Alternative Sweeteners Modify the Urinary Excretion of Flavanones Metabolites Ingested through a New Maqui-Berry Beverage
Abstract
1. Introduction
2. Material and Methods
2.1. Chemicals and Reagents
2.2. Juice Preparation and Characterization of the Phenolic Content
2.3. Experimental Design
2.4. Urine Samples Collection, Processing, and Analysis by UHPLC-ESI-MS/MS
2.5. Statistical Analysis
3. Results and Discussion
3.1. Flavanone Content of Juices
3.2. Qualitative Analysis of Urine Metabolites of Flavanones from Maqui-Citrus Juice
3.3. Quantification of Flavanone Metabolites in Urine Samples
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Avena, N.M.; Rada, P.; Hoebel, B.G. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 2008, 32, 20–39. [Google Scholar] [CrossRef] [PubMed]
- Hone-Blanchet, A.; Fecteau, S. Overlap of food addiction and substance use disorders definitions: Analysis of animal and human studies. Neuropharmacology 2014, 85, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Markus, C.R.; Rogers, P.J.; Brouns, F.; Schepers, R. Eating dependence and weight gain; no human evidence for a ‘sugar-addiction’ model of overweight. Appetite 2017, 114, 64–72. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Smith, D.G.; Robbins, T.W. The neurobiological underpinnings of obesity and binge eating: A rationale for adopting the food addiction model. Biol. Psychiatry 2013, 73, 804–810. [Google Scholar] [CrossRef]
- Malik, V.S.; Schulze, M.B.; Hu, F.B. Intake of sugar-sweetened beverages and weight gain: A systematic review. Am. J. Clin. Nutr. 2006, 84, 274–288. [Google Scholar] [CrossRef]
- Palmer, J.R.; Boggs, D.A.; Krishnan, S.; Hu, F.B.; Singer, M.; Rosenberg, L. Sugar-Sweetened Beverages and Incidence of Type 2 Diabetes Mellitus in African American Women. Arch. Intern. Med. 2008, 168, 1487–1492. [Google Scholar] [CrossRef]
- Schulze, M.B.; Manson, J.E.; Ludwig, D.S.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Sugar-Sweetened Beverages, Weight Gain, and Incidence of Type 2 Diabetes in Young and Middle-Aged Women. JAMA 2004, 292, 927–934. [Google Scholar] [CrossRef]
- Bernstein, A.M.; de Koning, L.; Flint, A.J.; Rexrode, K.M.; Willett, W.C. Soda consumption and the risk of stroke in men and women. Am. J. Clin. Nutr. 2012, 95, 1190–1199. [Google Scholar] [CrossRef]
- Reedy, J.; Krebs-Smith, S.M. Dietary sources of energy, solid fats, and added sugars among children and adolescents in the United States. J. Am. Diet. Assoc. 2010, 110, 1477–1484. [Google Scholar] [CrossRef]
- Amiot, M.J.; Riva, C.; Vinet, A. Effects of dietary polyphenols on metabolic syndrome features in humans: A systematic review. Obes. Rev. 2016, 17, 573–586. [Google Scholar] [CrossRef]
- Chen, L.; Cao, H.; Xiao, J. Polyphenols. In Polyphenols: Properties, Recovery, and Applications; Woodhead Publishing: Duxford, UK, 2018; pp. 45–67. [Google Scholar] [CrossRef]
- Breda, J.; Jewell, J.; Keller, A. The Importance of the World Health Organization Sugar Guidelines for Dental Health and Obesity Prevention. Caries Res. 2019, 53, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Girones-Vilaplana, A.; Mena, P.; Moreno, D.A.; Garcia-Viguera, C. Evaluation of sensorial, phytochemical and biological properties of new isotonic beverages enriched with lemon and berries during shelf life. J. Sci. Food Agric. 2014, 94, 1090–1100. [Google Scholar] [CrossRef] [PubMed]
- Sloan, A.E. Top 10 Functional Food Trends. Food Technol. 2018, 72, 26–43. [Google Scholar]
- Törrönen, R.; McDougall, G.J.; Dobson, G.; Stewart, D.; Hellström, J.; Mattila, P.; Pihlava, J.-M.; Koskela, A.; Karjalainen, R. Fortification of blackcurrant juice with crowberry: Impact on polyphenol composition, urinary phenolic metabolites, and postprandial glycemic response in healthy subjects. J. Funct. Foods 2012, 4, 746–756. [Google Scholar] [CrossRef]
- Morand, C.; Dubray, C.; Milenkovic, D.; Lioger, D.; Martin, J.F.; Scalbert, A.; Mazur, A. Hesperidin contributes to the vascular protective effects of orange juice: A randomized crossover study in healthy volunteers. Am. J. Clin. Nutr. 2011, 93, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Napoleone, E.; Cutrone, A.; Zurlo, F.; Di Castelnuovo, A.; D’Imperio, M.; Giordano, L.; De Curtis, A.; Iacoviello, L.; Rotilio, D.; Cerletti, C.; et al. Both red and blond orange juice intake decreases the procoagulant activity of whole blood in healthy volunteers. Thromb. Res. 2013, 132, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Molina, E.; Dominguez-Perles, R.; Moreno, D.A.; Garcia-Viguera, C. Natural bioactive compounds of Citrus limon for food and health. J. Pharm. Biomed. Anal. 2010, 51, 327–345. [Google Scholar] [CrossRef]
- Gironés-Vilaplana, A.; Mena, P.; García-Viguera, C.; Moreno, D.A. A novel beverage rich in antioxidant phenolics: Maqui berry (Aristotelia chilensis) and lemon juice. LWT-Food Sci. Technol. 2012, 47, 279–286. [Google Scholar] [CrossRef]
- Medina, S.; Dominguez-Perles, R.; Garcia-Viguera, C.; Cejuela-Anta, R.; Martinez-Sanz, J.M.; Ferreres, F.; Gil-Izquierdo, A. Physical activity increases the urinary excretion of flavanones after dietary aronia-citrus juice intake in triathletes. Food Chem. 2012, 135, 2133–2137. [Google Scholar] [CrossRef]
- Réveillon, T.; Rota, T.; Chauvet, É.; Lecerf, A.; Sentis, A. Repeatable inter-individual variation in the thermal sensitivity of metabolic rate. Oikos 2019, 128. [Google Scholar] [CrossRef]
- Hollman, P.C.; de Vries, J.H.; van Leeuwen, S.D.; Mengelers, M.J.; Katan, M.B. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 1995, 62, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Daher, M.I.; Matta, J.M.; Abdel Nour, A.M. Non-nutritive sweeteners and type 2 diabetes: Should we ring the bell? Diabetes Res. Clin. Pract. 2019, 155, 107786. [Google Scholar] [CrossRef] [PubMed]
Beverages | Flavanones Z (mg/100 mL) | ||||
---|---|---|---|---|---|
N-Hexoside Derivated | E-Rutinoside | N-Rutinoside | H-Rutinoside | Total | |
Stevia | 0.15 ± 0.02 | 0.32 ± 0.04 | 1.30 ± 0.01 | 4.87 ± 0.01 | 6.64 ± 0.2 |
Sucralose | 0.14 ± 0.02 | 0.32 ± 0.01 | 1.31 ± 0.01 | 4.86 ± 0.01 | 6.63 ± 0.1 |
Sucrose | 0.14 ± 0.01 | 0.31 ± 0.03 | 1.31 ± 0.01 | 4.88 ± 0.01 | 6.64 ± 0.1 |
p-value | >0.05 N.s. | >0.05 N.s. | >0.05 N.s. | >0.05 N.s. | >0.05 N.s. |
Compound | R.T. (min) | Precursor Ion | Product Ion | Fragmentation (V) | C.E. (V) | Polarity |
---|---|---|---|---|---|---|
Eriodyctiol metabolites | ||||||
Eriodyctiol (E) | 6.49 | 287.0 | 151.0 | 70 | 10 | Negative |
Eriocitrin | N.f. | 449.0 | 287.0 | 70 | 10 | Negative |
E-glucuronide | 4.87 | 463.0 | 287.0 | 70 | 10 | Negative |
E-di-glucuronide | N.f. | 639.0 | 287.0 | 70 | 10 | Negative |
E-sulfate | 5.53 | 367.0 | 287.0 | 70 | 10 | Negative |
E-di-sulfate | 4.24 | 447.0 | 287.0 | 70 | 10 | Negative |
E-glucuronide-sulfate | N.f. | 543.0 | 287.0 | 70 | 10 | Negative |
Hesperetine metabolites | ||||||
Hesperetine (H) | 7.30 | 302.0 | 151.0 | 70 | 20 | Negative |
Hesperidin | N.f. | 609.0 | 302.0 | 70 | 20 | Negative |
H-glucuronide | N.f. | 478.0 | 302.0 | 70 | 20 | Negative |
H-di-glucuronide | N.f. | 664.0 | 302.0 | 70 | 20 | Negative |
H-sulfate | N.f. | 382.0 | 302.0 | 70 | 20 | Negative |
H-di-sulfate | N.f. | 462.0 | 302.0 | 70 | 20 | Negative |
H-glucuronide-sulfate | N.f. | 558.0 | 302.0 | 70 | 20 | Negative |
Homoeriodyctiol metabolites | ||||||
Homoeriodyctiol (HE) | 7.30 | 301.0 | 151.0 | 110 | 15 | Negative |
HE-glucuronide | 5.50 | 477.0 | 301.0 | 110 | 15 | Negative |
HE-di-glucuronide | 4.22 | 653.0 | 301.0 | 110 | 15 | Negative |
HE-sulfate | 5.90 | 381.0 | 301.0 | 110 | 15 | Negative |
HE-di-sulfate | N.f. | 461.0 | 301.0 | 110 | 15 | Negative |
HE-glucuronide-sulfate | 4.67 | 557.0 | 301.0 | 110 | 15 | Negative |
Naringenin (N) | 7.26 | 271.0 | 119.0 | 130 | 20 | Negative |
N-glucoside | 4.63 | 433.0 | 271.0 | 130 | 20 | Negative |
Narirutin | 4.86 | 579.0 | 271.0 | 130 | 20 | Negative |
N-glucuronide | 5.07 | 433.0 | 271.0 | 130 | 20 | Negative |
N-di-glucuronide | 4.09 | 623.0 | 271.0 | 130 | 20 | Negative |
N-sulfate | 5.90 | 351.0 | 271.0 | 130 | 20 | Negative |
N-di-sulfate | N.f. | 431.0 | 271.0 | 130 | 20 | Negative |
N-glucuronide-sulfate | 4.87 | 527.0 | 271.0 | 130 | 20 | Negative |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agulló, V.; Domínguez-Perles, R.; Moreno, D.A.; Zafrilla, P.; García-Viguera, C. Alternative Sweeteners Modify the Urinary Excretion of Flavanones Metabolites Ingested through a New Maqui-Berry Beverage. Foods 2020, 9, 41. https://doi.org/10.3390/foods9010041
Agulló V, Domínguez-Perles R, Moreno DA, Zafrilla P, García-Viguera C. Alternative Sweeteners Modify the Urinary Excretion of Flavanones Metabolites Ingested through a New Maqui-Berry Beverage. Foods. 2020; 9(1):41. https://doi.org/10.3390/foods9010041
Chicago/Turabian StyleAgulló, Vicente, Raúl Domínguez-Perles, Diego A. Moreno, Pilar Zafrilla, and Cristina García-Viguera. 2020. "Alternative Sweeteners Modify the Urinary Excretion of Flavanones Metabolites Ingested through a New Maqui-Berry Beverage" Foods 9, no. 1: 41. https://doi.org/10.3390/foods9010041
APA StyleAgulló, V., Domínguez-Perles, R., Moreno, D. A., Zafrilla, P., & García-Viguera, C. (2020). Alternative Sweeteners Modify the Urinary Excretion of Flavanones Metabolites Ingested through a New Maqui-Berry Beverage. Foods, 9(1), 41. https://doi.org/10.3390/foods9010041