Influence of Rice Flour, Glutinous Rice Flour, and Tapioca Starch on the Functional Properties and Quality of an Emulsion-Type Cooked Sausage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of an Emulsion-Type Cooked Sausage
2.2. Proximate Composition and pH Measurement
2.3. Cooking Yield and Moisture Retention
2.4. Emulsion Stability
2.5. Texture Profile Analysis
2.6. Water State Measurements
2.7. Raman Spectroscopy Measurements
2.8. Microstructure Evaluation
2.9. Statistical Analysis
3. Results
3.1. Proximate Composition of Emulsion-Type Sausage
3.2. Cooking Yield and Emulsion Stability
3.3. Texture Profile Analysis
3.4. Water State
3.5. Protein Secondary Structures
3.6. Microstructure Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, W.; Xiao, S.; Samaraweera, H.; Lee, E.J.; Ahn, D.U. Improving functional value of meat products. Meat Sci. 2010, 86, 15–31. [Google Scholar] [CrossRef]
- Mahmood, K.; Kamilah, H.; Shang, P.L.; Sulaiman, S.; Ariffin, F.; Alias, A.K. A review: Interaction of starch/non-starch hydrocolloid blending and the recent food applications. Food Biosci. 2017, 19, 100–120. [Google Scholar] [CrossRef]
- Petracci, M.; Bianchi, M.; Mudalal, S.; Cavani, C. Functional ingredients for poultry meat products. Trends Food Sci. Technol. 2013, 33, 27–39. [Google Scholar] [CrossRef]
- Wu, M.; Wang, J.; Hu, J.; Li, Z.; Liu, R.; Liu, Y.; Cao, Y.; Ge, Q.; Yu, H. Effect of typical starch on the rheological properties and NMR characterization of myofibrillar protein gel. J. Sci. Food Agric. 2019, 100, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.D.; Holley, R.A. Factors Influencing Gel Formation by Myofibrillar Proteins in Muscle Foods. Compr. Rev. Food Sci. Food Saf. 2011, 10, 33–51. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, W.; Zhou, G. Effects of glutinous rice flour on the physicochemical and sensory qualities of ground pork patties. LWT Food Sci. Technol. 2014, 58, 85–93. [Google Scholar] [CrossRef]
- Pereira, J.; Zhou, G.; Zhang, W. Effects of Rice Flour on Emulsion Stability, Organoleptic Characteristics and Thermal Rheology of Emulsified Sausage. J. Food Nutr. Res. 2016, 4, 216–222. [Google Scholar]
- Ali, M.S.; Kim, G.D.; Seo, H.W.; Jung, E.Y.; Kim, B.W.; Yang, H.S.; Joo, S.T. Possibility of making low-fat sausages from duck meat with addition of rice flour. Asian Australas. J. Anim. Sci. 2011, 24, 421–428. [Google Scholar] [CrossRef]
- Hughes, E.; Mullen, A.M.; Troy, D.J. Effects of fat level, tapioca starch and whey protein on frankfurters formulated with 5% and 12% fat. Meat Sci. 1998, 48, 169–180. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Hu, H.; Pereira, J.; Xing, L.; Hu, Y.; Qiao, C.; Zhou, G.; Zhang, W. Effects of regenerated cellulose emulsion on the quality of emulsified sausage. LWT Food Sci. Technol. 2016, 70, 315–321. [Google Scholar] [CrossRef]
- Zheng, H.; Xiong, G.; Han, M.; Deng, S.; Xu, X.; Zhou, G. High pressure/thermal combinations on texture and water holding capacity of chicken batters. Innov. Food Sci. Emerg. Technol. 2015, 30, 8–14. [Google Scholar] [CrossRef]
- Xue, S.; Wang, H.; Yang, H.; Yu, X.; Bai, Y.; Tendu, A.A.; Xu, X.; Ma, H.; Zhou, G. Effects of high-pressure treatments on water characteristics and juiciness of rabbit meat sausages: Role of microstructure and chemical interactions. Innov. Food Sci. Emerg. Technol. 2017, 41, 150–159. [Google Scholar] [CrossRef]
- Herrero, A.M. Raman spectroscopy a promising technique for quality assessment of meat and fish: A review. Food Chem. 2008, 107, 1642–1651. [Google Scholar] [CrossRef]
- Pietrasik, Z.; Janz, J.A.M. Utilization of pea flour, starch-rich and fiber-rich fractions in low fat bologna. Food Res. Int. 2010, 43, 602–608. [Google Scholar] [CrossRef]
- Barbut, S. Effects of regular and modified potato and corn starches on frankfurter type products prepared with vegetable oil. Ital. J. Food Sci. 2018, 30, 801–808. [Google Scholar]
- Yi, H.C.; Cho, H.; Hong, J.J.; Ryu, R.K.; Hwang, K.T.; Regenstein, J.M. Physicochemical and organoleptic characteristics of seasoned beef patties with added glutinous rice flour. Meat Sci. 2012, 92, 464–468. [Google Scholar] [CrossRef]
- Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D.L. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. Meat Sci. 2011, 89, 111–124. [Google Scholar] [CrossRef]
- Venturi, L.; Rocculi, P.; Cavani, C.; Placucci, G.; Dalla Rosa, M.; Cremonini, M.A. Water absorption of freeze-dried meat at different water activities: A multianalytical approach using sorption isotherm, differential scanning calorimetry, and nuclear magnetic resonance. J. Agric. Food Chem. 2007, 55, 10572–10578. [Google Scholar] [CrossRef]
- García, A.B.G.; Rodríguez, M.I.C.; de Ávila Hidalgo, M.D.R.; Bertram, H.C. Water mobility and distribution during dry-fermented sausages “Spanish type” manufacturing and its relationship with physicochemical and textural properties: A low-field NMR study. Eur. Food Res. Technol. 2017, 243, 455–466. [Google Scholar] [CrossRef]
- Møller, S.M.; Grossi, A.; Christensen, M.; Orlien, V.; Søltoft-Jensen, J.; Straadt, I.K.; Thybo, A.K.; Bertram, H.C. Water properties and structure of pork sausages as affected by high-pressure processing and addition of carrot fibre. Meat Sci. 2011, 87, 387–393. [Google Scholar] [CrossRef]
- García García, A.B.; Larsen, L.B.; Cambero Rodríguez, M.I.; Díaz, K.P.C.; Bertram, H.C. Proteolysis Process in Fermented Sausage Model Systems As Studied by NMR Relaxometry. J. Agric. Food Chem. 2015, 63, 3039. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Li, Y. Application of Low-Field NMR to Analyze Water Characteristics and Predict Unfrozen Water in Blanched Sweet Corn. Food Bioprocess Technol. 2013, 6, 1593–1599. [Google Scholar] [CrossRef]
- Correa, M.J.; Ferrer, E.; Añón, M.C.; Ferrero, C. Interaction of modified celluloses and pectins with gluten proteins. Food Hydrocoll. 2014, 35, 91–99. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, S.M.; Xiong, S.B.; Xie, B.J.; Qin, L.H. Role of secondary structures in the gelation of porcine myosin at different pH values. Meat Sci. 2008, 80, 632–639. [Google Scholar] [CrossRef]
- Gravelle, A.J.; Barbut, S.; Marangoni, A.G. Food-grade filler particles as an alternative method to modify the texture and stability of myofibrillar gels. Sci. Rep. 2017, 7, 11544. [Google Scholar] [CrossRef]
- Wang, X.X.; Li, Y.S.; Zhou, Y.; Ma, F.; Li, P.J.; Chen, C.G. Effect of resistant corn starch on the thermal gelling properties of chicken breast myosin. Food Hydrocoll. 2019, 96, 681–687. [Google Scholar] [CrossRef]
- Elgadir, M.A.; Akanda, M.J.H.; Ferdosh, S.; Mehrnoush, A.; Karim, A.A.; Noda, T.; Sarker, M.Z.I. Mixed biopolymer systems based on starch. Molecules 2012, 17, 584–597. [Google Scholar] [CrossRef] [Green Version]
Lean Meat (g) | Fat (g) | Ice/Water (g) | Salt (g) | Sucrose (g) | Sodium Tripolyphosphate (g) | Pepper (g) | Flour or Starch (g) | |
---|---|---|---|---|---|---|---|---|
Control | 800 | 200 | 200 | 15 | 2.5 | 3 | 2.5 | - |
RF | 800 | 170 | 200 | 15 | 2.5 | 3 | 2.5 | 30 |
GRF | 800 | 170 | 200 | 15 | 2.5 | 3 | 2.5 | 30 |
TS | 800 | 170 | 200 | 15 | 2.5 | 3 | 2.5 | 30 |
Control | RF | GRF | TS | |
---|---|---|---|---|
Nutritional composition | ||||
pH | 6.57 ± 0.01 c | 6.63 ± 0.02 b | 6.68 ± 0.01 a | 6.69 ± 0.01 a |
Protein (%) | 15.55 ± 0.23 a | 15.04 ± 0.18 b | 15.59 ± 0.32 a | 14.75 ± 0.10 b |
Moisture (%) | 64.35 ± 0.08 b | 65.72 ± 0.49 a | 65.17 ± 0.52 a | 65.36 ± 0.54 a |
Fat (%) | 18.70 ± 0.04 a | 16.04 ± 0.64 b | 16.37 ± 0.60 b | 16.43 ± 0.65 b |
Ash (%) | 1.92 ± 0.17 a | 2.08 ± 0.30 a | 1.96 ± 0.08 a | 1.92 ± 0.17 a |
Cooking quality (%) | ||||
Cooking Yield | 83.75 ± 0.44 d | 88.04 ± 0.49 c | 94.29 ± 0.33 b | 98.62 ± 0.08 a |
Moisture retention | 53.90 ± 0.28 d | 58.13 ± 0.26 c | 61.45 ± 0.21 b | 64.46 ± 0.05 a |
Emulsion Stability (%) | ||||
TFR | 9.72 ± 0.51 a | 7.87 ± 1.01 b | 3.15 ± 0.42 c | 1.47 ± 0.58 d |
Fat loss | 1.10 ± 0.04 a | 0.74 ± 0.07 b | 0.30 ± 0.02 c | 0.37 ± 0.07 c |
Control | RF | GRF | TS | |
---|---|---|---|---|
Hardness (N) | 46.14 ± 4.30 a | 50.41 ± 213.84 b | 44.95 ± 2.96 a | 65.92 ± 3.73 c |
Springiness (mm) | 0.84 ± 0.03 a | 0.82 ± 0.04 a | 0.81 ± 0.03 a | 0.91 ± 0.01 b |
Cohesiveness | 0.52 ± 0.04 a | 0.51 ± 0.07 a | 0.52 ± 0.06 a | 0.69 ± 0.05 b |
Chewiness (N) | 19.96 ± 2.71 a | 21.13 ± 3.01 a | 18.84 ± 2.58 a | 41.58 ± 4.76 b |
α-Helix (%) | β-Sheet (%) | β-Turn (%) | Unordered (%) | |
---|---|---|---|---|
CONTROL | 40.50 ± 9.88 a | 25.91 ± 8.15 a | 18.38 ± 4.42 a | 10.77 ± 0.47 b |
RF | 44.87 ± 6.92 a | 22.17 ± 5.02 a | 15.45 ± 1.57 a | 12.15 ± 1.79 b |
GRF | 48.12 ± 1.66 a | 25.42 ± 2.47a | 12.16 ± 3.23 a | 11.13 ± 0.78 b |
TS | 43.20 ± 6.82 a | 28.53 ± 10.69 a | 10.37 ± 5.67 b | 15.08 ± 6.30 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, J.; Hu, H.; Xing, L.; Zhang, W.; Zhou, G. Influence of Rice Flour, Glutinous Rice Flour, and Tapioca Starch on the Functional Properties and Quality of an Emulsion-Type Cooked Sausage. Foods 2020, 9, 9. https://doi.org/10.3390/foods9010009
Pereira J, Hu H, Xing L, Zhang W, Zhou G. Influence of Rice Flour, Glutinous Rice Flour, and Tapioca Starch on the Functional Properties and Quality of an Emulsion-Type Cooked Sausage. Foods. 2020; 9(1):9. https://doi.org/10.3390/foods9010009
Chicago/Turabian StylePereira, Jailson, Hongyan Hu, Lujuan Xing, Wangang Zhang, and Guanghong Zhou. 2020. "Influence of Rice Flour, Glutinous Rice Flour, and Tapioca Starch on the Functional Properties and Quality of an Emulsion-Type Cooked Sausage" Foods 9, no. 1: 9. https://doi.org/10.3390/foods9010009
APA StylePereira, J., Hu, H., Xing, L., Zhang, W., & Zhou, G. (2020). Influence of Rice Flour, Glutinous Rice Flour, and Tapioca Starch on the Functional Properties and Quality of an Emulsion-Type Cooked Sausage. Foods, 9(1), 9. https://doi.org/10.3390/foods9010009