Evaluation of Pediococcus pentosaceus SP2 as Starter Culture on Sourdough Bread Making
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Cell Immobilization
2.3. Freeze-Drying
2.4. Determination of Cell Counts
2.5. Sourdough Bread Making
2.6. Organic Acids Analysis
2.7. Determination of pH and Total Titratable Acidity
2.8. Determination of Specific Loaf Volume
2.9. Analysis of Flavor Volatiles
2.10. Rope and Mould Spoilage Observation
2.11. Sensory Evaluation
2.12. Statistical Analysis
3. Results and Discussion
3.1. Sourdough Bread Quality Characteristics
3.2. Volatile Compounds
3.3. Appearance of Spoilage
3.4. Consumer Acceptability
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Calasso, M.; Archetti, G.; Rizzello, C.G. Novel Insights on the Functional/Nutritional Features of the Sourdough Fermentation. Int. J. Food Microbiol. 2019, 302, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, F.B.; Ripari, V.; Waszczynskyj, N.; Spier, M.R. Overview of Sourdough Technology: From Production to Marketing. Food Bioprocess Technol. 2018, 11, 242–270. [Google Scholar] [CrossRef]
- Cocolin, L.; Alessandria, V.; Dolci, P.; Gorra, R.; Rantsiou, K. Culture Independent Methods to Assess the Diversity and Dynamics of Microbiota during Food Fermentation. Int. J. Food Microbiol. 2013, 167, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Mantzourani, I.; Plessas, S.; Odatzidou, M.; Alexopoulos, A.; Galanis, A.; Bezirtzoglou, E.; Bekatorou, A. Effect of a Novel Lactobacillus Paracasei Starter on Sourdough Bread Quality. Food Chem. 2019, 271, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, X.; Zhang, Y.; Yang, W.; Ma, G.; Ma, N.; Hu, Q.; Pei, F. A Novel Lactic Acid Bacterium for Improving the Quality and Shelf Life of Whole Wheat Bread. Food Control 2019, 109, 106914. [Google Scholar] [CrossRef]
- Gänzle, M.G.; Zheng, J. Lifestyles of Sourdough Lactobacilli–Do They Matter for Microbial Ecology and Bread Quality? Int. J. Food Microbiol. 2019, 302, 15–23. [Google Scholar] [CrossRef]
- Ouiddir, M.; Bettache, G.; Salas, M.L.; Pawtowski, A.; Donot, C.; Brahimi, S.; Mabrouk, K.; Coton, E.; Mounier, J. Selection of Algerian Lactic Acid Bacteria for Use as Antifungal Bioprotective Cultures and Application in Dairy and Bakery Products. Food Microbiol. 2019, 82, 160–170. [Google Scholar] [CrossRef]
- Omedi, J.O.; Huang, W.; Zheng, J. Effect of Sourdough Lactic Acid Bacteria Fermentation on Phenolic Acid Release and Antifungal Activity in Pitaya Fruit Substrate. LWT 2019, 111, 309–317. [Google Scholar] [CrossRef]
- Eisenbach, L.; Geissler, A.J.; Ehrmann, M.A.; Vogel, R.F. Comparative Genomics of Lactobacillus Sakei Supports the Development of Starter Strain Combinations. Microbiol. Res. 2019, 221, 1–9. [Google Scholar] [CrossRef]
- Di Cagno, R.; De Angelis, M.; Gallo, G.; Settanni, L.; Berloco, M.G.; Siragusa, S.; Parente, E.; Corsetti, A.; Gobbetti, M. Genotypic and Phenotypic Diversity of Lactobacillus Rossiae Strains Isolated from Sourdough. J. Appl. Microbiol. 2007, 103, 821–835. [Google Scholar] [CrossRef]
- Plessas, S.; Nouska, C.; Mantzourani, I.; Kourkoutas, Y.; Alexopoulos, A.; Bezirtzoglou, E. Microbiological Exploration of Different Types of Kefir Grains. Fermentation 2017, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Plessas, S.; Pherson, L.; Bekatorou, A.; Nigam, P.; Koutinas, A.A. Bread Making Using Kefir Grains as Baker’s Yeast. Food Chem. 2005, 93, 585–589. [Google Scholar] [CrossRef]
- Plessas, S.; Alexopoulos, A.; Bekatorou, A.; Mantzourani, I.; Koutinas, A. A.; Bezirtzoglou, E. Examination of Freshness Degradation of Sourdough Bread Made with Kefir through Monitoring the Flavor Volatile Composition during Storage. Food Chem. 2011, 124, 627–633. [Google Scholar] [CrossRef]
- Prado, M.R.; Blandón, L.M.; Vandenberghe, L.P.; Rodrigues, C.; Castro, G.R.; Thomaz-Soccol, V.; Soccol, C.R. Milk Kefir: Composition, Microbial Cultures, Biological Activities, and Related Products. Front. Μicrobiol. 2015, 6, 1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plessas, S.; Alexopoulos, A.; Voidarou, C.; Stavropoulou, E.; Bezirtzoglou, E. Microbial Ecology and Quality Assurance in Food Fermentation Systems. The Case of Kefir Grains Application. Anaerobe 2011, 17, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Mantzourani, I.; Chondrou, P.; Bontsidis, C.; Karolidou, K.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Galanis, A.; Plessas, S. Assessment of the Probiotic Potential of Lactic Acid Bacteria Isolated from Kefir Grains: Evaluation of Adhesion and Antiproliferative Properties in in Vitro Experimental Systems. Ann. Microbiol. 2019, 69, 751–763. [Google Scholar] [CrossRef]
- Alonso, S. Novel Preservation Techniques for Microbial Cultures. In Novel Food Fermentation Technologies; Springer: Berlin/Heidelberg, Germany, 2016; pp. 7–33. [Google Scholar]
- Maisnam, D.; Rasane, P.; Dey, A.; Kaur, S.; Sarma, C. Recent Advances in Conventional Drying of Foods. J. Food Technol. Preserv. 2017, 1, 25–34. [Google Scholar]
- Chávez, B.E.; Ledeboer, A.M. Drying of Probiotics: Optimization of Formulation and Process to Enhance Storage Survival. Dry. Technol. 2007, 25, 1193–1201. [Google Scholar] [CrossRef]
- Plessas, S.; Nouska, C.; Karapetsas, A.; Kazakos, S.; Alexopoulos, A.; Mantzourani, I.; Chondrou, P.; Fournomiti, M.; Galanis, A.; Bezirtzoglou, E. Isolation, Characterization and Evaluation of the Probiotic Potential of a Novel Lactobacillus Strain Isolated from Feta-Type Cheese. Food Chem. 2017, 226, 102–108. [Google Scholar] [CrossRef]
- Celano, G.; De Angelis, M.; Minervini, F.; Gobbetti, M. Different Flour Microbial Communities Drive to Sourdoughs Characterized by Diverse Bacterial Strains and Free Amino Acid Profiles. Front. Microbiol. 2016, 7, 1770. [Google Scholar] [CrossRef] [Green Version]
- Ripari, V.; Gänzle, M.G.; Berardi, E. Evolution of Sourdough Microbiota in Spontaneous Sourdoughs Started with Different Plant Materials. Int. J. Food Microbiol. 2016, 232, 35–42. [Google Scholar] [CrossRef]
- Cizeikiene, D.; Juodeikiene, G.; Paskevicius, A.; Bartkiene, E. Antimicrobial Activity of Lactic Acid Bacteria against Pathogenic and Spoilage Microorganism Isolated from Food and Their Control in Wheat Bread. Food Control 2013, 31, 539–545. [Google Scholar] [CrossRef]
- Terpou, A.; Bekatorou, A.; Bosnea, L.; Kanellaki, M.; Ganatsios, V.; Koutinas, A.A. Wheat Bran as Prebiotic Cell Immobilisation Carrier for Industrial Functional Feta-Type Cheese Making: Chemical, Microbial and Sensory Evaluation. Biocatal. Agric. Biotechnol. 2018, 13, 75–83. [Google Scholar] [CrossRef]
- Mantzourani, I.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Plessas, S. Assessment of Ready-to-Use Freeze-Dried Immobilized Biocatalysts as Innovative Starter Cultures in Sourdough Bread Making. Foods 2019, 8, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, A.; Schieberle, P. Generation of Flavor Compounds during Sourdough Fermentation: Applied and Fundamental Aspects. Trends Food Sci. Technol. 2005, 16, 85–94. [Google Scholar] [CrossRef]
- Katina, K.; Sauri, M.; Alakomi, H.-L.; Mattila-Sandholm, T. Potential of Lactic Acid Bacteria to Inhibit Rope Spoilage in Wheat Sourdough Bread. Lwt Food Sci. Technol. 2002, 35, 38–45. [Google Scholar] [CrossRef]
- Gutiérrez-Cortés, C.; Suarez, H.; Buitrago, G.; Nero, L.A.; Todorov, S.D. Characterization of Bacteriocins Produced by Strains of Pediococcus Pentosaceus Isolated from Minas Cheese. Ann. Microbiol. 2018, 68, 383–398. [Google Scholar] [CrossRef]
- Debonne, E.; Vermeulen, A.; Bouboutiefski, N.; Ruyssen, T.; Van Bockstaele, F.; Eeckhout, M.; Devlieghere, F. Modelling and Validation of the Antifungal Activity of DL-3-phenyllactic Acid and Acetic Acid on Bread Spoilage Moulds. Food Microbiol. 2020, 88, 103407. [Google Scholar] [CrossRef]
- Quattrini, M.; Liang, N.; Fortina, M.G.; Xiang, S.; Curtis, J.M.; Gänzle, M. Exploiting Synergies of Sourdough and Antifungal Organic Acids to Delay Fungal Spoilage of Bread. Int. J. Food Microbiol. 2019, 302, 8–14. [Google Scholar] [CrossRef]
- Mattila-Sandholm, T.; Haikara, A.; Skyttä, E. The Effect of Pediococcus Damnosus and Pediococcus Pentosaceus on the Growth of Pathogens in Minced Meat. Int. J. Food Microbiol. 1991, 13, 87–94. [Google Scholar] [CrossRef]
Type of Sourdough Applied | pH | TTA | Specific Loaf Volume | Organic Acids (g/kg bread) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(mL NaOH N/10) | (mL/g) | Lactic | Acetic | Formic | Propionic | n-Valeric | Caproic | Total av. | ||
Fresh SP2 | 4.45 ± 0.02 b | 8.29 ± 0.10 b | 2.48 ± 0.13 a | 2.64 ± 0.05 b | 0.99 ± 0.04 a | 0.07 ± 0.01 b | 0.05 ± 0.01 b | 0.05 ± 0.01 a | 0.04 ± 0.01 a | 3.84 |
Freeze-dried SP2 | 4.43 ± 0.03 b | 8.78 ± 0.12 a | 2.36 ± 0.10 a | 2.71 ± 0.04 b | 0.96 ± 0.05 a | 0.09 ± 0.01 b | 0.05 ± 0.01 b | 0.05 ± 0.01 a | 0.05 ± 0.01 a | 3.91 |
Immobilized SP2 | 4.46 ± 0.03 b | 9.81 ± 0.10 a | 2.39 ± 0.11 a | 2.93 ± 0.05 a | 0.96 ± 0.04 a | 0.12 ± 0.01 a | 0.08 ± 0.01 a | 0.07 ± 0.01 a | 0.05 ± 0.01 a | 4.21 |
C | 4.75 ± 0.04 a | 7.23 ± 0.10 c | 2.46 ± 0.09 a | 2.10 ± 0.11 c | 1.01 ± 0.04 a | 0.08 ± 0.01 b | 0.04 ± 0.01 b | 0.04 ± 0.01 a | 0.03 ± 0.01 a | 3.30 |
KI | Compound | RI | Concentration (μg/g) | |||
---|---|---|---|---|---|---|
Type of Sourdough Applied | ||||||
Fresh SP2 | Freeze-Dried SP2 | Immobilized SP2 | C | |||
Alcohols | ||||||
832 | Ethanol | A | 4.38 ± 0.10 a | 4.21 ± 0.12 a | 4.33 ± 0.12 a | 4.58 ± 0.10 a |
1012 | Isobutyl alcohol | A | 0.19 ± 0.02 b | 0.15 ± 0.01 b | 0.23 ± 0.03 a | 0.06 ± 0.01 c |
1120 | Isoamyl alcohol | A | 0.28 ± 0.09 b | 0.18 ± 0.02 b | 0.29 ± 0.04 a | 0.12 ± 0.02 c |
1160 | Butan-1-ol | A | 0.14 ± 0.02 b | 0.14 ± 0.01 d | 0.22 ± 0.03 a | 0.21 ± 0.03 c |
1230 | Pentan-1-ol | B | 0.12 ± 0.01 a | 0.15 ± 0.02 c | 0.14 ± 0.01 a | 0.10 ± 0.01 b |
1257 | Hexan-1-ol | A | 0.14 ± 0.03 b | 0.13 ± 0.03 b | 0.19 ± 0.04 a | 0.16 ± 0.02 b |
1435 | Heptan-1-ol | B | 0.04 ± 0.01 b | 0.03 ± 0.01 a | 0.04 ± 0.01 a | nd |
1466 | Octan-1-ol | A | 0.10 ± 0.01 a | 0.12 ± 0.02 a | 0.12 ± 0.01 a | nd |
1480 | Heptan-2-ol | A | 0.04 ± 0.01 b | 0.04 ± 0.01 a | 0.08 ± 0.01 a | nd |
1540 | 1-Octen-3-ol | B | 0.10 ± 0.01 a | 0.15 ± 0.02 b | 0.18 ± 0.02 a | nd |
1670 | Benzylalcohol | A | 0.11 ± 0.02 a | 0.11 ± 0.01 b | 0.18 ± 0.02 a | 0.13 ± 0.01 b |
1812 | 2-Phenylethanol | A | 0.25 ± 0.02 a | 0.24 ± 0.03 b | 0.29 ± 0.02 a | 0.25 ± 0.02 b |
Esters | ||||||
<800 | Ethyl acetate | A | 0.19 ± 0.04 a | 0.18 ± 0.03 b | 0.19 ± 0.04 b | 0.15 ± 0.02 b |
1107 | Butyl acetate | A | 0.05 ± 0.01 a | 0.06 ± 0.01 b | 0.06 ± 0.01 b | 0.07 ± 0.01 b |
1162 | Hexyl acetate | B | 0.07 ± 0.01 a | 0.06 ± 0.01 a | 0.05 ± 0.01 a | 0.05 ± 0.01 b |
1250 | Ethyl pentanoate | B | 0.09 ± 0.01 a | 0.07 ± 0.01 a | 0.07 ± 0.01 a | 0.03 ± 0.01 b |
1395 | Ethyl hexanoate | B | 0.08 ± 0.01 a | 0.05 ± 0.01 a | 0.05 ± 0.01 a | nd |
1438 | Ethyl octanoate | B | 0.08 ± 0.02 a | 0.05 ± 0.01 a | 0.06 ± 0.01 a | nd |
1590 | Isobutyl acetate | B | 0.12 ± 0.01 a | 0.10 ± 0.01 a | 0.09 ± 0.01 a | nd |
1848 | Ethyl dodecanoate | B | 0.05 ± 0.01 a | 0.05 ± 0.01 a | 0.04 ± 0.01 a | nd |
1850 | 2-Phenylethyl acetate | B | 0.04 ± 0.01 a | 0.05 ± 0.01 a | 0.05 ± 0.01 a | nd |
2410 | Ethyl octadecanoate | B | 0.04 ± 0.01 b | 0.05 ± 0.01 b | 0.05 ± 0.01 b | Tr |
Carbonyl compounds | ||||||
<800 | Acetaldehyde | B | 0.12 ± 0.02 a | 0.11 ± 0.04 b | 0.10 ± 0.01 b | 0.07 ± 0.01 c |
812 | 2-Methylbutanal | B | 0.08 ± 0.01 b | 0.07 ± 0.01 a | 0.06 ± 0.01 a | 0.03 ± 0.01 b |
986 | 3-Methylbutanal | A | 0.06 ± 0.02 c | 0.06 ± 0.02 a | 0.04 ± 0.01 b | 0.05 ± 0.01 c |
1002 | Hexanal | A | 0.07 ± 0.01 b | 0.09 ± 0.01 a | 0.05 ± 0.01 c | 0.05 ± 0.01 c |
1080 | Heptanal | A | Tr | Tr | Tr | Tr |
1334 | Furfural | A | 0.25 ± 0.03 a | 0.27 ± 0.04 a | 0.20 ± 0.01 a | 0.15 ± 0.02 a |
1358 | Nonanal | B | 0.05 ± 0.01 a | 0.05 ± 0.01 c | 0.05 ± 0.01 b | Tr |
1448 | γ-Butyrolactone | B | 0.89 ± 0.15 a | 1.25 ± 0.05 b | 1.33 ± 0.02 c | 0.69 ± 0.10 c |
1458 | Benzaldehyde | A | 0.28 ± 0.03 a | 0.29 ± 0.03 b | 0.22 ± 0.03 c | 0.21 ± 0.03 b |
1541 | 2-Nonenal | B | 0.13 ± 0.05 a | Tr | Tr | 0.09 ± 0.02 b |
1582 | 5-Methylfurfural | B | 0.12 ± 0.02 a | 0.10 ± 0.01 b | 0.07 ± 0.01 b | 0.07 ± 0.01 b |
Type of Sourdough | Flavor | Taste | Appearance | Overall Quality |
---|---|---|---|---|
Fresh SP2 | 8.9 ± 0.1 a | 8.3 ± 0.1 a | 8.1 ± 0.1 a | 8.5 ± 0.1 a |
Freeze-dried SP2 | 8.8 ± 0.1 a | 8.4 ± 0.1 a | 8.0 ± 0.1 a | 8.4 ± 0.1 a |
Immobilized SP2 | 8.8 ± 0.2 a | 8.2 ± 0.2 a | 8.1 ± 0.2 a | 8.6 ± 0.2 a |
C | 8.8 ± 0.2 a | 8.3 ± 0.1 a | 8.1 ± 0.2 a | 8.5 ± 0.2 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plessas, S.; Mantzourani, I.; Bekatorou, A. Evaluation of Pediococcus pentosaceus SP2 as Starter Culture on Sourdough Bread Making. Foods 2020, 9, 77. https://doi.org/10.3390/foods9010077
Plessas S, Mantzourani I, Bekatorou A. Evaluation of Pediococcus pentosaceus SP2 as Starter Culture on Sourdough Bread Making. Foods. 2020; 9(1):77. https://doi.org/10.3390/foods9010077
Chicago/Turabian StylePlessas, Stavros, Ioanna Mantzourani, and Argyro Bekatorou. 2020. "Evaluation of Pediococcus pentosaceus SP2 as Starter Culture on Sourdough Bread Making" Foods 9, no. 1: 77. https://doi.org/10.3390/foods9010077
APA StylePlessas, S., Mantzourani, I., & Bekatorou, A. (2020). Evaluation of Pediococcus pentosaceus SP2 as Starter Culture on Sourdough Bread Making. Foods, 9(1), 77. https://doi.org/10.3390/foods9010077