol. 2019, 290, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Handayasari, F.; Suyatma, N.E.; Nurjanah, S. Physiochemical and antibacterial analysis of gelatin–chitosan edible film with the addition of nitrite and garlic essential oil by response surface methodology. J. Food Process. Preserv. 2019, 43, 1–10. [Google Scholar] [CrossRef]
- Fasihi, H.; Noshirvani, N.; Hashemi, M.; Fazilati, M.; Salavati, H.; Coma, V. Antioxidant and antimicrobial properties of carbohydrate-based films enriched with cinnamon essential oil by pickering emulsion method. Food Packag. Shelf Life 2019, 19, 147–154. [Google Scholar] [CrossRef]
- Han Lyn, F.; Nur Hanani, Z.A. Effect of lemongrass (Cymbopogon citratus) essential oil on the properties of chitosan films for active packaging. J. Packag. Technol. Res. 2020, 4, 33–44. [Google Scholar] [CrossRef]
- dos Santos Paglione, I.; Galindo, M.V.; de Medeiros, J.A.S.; Yamashita, F.; Alvim, I.D.; Ferreira Grosso, C.R.; Sakanaka, L.S.; Shirai, M.A. Comparative study of the properties of soy protein concentrate films containing free and encapsulated oregano essential oil. Food Packag. Shelf Life 2019, 22, 100419. [Google Scholar] [CrossRef]
- Bolumar, T.; LaPeña, D.; Skibsted, L.H.; Orlien, V. Rosemary and oxygen scavenger in active packaging for prevention of high-pressure induced lipid oxidation in pork patties. Food Packag. Shelf Life 2016, 7, 26–33. [Google Scholar] [CrossRef]
- Carvalho, R.A.; de Oliveira, A.C.S.; Santos, T.A.; Dias, M.V.; Yoshida, M.I.; Borges, S.V. WPI and cellulose Nanofibres Bio-nanocomposites: Effect of Thyme Essential Oil on the Morphological, Mechanical, Barrier and optical properties. J. Polym. Environ. 2020, 28, 231–241. [Google Scholar] [CrossRef]
- Chi, H.; Song, S.; Luo, M.; Zhang, C.; Li, W.; Li, L.; Qin, Y. Effect of PLA nanocomposite films containing bergamot essential oil, TiO 2 nanoparticles, and Ag nanoparticles on shelf life of mangoes. Sci. Hortic. 2019, 249, 192–198. [Google Scholar] [CrossRef]
- Ju, J.; Chen, X.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of essential oil as a sustained release preparation in food packaging. Trends Food Sci. Technol. 2019, 92, 22–32. [Google Scholar] [CrossRef]
- Almasi, H.; Azizi, S.; Amjadi, S. Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocoll. 2020, 99, 105338. [Google Scholar] [CrossRef]
- Liu, Q.R.; Wang, W.; Qi, J.; Huang, Q.; Xiao, J. Oregano essential oil loaded soybean polysaccharide films: Effect of Pickering type immobilization on physical and antimicrobial properties. Food Hydrocoll. 2019, 87, 165–172. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Tang, C.H.; Yin, S.W.; Yang, X.Q. Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohydr. Polym. 2018, 181, 727–735. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; Andrade, M.; de Melo, N.R.; Sanches-Silva, A. Use of essential oils in active food packaging: Recent advances and future trends. Trends Food Sci. Technol. 2017, 61, 132–140. [Google Scholar] [CrossRef]
- Mendes, J.F.; Norcino, L.B.; Martins, H.H.A.; Manrich, A.; Otoni, C.G.; Carvalho, E.E.N.; Piccoli, R.H.; Oliveira, J.E.; Pinheiro, A.C.M.; Mattoso, L.H.C. Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocoll. 2020, 100, 105428. [Google Scholar] [CrossRef]
- Luzi, F.; Pannucci, E.; Santi, L.; Kenny, J.M.; Torre, L.; Bernini, R.; Puglia, D. Gallic acid and quercetin as intelligent and active ingredients in poly(vinyl alcohol) films for food packaging. Polymers 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Mehrotra, G.K.; Bhartiya, P.; Singh, A.; Dutta, P.K. Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydr. Polym. 2020, 227, 115348. [Google Scholar] [CrossRef]
- Franco, P.; Aliakbarian, B.; Perego, P.; Reverchon, E.; De Marco, I. Supercritical adsorption of Quercetin on aerogels for active packaging applications. Ind. Eng. Chem. Res. 2018, 57, 15105–15113. [Google Scholar] [CrossRef]
- Franco, P.; Incarnato, L.; De Marco, I. Supercritical CO2 impregnation of α-tocopherol into PET/PP films for active packaging applications. J. CO2 Util. 2019, 34, 266–273. [Google Scholar] [CrossRef]
- Hwang, S.W.; Shim, J.K.; Selke, S.E.; Soto-Valdez, H.; Matuana, L.; Rubino, M.; Auras, R. Poly(L-lactic acid) with added α-tocopherol and resveratrol: Optical, physical, thermal and mechanical properties. Polym. Int. 2012, 61, 418–425. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules 2014, 19, 19180–19208. [Google Scholar] [CrossRef] [Green Version]
- Nohynek, L.; Meier, C.; Ka, M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar]
- Valdés, A.; Mellinas, A.C.; Ramos, M.; Burgos, N.; Jiménez, A.; Garrigós, M.C. Use of herbs, spices and their bioactive compounds in active food packaging. RSC Adv. 2015, 5, 40324–40335. [Google Scholar] [CrossRef] [Green Version]
- Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J. Phys. Chem. A 2004, 108, 4916–4922. [Google Scholar] [CrossRef]
- Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Aspects Med. 2003, 24, 345–351. [Google Scholar] [CrossRef]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef]
- Karpiński, T.M.; Adamczak, A. Fucoxanthin—An antibacterial carotenoid. Antioxidants 2019, 8, 239. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Qiu, X.L.; Lu, L.X.; Tang, Y.L.; Long, Q.; Dang, J.G. Preparation of low-density polyethylene film with quercetin and α-tocopherol loaded with mesoporous silica for synergetic-release antioxidant active packaging. J. Food Process Eng. 2019, 42, 1–9. [Google Scholar] [CrossRef]
- Skroza, D.; Generalic, I.; Moz, S.S.; Abramovic, H. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 2010, 119, 715–723. [Google Scholar] [CrossRef]
- El-Abbassi, A.; Kiai, H.; Hafidi, A. Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem. 2012, 132, 406–412. [Google Scholar] [CrossRef]
- Pettinato, M.; Casazza, A.A.; Perego, P. The role of heating step in microwave-assisted extraction of polyphenols from spent coffee grounds. Food Bioprod. Process. 2019, 114, 227–234. [Google Scholar] [CrossRef]
- Casazza, A.A.; Pettinato, M.; Perego, P. Polyphenols from apple skins: A study on microwave-assisted extraction optimization and exhausted solid characterization. Sep. Purif. Technol. 2020, 240, 116640. [Google Scholar] [CrossRef]
- Duba, K.S.; Casazza, A.A.; Mohamed, H.B.; Perego, P.; Fiori, L. Extraction of polyphenols from grape skins and defatted grape seeds using subcritical water: Experiments and modeling. Food Bioprod. Process. 2015, 94, 29–38. [Google Scholar] [CrossRef]
- Catalkaya, G.; Kahveci, D. Optimization of enzyme assisted extraction of lycopene from industrial tomato waste. Sep. Purif. Technol. 2019, 219, 55–63. [Google Scholar] [CrossRef]
- Paini, M.; Casazza, A.A.; Aliakbarian, B.; Perego, P.; Binello, A.; Cravotto, G. Influence of ethanol/water ratio in ultrasound and high-pressure/high-temperature phenolic compound extraction from agri-food waste. Int. J. Food Sci. Technol. 2016, 51, 349–358. [Google Scholar] [CrossRef]
- Piñeros-Hernandez, D.; Medina-Jaramillo, C.; López-Córdoba, A.; Goyanes, S. Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocoll. 2017, 63, 488–495. [Google Scholar] [CrossRef]
- Wrona, M.; Nerín, C.; Alfonso, M.J.; Caballero, M.Á. Antioxidant packaging with encapsulated green tea for fresh minced meat. Innov. Food Sci. Emerg. Technol. 2017, 41, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Siripatrawan, U.; Vitchayakitti, W. Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll. 2016, 61, 695–702. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Rao, M.S.; Chawla, S.P.; Sharma, A. Active chitosan-polyvinyl alcohol films with natural extracts. Food Hydrocoll. 2012, 29, 290–297. [Google Scholar] [CrossRef]
- López de Dicastillo, C.; Bustos, F.; Guarda, A.; Galotto, M.J. Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocoll. 2016, 60, 335–344. [Google Scholar] [CrossRef]
- Shahbazi, Y. The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. Int. J. Biol. Macromol. 2017, 99, 746–753. [Google Scholar] [CrossRef]
- Bashir, A.; Jabeen, S.; Gull, N.; Islam, A.; Sultan, M.; Ghaffar, A.; Khan, S.M.; Iqbal, S.S.; Jamil, T. Co-concentration effect of silane with natural extract on biodegradable polymeric films for food packaging. Int. J. Biol. Macromol. 2018, 106, 351–359. [Google Scholar] [CrossRef]
- Menzel, C.; González-Martínez, C.; Vilaplana, F.; Diretto, G.; Chiralt, A. Incorporation of natural antioxidants from rice straw into renewable starch films. Int. J. Biol. Macromol. 2020, 146, 976–986. [Google Scholar] [CrossRef]
- Medina-Jaramillo, C.; Ochoa-Yepes, O.; Bernal, C.; Famá, L. Active and smart biodegradable packaging based on starch and natural extracts. Carbohydr. Polym. 2017, 176, 187–194. [Google Scholar] [CrossRef]
- Cejudo Bastante, C.; Casas Cardoso, L.; Fernández Ponce, M.T.; Mantell Serrano, C.; Martínez de la Ossa-Fernández, E.J. Characterization of olive leaf extract polyphenols loaded by supercritical solvent impregnation into PET/PP food packaging films. J. Supercrit. Fluids 2018, 140, 196–206. [Google Scholar] [CrossRef]
- Milovanovic, S.; Hollermann, G.; Errenst, C.; Pajnik, J.; Frerich, S.; Kroll, S.; Rezwan, K.; Ivanovic, J. Supercritical CO2 impregnation of PLA/PCL films with natural substances for bacterial growth control in food packaging. Food Res. Int. 2018, 107, 486–495. [Google Scholar] [CrossRef]
- Radusin, T.; Torres-Giner, S.; Stupar, A.; Ristic, I.; Miletic, A.; Novakovic, A.; Lagaron, J.M. Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packag. Shelf Life 2019, 21, 100357. [Google Scholar] [CrossRef]
- Szabo, K.; Teleky, B.E.; Mitrea, L.; Călinoiu, L.F.; Martău, G.A.; Simon, E.; Varvara, R.A.; Vodnar, D.C. Active packaging-poly (vinyl alcohol) films enriched with tomato by-products extract. Coatings 2020, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- Yahaya, W.A.W.; Almajano, M.P.; Yazid, N.A.; Azman, N.A.M. Antioxidant activities and total phenolic content of Malaysian herbs as components of active packaging film in beef patties. Antioxidants 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Yehuala, G.A.; Emire, S.A. Antimicrobial activity, physicochemical and mechanical properties of aloe (Aloe debrana) based packaging films. Br. J. Appl. Sci. Technol. 2013, 3, 1257–1275. [Google Scholar] [CrossRef]
- Urbina, L.; Eceiza, A.; Gabilondo, N.; Corcuera, M.Á.; Retegi, A. Valorization of apple waste for active packaging: Multicomponent polyhydroxyalkanoate coated nanopapers with improved hydrophobicity and antioxidant capacity. Food Packag. Shelf Life 2019, 21, 100356. [Google Scholar] [CrossRef]
- dos Santos Caetano, K.; Almeida Lopes, N.; Haas Costa, T.M.; Brandelli, A.; Rodrigues, E.; Hickmann Flôres, S.; Cladera-Olivera, F. Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packag. Shelf Life 2018, 16, 138–147. [Google Scholar] [CrossRef]
- Adilah, A.N.; Jamilah, B.; Noranizan, M.A.; Hanani, Z.A.N. Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packag. Shelf Life 2018, 16, 1–7. [Google Scholar] [CrossRef]
- Devi, N.; Sarmah, M.; Khatun, B.; Maji, T.K. Encapsulation of active ingredients in polysaccharide–protein complex coacervates. Adv. Colloid Interface Sci. 2017, 239, 136–145. [Google Scholar] [CrossRef]
- Becerril, R.; Nerín, C.; Silva, F. Encapsulation systems for antimicrobial food packaging components: An update. Molecules 2020, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahrami, A.; Delshadi, R.; Assadpour, E.; Jafari, S.M.; Williams, L. Antimicrobial-loaded nanocarriers for food packaging applications. Adv. Colloid Interface Sci. 2020, 278, 102140. [Google Scholar] [CrossRef] [PubMed]
- Brandelli, A.; Brum, L.F.W.; dos Santos, J.H.Z. Nanostructured bioactive compounds for ecological food packaging. Environ. Chem. Lett. 2017, 15, 193–204. [Google Scholar] [CrossRef]
- Talón, E.; Vargas, M.; Chiralt, A.; González-Martínez, C. Eugenol incorporation into thermoprocessed starch films using different encapsulating materials. Food Packag. Shelf Life 2019, 21, 100326. [Google Scholar] [CrossRef]
- Neo, Y.P.; Swift, S.; Ray, S.; Gizdavic-Nikolaidis, M.; Jin, J.; Perera, C.O. Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials. Food Chem. 2013, 141, 3192–3200. [Google Scholar] [CrossRef]
- Wang, H.; Hao, L.; Wang, P.; Chen, M.; Jiang, S.; Jiang, S. Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocoll. 2017, 63, 437–446. [Google Scholar] [CrossRef]
- Yao, Z.C.; Chang, M.W.; Ahmad, Z.; Li, J.S. Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning. J. Food Eng. 2016, 191, 115–123. [Google Scholar] [CrossRef]
- Fernandez, A.; Torres-Giner, S.; Lagaron, J.M. Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocoll. 2009, 23, 1427–1432. [Google Scholar] [CrossRef]
- Kuntzler, S.G.; Costa, J.A.V.; Morais, M.G. de Development of electrospun nanofibers containing chitosan/PEO blend and phenolic compounds with antibacterial activity. Int. J. Biol. Macromol. 2018, 117, 800–806. [Google Scholar] [CrossRef]
- Palazzo, I.; Campardelli, R.; Scognamiglio, M.; Reverchon, E. Zein/luteolin microparticles formation using a supercritical fluids assisted technique. Powder Technol. 2019, 356, 899–908. [Google Scholar] [CrossRef]
- Silva, F.; Caldera, F.; Trotta, F.; Nerín, C.; Domingues, F.C. Encapsulation of coriander essential oil in cyclodextrin nanosponges: A new strategy to promote its use in controlled-release active packaging. Innov. Food Sci. Emerg. Technol. 2019, 56, 102177. [Google Scholar] [CrossRef]
- Pérez-Masiá, R.; López-Rubio, A.; Lagarón, J.M. Development of zein-based heat-management structures for smart food packaging. Food Hydrocoll. 2013, 30, 182–191. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Kuznik, F.; David, D.; Johannes, K.; Roux, J.J. A review on phase change materials integrated in building walls. Renew. Sustain. Energy Rev. 2011, 15, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, K.; Khan, A.; Sun, D.; Ashraf, M.; Rehman, A.; Safdar, F.; Basit, A.; Maqsood, H.S. Phase change materials, their synthesis and application in textiles—A review. J. Text. Inst. 2019, 110, 625–638. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Gaikwad, K.K.; Lee, Y.S. Phase change materials for advanced cooling packaging. Environ. Chem. Lett. 2018, 16, 845–859. [Google Scholar] [CrossRef]
- Chandel, S.S.; Agarwal, T. Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renew. Sustain. Energy Rev. 2017, 67, 581–596. [Google Scholar] [CrossRef]
- Alehosseini, E.; Jafari, S.M. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry. Trends Food Sci. Technol. 2019, 91, 116–128. [Google Scholar] [CrossRef]
- Zdraveva, E.; Fang, J.; Mijovic, B.; Lin, T. Electrospun poly(vinyl alcohol)/phase change material fibers: Morphology, heat properties, and stability. Ind. Eng. Chem. Res. 2015, 54, 8706–8712. [Google Scholar] [CrossRef]
- Su, W.; Darkwa, J.; Kokogiannakis, G. Review of solid-liquid phase change materials and their encapsulation technologies. Renew. Sustain. Energy Rev. 2015, 48, 373–391. [Google Scholar] [CrossRef]
- Han, L.; Jia, X.; Li, Z.; Yang, Z.; Wang, G.; Ning, G. Effective encapsulation of paraffin wax in carbon nanotube agglomerates for a new shape-stabilized phase change material with enhanced thermal-storage capacity and stability. Ind. Eng. Chem. Res. 2018, 57, 13026–13035. [Google Scholar] [CrossRef]
- Mehling, H.; Cabeza, L.F. Solid-liquid phase change materials. In Heat and Cold Storage with PCM. Heat and Mass Transfer; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Meng, Q.; Jinlian, H. A poly( ethylene glycol )-based smart phase change material. Sol. Energy Mater. Sol. Cells 2008, 92, 1260–1268. [Google Scholar] [CrossRef]
- Singh, S.; Gaikwad, K.K.; Lee, M.; Lee, Y.S. Temperature-regulating materials for advanced food packaging applications: A review. J. Food Meas. Charact. 2018, 12, 588–601. [Google Scholar] [CrossRef]
- Sathishkumar, N.; Ashok Kumar, V.; Gokulnath, M.; Kalai Raj, G. Performance analysis of palmitic acid coated PCM storage container. Int. J. Res. Rev. 2020, 7, 3. [Google Scholar]
- Palomo del Barrio, E.; Godin, A.; Duquesne, M.; Daranlot, J.; Jolly, J.; Alshaer, W.; Kouadio, T.; Sommier, A. Characterization of different sugar alcohols as phase change materials for thermal energy storage applications. Sol. Energy Mater. Sol. Cells 2017, 159, 560–569. [Google Scholar] [CrossRef]
- Milián, Y.E.; Gutiérrez, A.; Grágeda, M.; Ushak, S. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renew. Sustain. Energy Rev. 2017, 73, 983–999. [Google Scholar] [CrossRef]
- Zahir, M.H.; Mohamed, S.A.; Saidur, R.; Al-Sulaiman, F.A. Supercooling of phase-change materials and the techniques used to mitigate the phenomenon. Appl. Energy 2019, 240, 793–817. [Google Scholar] [CrossRef]
- Oró, E.; Miró, L.; Farid, M.M.; Cabeza, L.F. Improving thermal performance of freezers using phase change materials. Int. J. Refrig. 2012, 35, 984–991. [Google Scholar] [CrossRef]
- Sari, A.; Alkan, C.; Bilgin, C. Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties. Appl. Energy 2014, 136, 217–227. [Google Scholar] [CrossRef]
- Hoang, H.M.; Leducq, D.; Pérez-Masiá, R.; Lagarón, J.M.; Gogou, E.; Taoukis, P.; Alvarez, G. Heat transfer study of submicro-encapsulated PCM plate for food packaging application. Int. J. Refrig. 2014, 1–10. [Google Scholar] [CrossRef]
- Miloudi, R.; Zerrouki, D. Encapsulation of phase change materials with alginate modified by nanostructured sodium carbonate and silicate. Iran. Polym. J. 2020, 29, 543–550. [Google Scholar] [CrossRef]
- Hawlader, M.N.A.; Uddin, M.S.; Khin, M.M. Microencapsulated PCM thermal-energy storage system. Appl. Energy 2003, 74, 195–202. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Zsembinszki, G.; Martín, M. Evaluation of volume change in phase change materials during their phase transition. J. Energy Storage 2020, 28. [Google Scholar] [CrossRef]
- Vasu, A.; Hagos, F.Y.; Noor, M.M.; Mamat, R.; Azmi, W.H.; Abdullah, A.A.; Ibrahim, T.K. Corrosion effect of phase change materials in solar thermal energy storage application. Renew. Sustain. Energy Rev. 2017, 76, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Silva, L.; Rodríguez, J.F.; Romero, A.; Borreguero, A.M.; Carmona, M.; Sánchez, P. Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerisation. Chem. Eng. J. 2010, 157, 216–222. [Google Scholar] [CrossRef]
- Sarı, A.; Alkan, C.; Biçer, A.; Bilgin, C. Micro / nanoencapsulated n -nonadecane with poly (methyl methacrylate) shell for thermal energy storage. Energy Convers. Manag. 2014, 86, 614–621. [Google Scholar] [CrossRef]
- Wang, J.P.; Zhao, X.P.; Guo, H.L.; Zheng, Q. Preparation of microcapsules containing two-phase core materials. Langmuir 2004, 20, 10845–10850. [Google Scholar] [CrossRef]
- Li, B.; Liu, T.; Hu, L.; Wang, Y.; Gao, L. Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage. ACS Sustain. Chem. Eng. 2013, 1, 374–380. [Google Scholar] [CrossRef]
- Özonur, Y.; Mazman, M.; Paksoy, H.Ö.; Evliya, H. Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. Int. J. Energy Res. 2006, 30, 741–749. [Google Scholar] [CrossRef]
- Li, H.; Fang, G.; Liu, X. Synthesis of shape-stabilized paraffin/silicon dioxide composites as phase change material for thermal energy storage. J. Mater. Sci. 2010, 45, 1672–1676. [Google Scholar] [CrossRef]
- Wu, H.T.; Yang, M.W. Precipitation kinetics of PMMA sub-micrometric particles with a supercritical assisted-atomization process. J. Supercrit. Fluids 2011, 59, 98–107. [Google Scholar] [CrossRef]
- Borreguero, A.M.; Valverde, J.L.; Rodríguez, J.F.; Barber, A.H.; Cubillo, J.J.; Carmona, M. Synthesis and characterization of microcapsules containing Rubitherm®RT27 obtained by spray drying. Chem. Eng. J. 2011, 166, 384–390. [Google Scholar] [CrossRef]
- Mehrali, M.; Latibari, S.T.; Mehrali, M.; Mahlia, T.M.I.; Metselaar, H.S.C.; Naghavi, M.S.; Sadeghinezhad, E.; Akhiani, A.R. Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material. Appl. Therm. Eng. 2013, 61, 633–640. [Google Scholar] [CrossRef]
- Chalco-Sandoval, W.; Fabra, M.J.; López-Rubio, A.; Lagaron, J.M. Development of polystyrene-based films with temperature buffering capacity for smart food packaging. J. Food Eng. 2015, 164, 55–62. [Google Scholar] [CrossRef]
- Ünal, M.; Konuklu, Y.; Paksoy, H. Thermal buffering effect of a packaging design with microencapsulated phase change material. Int. J. Energy Res. 2019, 43, 4495–4505. [Google Scholar] [CrossRef]
- Huang, L.; Piontek, U. Improving performance of cold-chain insulated container with phase change material: An experimental investigation. Appl. Sci. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Johnston, J.H.; Grindrod, J.E.; Dodds, M.; Schimitschek, K. Composite nano-structured calcium silicate phase change materials for thermal buffering in food packaging. Curr. Appl. Phys. 2008, 8, 508–511. [Google Scholar] [CrossRef]
- Lu, W.; Tassou, S.A. Characterization and experimental investigation of phase change materials for chilled food refrigerated cabinet applications. Appl. Energy 2013, 112, 1376–1382. [Google Scholar] [CrossRef]
- Yam, K.; Lee, D.S. Intelligent packaging to enhance food safety and quality. In Emerging Food Packaging Technologies; Woodhead Publishing: Cambridge, UK, 2012; ISBN 9781845698096. [Google Scholar]
- Suppakul, P. Intelligent packaging. In Handbook of Frozen Food Processing and Packaging; Sun, D.W., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 835–858. [Google Scholar]
- Ghaani, M.; Cozzolino, C.A.; Castelli, G.; Farris, S. An overview of the intelligent packaging technologies in the food sector. Trends Food Sci. Technol. 2016, 51, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Siracusa, V.; Lotti, N. Intelligent packaging to improve shelf life. Food Qual. Shelf Life 2019, 261–279. [Google Scholar] [CrossRef]
- Dutra Resem Brizio, A.P. Use of indicators in intelligent food packaging. Ref. Modul. Food Sci. 2016, 1–5. [Google Scholar] [CrossRef]
- Kalpana, S.; Priyadarshini, S.R.; Maria Leena, M.; Moses, J.A.; Anandharamakrishnan, C. Intelligent packaging: Trends and applications in food systems. Trends Food Sci. Technol. 2019, 93, 145–157. [Google Scholar] [CrossRef]
- Göransson, M.; Nilsson, F. Jevinger Temperature performance and food shelf-life accuracy in cold food supply chains—Insights from multiple field studies. Food Control 2018, 86, 332–341. [Google Scholar] [CrossRef]
- Mehauden, K.; Cox, P.W.; Bakalis, S.; Simmons, M.J.H.; Tucker, G.S.; Fryer, P.J. A novel method to evaluate the applicability of time temperature integrators to different temperature profiles. Innov. Food Sci. Emerg. Technol. 2007, 8, 507–514. [Google Scholar] [CrossRef]
- Dobrucka, R.; Cierpiszewski, R. Active and intelligent packaging food—Reasearch and development—A review. Pol. J. Food Nutr. Sci. 2014, 64, 7–15. [Google Scholar] [CrossRef] [Green Version]
- O’Grady, M.N.; Kerry, J.P. Smart packaging technologies and their application in conventional meat packaging systems. In Meat Biotechnology; Toldra, F., Ed.; Springer: London, UK, 2008; pp. 425–451. ISBN 9780387793818. [Google Scholar]
- Robertson, G.L. Food Packaging: Principles and Practice; CRC Press: Boca Raton, FL, USA, 2013; ISBN 9781439862421. [Google Scholar]
- Taoukis, P.S.; Labuza, T.P. Time-temperature indicators (TTIs). In Novel Food Packaging Techniques; Ahvenainen, R., Ed.; Woodhead Publishing: Cambridge, UK, 2003; pp. 103–126. [Google Scholar]
- Kuswandi, B.; Wicaksono, Y.; Jayus; Abdullah, A.; Heng, L.Y.; Ahmad, M. Smart packaging: Sensors for monitoring of food quality and safety. Sens. Instrum. Food Qual. Saf. 2011, 5, 137–146. [Google Scholar] [CrossRef]
- Jhuang, J.R.; Lin, S.B.; Chen, L.C.; Lou, S.N.; Chen, S.H.; Chen, H.H. Development of immobilized laccase-based time temperature indicator by electrospinning zein fiber. Food Packag. Shelf Life 2020, 23. [Google Scholar] [CrossRef]
- Shetty, J.M. Time temperature indicators for monitoring environment parameters during transport and storage of perishables: A review. Environ. Conserv. J. 2018, 19, 101–106. [Google Scholar] [CrossRef]
- Poyatos-Racionero, E.; Ros-Lis, J.V.; Vivancos, J.L.; Martìnez-Mànez, R. Recent advances on intelligent packaging as tools to reduce food waste. J. Clean. Prod. 2018, 172, 3398–3409. [Google Scholar] [CrossRef]
- Tichoniuk, M.; Radomska, N.; Cierpiszewski, R. The application of natural dyes in food freshness indicators designed for intelligent packaging. Stud. Oeconomica Posnaniensia 2017, 5, 19–34. [Google Scholar] [CrossRef]
- Pereira, V.A., Jr.; de Arruda, I.N.Q.; Stefani, R. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (red cabbage) as time-temperature indicators for application in intelligent food packaging. Food Hydrocoll. 2015, 43, 180–188. [Google Scholar] [CrossRef]
- Pereira de Abreu, D.A.; Cruz, J.M.; Paseiro Losada, P. Active and intelligent packaging for the food industry. Food Rev. Int. 2012, 28, 146–187. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Kaewprachu, P. Valorization of food processing by-products as smart food packaging materials and its application. In Food Preservation and Waste Exploitation; Socaci, S.A., Farcas, A.C., Aussenac, T., Laguerre, J.C., Eds.; IntechOpen: London, UK, 2020; Chapter 6. [Google Scholar] [CrossRef] [Green Version]
- Lamba, A.; Garg, V. Recent innovations in food packaging: A review. Int. J. Food Sci. Nutr. Int. 2019, 4, 123–129. [Google Scholar]
- Pavelková, A. Intelligent packaging as device for monitoring of risk factors in food. J. Microbiol. Biotechnol. Food Sci. 2012, 2, 282–292. [Google Scholar]
- Meng, X.; Kim, S.; Puligundla, P.; Ko, S. Carbon dioxide and oxygen gas sensors-possible application for monitoring quality, freshness, and safety of agricultural and food products with emphasis on importance of analytical signals and their transformation. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 723–733. [Google Scholar] [CrossRef]
- Vu, C.H.T.; Won, K. Novel water-resistant UV-activated oxygen indicator for intelligent food packaging. Food Chem. 2013, 140, 52–56. [Google Scholar] [CrossRef]
- Won, K.; Jang, N.Y.; Jeon, J. A natural component-based oxygen indicator with in-pack activation for intelligent food packaging. J. Agric. Food Chem. 2016, 64, 9675–9679. [Google Scholar] [CrossRef]
- Jang, N.Y.; Won, K. New pressure-activated compartmented oxygen indicator for intelligent food packaging. Int. J. Food Sci. Technol. 2014, 49, 650–654. [Google Scholar] [CrossRef]
- Raudienė, E.; Rušinskas, D.; Balčiūnas, G.; Juodeikienė, G.; Gailius, D. Carbon dioxide respiration rates in wheat at various temperatures and moisture contents. Mapan J. Metrol. Soc. India 2017, 32, 51–58. [Google Scholar] [CrossRef]
- Babic Milijasevic, J.; Milijasevic, M.; Djordjevic, V. Modified atmosphere packaging of fish—An impact on shelf life. IOP Conf. Ser. Earth Environ. Sci. 2019, 333. [Google Scholar] [CrossRef] [Green Version]
- Saliu, F.; Della Pergola, R. Carbon dioxide colorimetric indicators for food packaging application: Applicability of anthocyanin and poly-lysine mixtures. Sens. Actuators B Chem. 2018, 258, 1117–1124. [Google Scholar] [CrossRef]
- Ahmad, A.N.; Abdullah Lim, S.; Navaranjan, N. Development of sago (Metroxylon sagu)-based colorimetric indicator incorporated with butterfly pea (Clitoria ternatea) anthocyanin for intelligent food packaging. J. Food Saf. 2020, 40, e12807. [Google Scholar] [CrossRef]
- Singh, S.; Gaikwad, K.K.; Lee, Y.S. Anthocyanin—A natural dye for smart food packaging systems. Korean J. Packag. Sci. Technol. 2018, 24, 167–180. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Anthocyanin food colorant and its application in pH-responsive color change indicator films. Crit. Rev. Food Sci. Nutr. 2020, 16, 1–29. [Google Scholar] [CrossRef]
- Dalmoro, V.; Zimnoch dos Santos, J.H.; Pires, M.; Simanke, A.; Baldino, G.B.; Oliveira, L. Encapsulation of sensors for intelligent packaging. In Food Packaging; Grumezescu, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128043028. [Google Scholar]
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable sensors in diagnostics, food, and environmental monitoring. Adv. Mater. 2019, 31. [Google Scholar] [CrossRef]
- Fonseca, L.; Cané, C. Monitoring perishable food. In Advanced Nanomaterials for Inexpensive Gas Microsensors; Valero, E.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 289–314. ISBN 9780128148273. [Google Scholar]
- Dong, C.; Ye, Y.; Liu, X.; Yang, Y.; Guo, W. The sensitivity design of piezoresistive acceleration sensor in industrial IoT. IEEE Access 2019, 7, 16952–16963. [Google Scholar] [CrossRef]
- Calmo, R.; Lovera, A.; Stassi, S.; Chiadò, A.; Scaiola, D.; Bosco, F.; Ricciardi, C. Monolithic glass suspended microchannel resonators for enhanced mass sensing of liquids. Sens. Actuators B Chem. 2019, 283, 298–303. [Google Scholar] [CrossRef]
- Geitenbeek, R.G.; Vollenbroek, J.C.; Weijgertze, H.M.H.; Tregouet, C.B.M.; Nieuwelink, A.E.; Kennedy, C.L.; Weckhuysen, B.M.; Lohse, D.; Van Blaaderen, A.; Van Den Berg, A.; et al. Luminescence thermometry for: In situ temperature measurements in microfluidic devices. Lab Chip 2019, 19, 1236–1246. [Google Scholar] [CrossRef] [Green Version]
- Cao, B.; Wang, K.; Xu, H.; Qin, Q.; Yang, J.; Zheng, W.; Jin, Q.; Cui, D. Development of magnetic sensor technologies for point-of-care testing: Fundamentals, methodologies and applications. Sens. Actuators A Phys. 2020, 312. [Google Scholar] [CrossRef]
- Liu, B.; Xiao, B.; Cui, L.; Wang, M. Molecularly imprinted electrochemical sensor for the highly selective and sensitive determination of melamine. Mater. Sci. Eng. C 2015, 55, 457–461. [Google Scholar] [CrossRef]
- Gao, F.; Zheng, D.; Tanaka, H.; Zhan, F.; Yuan, X.; Gao, F.; Wang, Q. An electrochemical sensor for gallic acid based on Fe2O3/electro-reduced graphene oxide composite: Estimation for the antioxidant capacity index of wines. Mater. Sci. Eng. C 2015, 57, 279–287. [Google Scholar] [CrossRef]
- Goulart, L.A.; De Moraes, F.C.; Mascaro, L.H. Influence of the different carbon nanotubes on the development of electrochemical sensors for bisphenol A. Mater. Sci. Eng. C 2016, 58, 768–773. [Google Scholar] [CrossRef]
- Fan, S.-H.; Shen, J.; Wu, H.; Wang, K.Z.; Zhang, A.G. A highly selective turn-on colorimetric and luminescence sensor based on a triphenylamine-appended ruthenium(II) dye for detecting mercury ion. Chin. Chem. Lett. 2015, 26, 580–584. [Google Scholar] [CrossRef]
- Pénicaud, C.; Guilbert, S.; Peyron, S.; Gontard, N.; Guillard, V. Oxygen transfer in foods using oxygen luminescence sensors: Influence of oxygen partial pressure and food nature and composition. Food Chem. 2010, 123, 1275–1281. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, R.; Qian, J. Printed electronics based on inorganic conductive nanomaterials and their applications in intelligent food packaging. RSC Adv. 2019, 9, 29154–29172. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Ali, S.; Bermak, A. Smart manufacturing technologies for printed electronics. In Hybrid Nanomaterials Flexible Electronic Materials; Vargas-Bernal, R., He, P., Zhang, S., Eds.; Intech Open: London, UK, 2020; Chapter 7. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Yoon, J.H.; Lee, K.G.; Choi, B.G. Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays. Nano Converg. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Tian, Y.; Hao, C.; Wang, S.; Mei, Z.; Wu, W.; Lu, J.; Zheng, Z.; Tian, Y. Fabrication of high performance printed flexible conductors by doping of polyaniline nanomaterials into silver paste. J. Mater. Chem. C 2019, 7, 1188–1197. [Google Scholar] [CrossRef]
- Kerry, J.P.; O’Grady, M.N.; Hogan, S.A. Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Sci. 2006, 74, 113–130. [Google Scholar] [CrossRef]
- Puligundla, P.; Jung, J.; Ko, S. Carbon dioxide sensors for intelligent food packaging applications. Food Control 2012, 25, 328–333. [Google Scholar] [CrossRef]
- Salvatore, G.A.; Sülzle, J.; Dalla Valle, F.; Cantarella, G.; Robotti, F.; Jokic, P.; Knobelspies, S.; Daus, A.; Büthe, L.; Petti, L.; et al. Biodegradable and highly deformable temperature sensors for the internet of things. Adv. Funct. Mater. 2017, 27, 1–10. [Google Scholar] [CrossRef]
- Aliyu, M.; Hajian, R.; Yusof, N.A.; Shams, N.; Jaafar, A.; Woid, P.M.W.; Garmestani, H. A screen printed carbon electrode modified with carbon nanotubes and gold nanoparticles as a sensitive electrochemical sensor for determination of thiamphenicol residue in milk. RSC Adv. 2018, 8, 2714–2722. [Google Scholar] [CrossRef]
- Li, L.; Liu, D.; Wang, K.; Mao, H.; You, T. Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor. Sens. Actuators B Chem. 2017, 252, 17–23. [Google Scholar] [CrossRef]
- Mannino, S.; Benedetti, S.; Buratti, S.; Cosio, M.S.; Scampicchio, M. Chapter 31 Electrochemical sensors for food authentication. Compr. Anal. Chem. 2007, 49, 755–770. [Google Scholar] [CrossRef]
- Titova, T.; Nachev, V. “Electronic tongue” in the food industry. Food Sci. Appl. Biotechnol. 2020, 3, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Buratti, S.; Benedetti, S. Alcoholic fermentation using electronic nose and electronic tongue. In Electronic Noses and Tongues in Food Science; Rodriguez-Mendez, M.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 291–299. [Google Scholar] [CrossRef]
- Gu, X.; Sun, Y.; Tu, K.; Pan, L. Evaluation of lipid oxidation of Chinese-style sausage during processing and storage based on electronic nose. Meat Sci. 2017, 133, 1–9. [Google Scholar] [CrossRef]
- Zhong, Y. Electronic nose for food sensory evaluation. In Evalaluation Technologies for Food Quality; Zhong, J., Wang, X., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 7–22. [Google Scholar] [CrossRef]
- Du, D.; Xu, M.; Wang, J.; Gu, S.; Zhu, L.; Hong, X. Tracing internal quality and aroma of a red-fleshed kiwifruit during ripening by means of GC-MS and E-nose. RSC Adv. 2019, 9, 21164–21174. [Google Scholar] [CrossRef] [Green Version]
- Gliszczyńska-Świgło, A.; Chmielewski, J. Electronic nose as a tool for monitoring the authenticity of food. A review. Food Anal. Methods 2017, 10, 1800–1816. [Google Scholar] [CrossRef] [Green Version]
- Rajamäki, T.; Alakomi, H.L.; Ritvanen, T.; Skyttä, E.; Smolander, M.; Ahvenainen, R. Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat. Food Control 2006, 17, 5–13. [Google Scholar] [CrossRef]
- Mohebi, E.; Marquez, L. Intelligent packaging in meat industry: An overview of existing solutions. J. Food Sci. Technol. 2015, 52, 3947–3964. [Google Scholar] [CrossRef]
- Papkovsky, D.B.; Papkovskaia, N.; Smyth, A.; Kerry, J.; Ogurtsov, V.I. Phosphorescent sensor approach for non-destructive measurement of oxygen in packaged foods: Optimisation of disposable oxygen sensors and their characterization over a wide temperature range. Anal. Lett. 2000, 33, 1755–1777. [Google Scholar] [CrossRef]
- O’Riordan, T.C.; Voraberger, H.; Kerry, J.P.; Papkovsky, D.B. Study of migration of active components of phosphorescent oxygen sensors for food packaging applications. Anal. Chim. Acta 2005, 530, 135–141. [Google Scholar] [CrossRef]
- Kelly, C.A.; Cruz-Romero, M.; Kerry, J.P.; Papkovsky, D.B. Stability and safety assessment of phosphorescent oxygen sensors for use in food packaging applications. Chemosensors 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Bariya, M.; Fahad, H.M.; Wu, J.; Han, R.; Gupta, N.; Javey, A. Trace-level, multi-gas detection for food quality assessment based on decorated silicon transistor arrays. Adv. Mater. 2020, 32. [Google Scholar] [CrossRef]
- Yebo, N.A.; Sree, S.P.; Levrau, E.; Detavernier, C.; Hens, Z.; Martens, J.A.; Baets, R. Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator. Opt. Express 2012, 20, 11855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J. Analytical Electrochemistry, 2nd ed.; Wiley-VCH: Hoboken, NJ, USA, 2000; ISBN 0471282723. [Google Scholar]
- Adley, C. Past, present and future of sensors in food production. Foods 2014, 3, 491–510. [Google Scholar] [CrossRef] [Green Version]
- Realini, C.E.; Marcos, B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014, 98, 404–419. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Jiang, Y.; Jia, F.; Yu, Y.; Chen, J.; Wang, Z. An aptamer-based electrochemical biosensor for the detection of Salmonella. J. Microbiol. Methods 2014, 98, 94–98. [Google Scholar] [CrossRef]
- Mishra, G.K.; Barfidokht, A.; Tehrani, F.; Mishra, R.K. Food safety analysis using electrochemical biosensors. Foods 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Dudnyk, Y.; Janeček, E.R.; Vaucher-Joset, J.; Stellacci, F. Edible sensors for meat and seafood freshness. Sens. Actuators B Chemical 2018, 259, 1108–1112. [Google Scholar] [CrossRef]
- Mallov, I.; Jeeva, F.; Caputo, C.B. A Dual Aensor for Biogenic Amines and Oxygen Based on Genipin Immobilized in Edible Calcium Alginate Gel Beads [Internet]. ChemRxiv. 2020. Available online: https://chemrxiv.org/articles/preprint/A_Dual_Sensor_for_Biogenic_Amines_and_Oxygen_Based_on_Genepin_Immobilized_in_Edible_Calcium_Alginate_Gel_Beads/12252323/1 (accessed on 6 November 2020). [CrossRef]
- Manthou, V.; Vlachopoulou, M. Bar-code technology for inventory and marketing management systems: A model for its development and implementation. Int. J. Prod. Econ. 2001, 71, 157–164. [Google Scholar] [CrossRef]
- Kumar, P.; Reinitz, H.W.; Simunovic, J.; Sandeep, K.P.; Franzon, P.D. Overview of RFID technology and its applications in the food industry. J. Food Sci. 2009, 74. [Google Scholar] [CrossRef] [PubMed]
- Sarac, A.; Absi, N.; Dauzere-Pérès, S. A literature review on the impact of RFID technologies on supply chain management. Int. J. Prod. Econ. 2010, 128, 77–95. [Google Scholar] [CrossRef]
- Plessky, V.P. Review on saw RFID tags. In Proceedings of the 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum, Besançon, France, 20–24 April 2009; pp. 14–23. [Google Scholar]
Commercial Name | Principle | Application | Materials and Forms |
---|---|---|---|
Activ-FilmTM (www.csptechnologies.com) | Moisture absorber | Fruit and vegetables | Low-density polyethylene (LDPE) film |
Tenderpac® (www.sealpacinternational.com) | Moisture absorber | Meat products | Polyethylene terephthalate (PET) tray |
PEAKfreshTM (www.peakfresh.com) | Ethylene scavenger | Fruit and vegetables | Film impregnated with a natural mineral |
BIOPAC (www.biopac.com.au) | Ethylene scavenger | Fresh products | Sachet in porous material mixed with potassium permanganate |
ATCO® (www.emcotechnologies.co.uk) | Carbon dioxide absorber | Fresh products | Film—bags |
SANDRY® (www.hengsan.com) | Carbon dioxide absorber | Fruit, coffee, fermented food | Sachets |
McAirlaid’s CO2Pad (www.mcairlaids.net) | Carbon dioxide emitter | Fish, meat and fruit products | Cellulose-based pads |
FreshPax® (www.multisorb.com) | Carbon dioxide emitter | Processed and pre-cooked food | Packets and films realize with food grade materials |
CeloxTM (www.grace.com) | Oxygen scavenger | Beverages | Cans sealants and closure coatings |
ZERO2 (www.ipl-plastics.com) | Oxygen scavenger | Fresh products | Multilayer film fused to injection-molded containers |
Biomaster® (www.biomasterprotected.com) | Antimicrobial | Chilled and frozen products | Cool bags |
Food-touch® (www.microbeguard.com) | Antimicrobial | All food products | Various forms of paper products |
ATOX (www.artibal.com) | Antioxidant | Cereal products | Film coating containing oregano essential oils |
Pure Temp (www.puretemp.com) | Phase Change Materials | Frozen food, cold storage | Palm oil, coconut oil and soybean oil-based |
Green Box (www.greenbox.it) | Phase Change Materials | Perishable products | Vegetable oil-based |
Structures | Desiccants | ||
---|---|---|---|
Inorganics-Based | Organic-Based | ||
Sachets | systems where moisture scavenger materials are enclosed into a small porous bag. |
|
|
Pads, blankets, sheets, trays: | mostly composed of porous materials, foamed and perforated sheets and moisture superabsorbent materials. | ||
Labels | systems composed of adhesive dessiccant labels, suitable for low-level humidity systems. |
Active Agent | Extract Production | Polymer | Active Packaging Production Technique | Food | References |
---|---|---|---|---|---|
Rosemary extract | Solid-liquid extraction (L/S = 10 mL/g, 50 °C, 60 min, solvent: water) | Cassava starch film | Solvent casting | Simulants (water and ethanol 95%) | [102] |
Green tea extract (inorganic capsules) | Polyethylene | Meat | [103] | ||
Garlic extract | Polyethylene/polyethylene; Polyethylene/ethylene-vinyl alcohol copolymer; Polyethylene/zein | Corona treatment + spreading | Bread | [67] | |
Propolis extract | Solid-liquid extraction (50 °C, 24 h, solvent: 30% ethanol aqueous solution) | Chitosan | Solvent casting | [104] | |
Marjoram essential oil (encapsulated in nanoemulsion and Pickering emulsion) | Hydrodistillation 4 h | Pectin | Casting | Simulant (ethanol 95%) | [76] |
Mint leaves and pomegranate peel extract | Reflux extraction, L/S = 10 mL/g, 1 h, distilled water | Polyvinilalcohol/chitosan | Casting | Simulant (distilled water) | [105] |
Murta fruit extract | Solid-liquid extraction, 40 °C, 3 h, ethanol 50% | Methyl cellulose | Solution-extension-evaporation (“casting”) | [106] | |
Z. clinopodioides leave extract, ethanolic grape seed extract | Hydrodistillation, 3.5 h (for Z. clinopodioides leave extract) | Chitosan, gelatin | Casting | [107] | |
Grapefruit peel and mint leaves extracts | Reflux Extraction, water, 1 h, L/S = 10 mL/g | Guar gum/chitosan/ polyvinyl alcohol | Casting | [108] | |
Rice straw extract | Solid-liquid extraction, L/S = 10 mL/g, 1 h, room temperature, water | Potato starch | Compression-molding | [109] | |
Green tea and basil extracts | Infusion (L/S = 100 mL/3 g, 100 °C, 40 min) | Cassava starch | Casting | Simulant (water) | [110] |
Olea europea leaf extract | Enhanced solvent extraction (solvent: CO2 +50% ethanol, 120 and 200 bar, 55 and 80 °C, total flow of 10 g/min, 2 h) | Polyethylene terephthalate/polypropylene | Supercritical solvent impregnation | Simulants (distilled water, 3% acetic acid, 95% ethanol) | [111] |
Thymus vulgaris L extract | Supercritical extraction | Polylactic acid/ polycaprolactone | Solvent casting+ Supercritical solvent impregnation | [112] | |
Allium ursinum L. (wild garlic) extract | Ultrasound-assisted extraction (20.06 W/L, 80 °C, 80 min, solvent-to-solid ratio = 5 g/g, solvent: 70% ethanol-in-water solution) | Polylactic acid | Electrospinning + annealing | [113] | |
Tomato by-product extract | Ultrasound-assisted extraction (ethanol 98%, solvent-to solid ratio 5 mL/g, 30 min) | polyvinyl alcohol/chitosan | Solvent casting | [114] | |
Persicaria minor extract | Solid-liquid extraction (aqueous solvent containing 75% ethanol at a ratio 1:20 (w/v), under shaking at 150 rpm, room temperature, 24 h). | Semi-refined carrageenan powder | Solvent casting | Meat Patties | [115] |
Aloe debrana and papaya leaves extract | Aloe gel extraction and homogenization: solvent-free extraction by screw press (for papaya leaves) | Gelatin | Solvent casting | [116] | |
Apple pomace extract | Soxhlet extraction (ethanol:water solution 80:20 v/v, 120 min, solvent-to-solid ratio 10 mL/g) | Bacterial cellulose-based nanopapers coated with a hydrophobic medium chain-length polyhydroxyalkanoate | Solvent casting | [117] | |
Pumpkin residue extract and oregano essential oil | Solid-liquid extraction/homogeneization (ethanol, solvent-to-solid ratio 20 mL/5 g 10 min) | Cassava starch | Solvent casting | Ground beef | [118] |
mango peels extract | Maceration (ethanol, solvent-to-solid ratio 10 mL/g, 24 h) | Fish gelatin | Solvent casting | [119] |
Commercial Name | Application | Principle |
---|---|---|
3MTM MonitorMark® (www.3m.com) | Backery, beverage, meat | Self-adhesive pad for easy attachment to secondary packaging to monitor temperature exposure, not product quality. The pad containing a blue dyed fatty acid ester inside a carrier substance. The dye remains inside the pad until the carrier undergoes a phase change due to temperature exposure above the response temperature, then the dye diffuses along a wick and the distance the dye has migrated along the track is measured as response |
Fresh-Check® Temperature IntelligenceTM (www.fresh-check.com) | All fresh products | Self-adhesive device based on solid state polymerization reaction resulting in highly colored polymer. As the active center exposed to the temperature over time it gradually changes color to show the freshness of the food. The active center circle darkens irreversibly |
Insignia Deli Intelligent LabelsTM (www.insigniatechnologies.com) | Chilled products | Color change accelerates with fluctuation or change in pre-calibrated temperature range |
OnVuTM (www.packworld.com) | Meat, fish and dairy products | It is composed of a photochromic ink based on benzylpyridines activated by UV light, which makes them turn a dark blue color. Then, benzylpyridines become progressively lighter over time and even if the ambient temperature rises |
CoolVu Food® (www.product.statnano.com) | Dairy products and beverage | Over a period of time, an active zone fades from silver to white. The higher the storage temperature, the faster the fading |
Smart dot (www.evigence.com) | Bakery and frozen products | Indicator changes color from green to red when exposed to temperature |
WarmMark® (www.deltatrak.com) | Shipping, storage, processing | Visual pass/fail confirmation of exposure to temperature excursions. It is a blotter paper pad saturated with a red-dyed chemical |
Cold Chain iTokenTM (www.deltatrak.com) | Supply chain | Simple pull-tab activation provides positive “ON” reading; can be scanned with barcode readers |
TempDot® (www.deltatrak.com) | Seafood and meat | Indicator window confirms activation; labels can be shipped and stored under any temperature |
Freshtag/Check point ® (www.vitsab.com) | Meat, fish and dairy products | The indicator has two separate compartments: enzyme solution compartment and substrate solution compartment and pH indicator; controlled lipolytic hydrolysis of substrate by enzymes triggers pH reduction and color change from green to red |
OliTecTM (www.oli-tec.com) | Fresh products | It is a multi-layer label that can monitor degradation profiles of food products at specific storage conditions |
TOPCRYO (www.cryolog.com) | Cold chain | It can monitor cold chain compliance; microbiological label changes its color from green to red |
Traceo® (www.cryolog.com) | Chilled food products | It is based on a microbiological system. It is a transparent adhesive label in which selected strains of lactic acid bacteria are trapped. It delivers a clear twofold response: an irreversible change from colorless to pink and a simultaneous opacification reaction once the product has experienced critical temperature abuses or once it has reached its use by date |
eO® (www.cryolog.com) | Cold chain | It is based on a microbiological system. It is an adhesive label in the form of a small gel pad shaped like the petals of a flower that change from green to red color. The color change represents a pH change due to microbial growth of lactic acid bacteria |
Keep-it® (www.keep-it.com) | Fresh products, especially fish | The content of the indicator is specifically tailored to different products, and simulate how the product’s remaining shelf-life is reduced over time. When the product is stored where it is warm, the indicator will move rapidly. When the product is kept cold, the indicator will move slowly. When the indicator shows zero, the product is no longer edible |
FreshCode® (www.freshcodelabel.com) | Poultry products | The white center of the indicator is impregnated with an intelligent ink, which captures the emission of volatile gases released during spoilage of chicken in modified atmosphere packaging. The product is no longer suitable for consumption when the indicator turns fully black |
Tempix® (www.tempix.com) | Cold chain | The black bar in the indicator ensures that the product has been kept at the correct temperature throughout the cold chain. Should the product have been exposed to temperatures above the recommended limit at any stage of its handling, the black bar will disappear from the window |
Commercial Name | Application | Principle | Way of Acting |
---|---|---|---|
Raflatac (www.upmraflatac.com) | Poultry | It is based on a nanolayer of silver that reacts with hydrogen sulfide, a breakdown of cysteine | The indicator is opaque light brown at the moment of packaging, as silver sulfide is formed the color of the layer is converted to transparent |
RipeSense® (www.ripesense.co.nz) | Fruit | It detects aroma components or gases involved in the ripening process (e.g., ethylene) | The label is initially red and graduates to orange and finally yellow as the ripening progresses |
Food freshTM (www.vanprob.com) | Meat | It is an irreversible time monitoring self-adhesive label indicators that can be set to time out within a given ‘consume within’ time frame, ranging from a few days to months. | The indicator contains a porous membrane, through which a colored liquid travels at a pre-calibrated rate. It is activated by squeezing the bubble placed above. A red line appears almost immediately to confirm that the indicator has started monitoring |
Commercial Name | Application | Principle | Way of Acting |
---|---|---|---|
Ageless Eye® (www.mgc.co.jp) | Meat | These are sachets contain an oxygen indicator tablet | When oxygen is absent in the headspace, the indicator displays a pink color. When oxygen is present, it turns blue |
Tell-TabTM (www.impakcorporation.com) | All products | It is an in-package monitor which indicates the presence of oxygen | When exposed to oxygen, the system turns blue or purple, then returns to its original pink color as the oxygen in the container is reduced |
O2SenseTM (www.evigence.com) | Fresh products | An eye readable indicator to detect leakages in modified atmosphere packaging MAP. | It acts by means of a color change |
Novas Insignia Technologies (www.insigniatechnologies.com) | Products packed in a modified atmosphere | It shows when packaging has been damaged. This allows manufacturers and retailers to remove this product from the supply chain | A specialized pigment for use in plastic packaging shows a clear color change |
Shelf Life Guard (www.upm.com) | Meat | The consumer is informed if air has replaced the modified atmosphere gases within the package due to a breach or leak | It acts by means of a color change based on the indicator’s red-ox dye reacting with oxygen between the labeling layers from transparent to blue |
Commercial Name | Application | Principle |
---|---|---|
O2xyDot® (www.oxysense.com) | All products | Optical sensor placed in transparent or semi-transparent packages to measure oxygen with sensitive, rapid and non-destructive measurements |
Flex Alert (www.flex-alert.com) | Coffee beans, dried nuts, seeds, wine barrels and fresh fruit | Flexible biosensor to detect toxins in packaged foods throughout the supply chain. It has been specifically developed against Escherichia coli, Listeria spp., Salmonella spp., and aflatoxins |
Commercial Name | Application | Principle |
---|---|---|
Easy2log® (www.environmental-expert.com) | Seafood, meat and poultry, milk-based products, frozen food | It is a low cost, semi-passive tag that allows monitoring temperature-sensitive products during transportation and storage. The tag is also able to calculate the Mean Kinetic Temperature and user configurable remaining shelf-life time as well as generate alarms in case these parameters exceeded user defined thresholds |
CS8304 (www.convergence.com.hk) | Cold chain | The tag provides 10,000 samples of logging memory for saving of temperature data. LED light indicates temperature violations |
TempTRIP (www.temptrip.com) | Cold chain | This temperature tag uses ultra-high frequency to communicate wirelessly to readers that send the results directly to Internet Web page |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drago, E.; Campardelli, R.; Pettinato, M.; Perego, P. Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods 2020, 9, 1628. https://doi.org/10.3390/foods9111628
Drago E, Campardelli R, Pettinato M, Perego P. Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods. 2020; 9(11):1628. https://doi.org/10.3390/foods9111628
Chicago/Turabian StyleDrago, Emanuela, Roberta Campardelli, Margherita Pettinato, and Patrizia Perego. 2020. "Innovations in Smart Packaging Concepts for Food: An Extensive Review" Foods 9, no. 11: 1628. https://doi.org/10.3390/foods9111628
APA StyleDrago, E., Campardelli, R., Pettinato, M., & Perego, P. (2020). Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods, 9(11), 1628. https://doi.org/10.3390/foods9111628