Arthrospira Platensis (Spirulina) Supplementation on Laying Hens’ Performance: Eggs Physical, Chemical, and Sensorial Qualities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diet Preparation
2.2. Ethical Considerations
2.3. Experimental Design
2.4. Data Collection
2.5. Chemical Analysis
2.6. Statistical Analysis
- Yij=u+Ai+eij,
- Yij= represents the jth observation on the ith treatment;
- μ = overall mean;
- Ai= main effect of the ith treatment;
- eij= random error present in the jth observation on the ith treatment.
3. Results
3.1. Laying Performance
3.2. Egg Physical Characteristics
3.3. Egg Yolk Color
3.4. Egg Yolk Cholesterol Concentration
4. Discussion
4.1. Laying Performances
4.2. Egg Physical Characteristics
4.3. Egg Yolk Color
4.4. Egg Yolk Cholesterol Concentration
Author Contributions
Funding
Conflicts of Interest
References
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Arch. Toxicol. 2016, 90, 1817–1840. [Google Scholar] [CrossRef]
- Finamore, A.; Palmery, M.; Bensehaila, S.; Peluso, I. Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly Spirulina. Oxid. Med. Cell. Longev. 2017, 2017, 3247528. [Google Scholar] [CrossRef]
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef]
- Daliu, P.; Santini, A.; Novellino, E. A decade of nutraceutical patents: Where are we now in 2018? Expert Opin. Ther. Pat. 2018, 28, 875–882. [Google Scholar] [CrossRef]
- Durazzo, A.; D’Addezio, L.; Camilli, E.; Piccinelli, R.; Turrini, A.; Marletta, L.; Marconi, S.; Lucarini, M.; Lisciani, S.; Gabrielli, P.; et al. From plant compounds to botanicals and back: A current snapshot. Molecules 2018, 23, 1844. [Google Scholar] [CrossRef]
- Di Lena, G.; Casini, I.; Lucarini, M.; Lombardi-Boccia, G. Carotenoid profiling of five microalgae species from large-scale production. Food Res. Int. 2019, 120, 810–818. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M. Extractable and non-extractable antioxidants. Molecules 2019, 24, 1933. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence and human health. Phytother. Res 2019. [Google Scholar] [CrossRef]
- Farag, M.R.; Alagawany, M.; Abd El-Hack, M.E.; Dhama, K. Nutritional and healthical aspects of Spirulina (Arthrospira) for poultry, animals and human. Int. J. Pharm. 2016, 12, 36–51. [Google Scholar] [CrossRef]
- Lupatini, A.L.; Colla, L.M.; Canan, C.; Colla, E. Potential application of microalga Spirulina platensis as a protein source. J. Sci. Food Agric. 2017, 97, 724–732. [Google Scholar] [CrossRef]
- Chacon-Lee, T.; Gonzàlez-Marino, G. Microalgae for “healthy” foods—Possibilities and challenges. Compr. Rev. Food Sci. Food Saf. 2010, 9, 655–675. [Google Scholar] [CrossRef]
- Mariey, Y.; Samak, A.H.R.; Ibrahem, M.A. Effect of using spirulina platensis algae as a feed additive for poultry diets: Productive and reproductive performances of local laying hens. Egypt. Poult. Sci. 2012, 32, 201–215. [Google Scholar]
- Al-Dhabi, N.A.; Valan Arasu, M. Quantification of phytochemicals from commercial spirulina products and their antioxidant activities. Evid. Based Complement. Altern. Med. 2016, 2016, 7631864. [Google Scholar] [CrossRef]
- Deng, R.; Chow, T.J. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovsac. Ther. 2010, 28, 33–45. [Google Scholar] [CrossRef]
- Bashandry, S.A.; Alhazza, I.M.; El-Desoky, G.E.; Al-Othman, ZA. Hepatoprotective and hypolipidemic effects of Spirulina platensis in rats administered mercuric chloride. Afr. J. Pharm. 2011, 5, 175–182. [Google Scholar] [Green Version]
- Abu-Taweel, G.M.; Mohsen, G.A.M.; Antonisamy, P.; Arokiyaraj, S.; Kim, H.J.; Kim, S.J.; Park, K.H.; Kim, Y.O. Spirulina consumption effectively reduces anti-inflammatory and pain related infectious diseases. J. Infect. Public Health 2019, in press. [Google Scholar] [CrossRef]
- Hamed, M.; Soliman, H.A.M.; Sayed, A.E.H. Ameliorative effect of Spirulina platensis against lead nitrate-induced cytotoxicity and genotoxicity in catfish Clarias gariepinus. Environ. Sci. Pollut. Res. Int. 2019, 26, 20610–20618. [Google Scholar] [CrossRef]
- Li, T.T.; Tong, A.J.; Liu, Y.Y.; Huang, Z.R.; Wan, X.Z.; Pan, Y.Y.; Jia, R.B.; Liu, B.; Chen, X.H.; Zhao, C. Polyunsaturated fatty acids from microalgae Spirulina platensis modulates lipid metabolism disorders and gut microbiota in high-fat diet rats. Food Chem. Toxicol. 2019, 131, 110558. [Google Scholar] [CrossRef]
- Zhao, B.; Cui, Y.; Fan, X.; Qi, P.; Liu, C.; Zhou, X.; Zhang, X. Anti-obesity effects of Spirulina platensis protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PLoS ONE 2019, 14, e0218543. [Google Scholar] [CrossRef]
- Altmann, B.A.; Neumann, C.; Velten, S.; Liebert, F.; Mörlein, D. Meat quality derived from high inclusion of a micro-alga or insect meal as an alternative protein source in poultry diets: A pilot study. Foods 2018, 7, 34. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Venkataraman, L.V.; Somasekaran, T.; Becker, E.W. Replacement value of blue-green alga (Spirulina platensis) for fishmeal and a vitamin-mineral premix for broiler chicks. Br. Poult. Sci. 1994, 35, 373–381. [Google Scholar] [CrossRef]
- Zeweil, H.; Abaza, I.M.; Zahran, S.M. Effect of Spirulina platensis as dietary supplement on some biological traits for chickens under heat stress condition. Asian J. Biomed. Pharm. Sci. 2016, 6, 8–12. [Google Scholar]
- Dismukes, G.C.; Carrieri, D.; Bennette, N.; Aanyev, G.M.; Poswitz, MC. Aquatic phototrophs: Efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 2008, 19, 235–240. [Google Scholar] [CrossRef]
- Takashi, S. Effect of administration of Spirulina on egg quality and egg components. Anim. Husb. 2003, 57, 191–195. [Google Scholar]
- Zahroojian, N.; Morave, H.; Shivazad, M. Effects of dietary marine algae (Spirulina platensis) on egg quality and production performance of laying hens. J. Agric. Sci. Technol. 2013, 15, 1353–1360. [Google Scholar]
- Anderson, D.W.; Chung-Shih, T.; Ross, E. The Xanthophylls of Spirulina and their effect on egg yolk pigmentation. Poult. Sci. 1991, 70, 115–119. [Google Scholar] [CrossRef]
- Sujatha, T.; Narahari, D. Effect of designer diets on egg yolk composition of ‘White Leghorn’ hens. J. Food Sci. Technol. 2011, 48, 494–497. [Google Scholar] [CrossRef]
- Ginzberg, A.; Cohen, M.; Sod-Moriah, U.A.; Shany, S.; Rosenshtrauch, A.; Arad, S.M. Chickens fed with biomass of the red microalga Porphyridium sp. Have reduced blood cholesterol level and modified fatty acid composition in egg yolk. J. Appl. Phycol. 2000, 12, 325–330. [Google Scholar] [CrossRef]
- Nascimento, G.A.J. Prediction Equations of the Energetic Values of Poultry Feedstuffs for Utilizing the Meta-Analysis Principle. Ph.D. Thesis, University Lavras, Minas Gerais, Brazil, 2007. [Google Scholar]
- Haugh, R.R. The Haugh unit for measuring egg quality. U. S. Egg Poult. Mag. 1973, 43, 552–555. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 10th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1984. [Google Scholar]
- Pasin, G.; Smith, G.M.; O’mahony, M. Rapid determination of total cholesterol in egg yolk using commercial diagnostic cholesterol reagent. Food Chem. 1998, 61, 255–259. [Google Scholar] [CrossRef]
- SAS. SAS: Statistical Analysis System, Version 6; SAS Inst. Inco: Raleigh, NC, USA, 1989. [Google Scholar]
- Dogan, S.C.; Baylan, M.; Erdogan, Z.; Akpinar, G.C.; Kucukgul, A.; Duzguner, V. Performance, egg quality and serum parameters of japanese quails fed diet supplemented with spirulinaplatensis. Fresenius Environ. Bull. 2016, 25, 5857–5862. [Google Scholar]
- Selim, S.; Hussein, E.; Abou Elkhar, R. Effect of Spirulina platensis as a feed additive on laying performance, egg quality and hepatoprotective activity of laying hens. Eur. Poult. Sci. 2018, 82, 1–14. [Google Scholar]
- Parisse, A. Évolution qualitative et quantitative des composantes de l’oeuf pendant les trois phases de ponte chez la poule. J. Appl. Biosci. 2014, 74, 6080–6085. [Google Scholar]
- Englmairova, M.; Skriva, M.; Bubancova, A. A comparaison of lutein spray dreid Chlorella and synthetic carotenooids effects on yolk, oxidative stability and reproductive performance of laying hens. Czech J. Anim. Sci. 2013, 58, 412–419. [Google Scholar] [CrossRef]
- Baiao, N.C.; Mendez, J.; Mateos, J.; Garcia, M.; Matoes, G.G. Pigmeting efficacy of several oxycarotenoids on egg yolk. J. Appl. Poult. Res. 1999, 8, 472–479. [Google Scholar] [CrossRef]
- Adams, C.A. Pigmenters & poultry feeds. Feed Compd. 1985, 5, 12–14. [Google Scholar]
- Park, J.H.; Upadhaya, S.D.; Kim, I.H. Effect of dietary marine microalgae (schizochytrium) powder on egg production, blood lipid profiles, egg quality, and fatty acid composition of egg yolk in layers. Asian-Austra. J. Anim. Sci. 2015, 28, 391–397. [Google Scholar] [CrossRef]
- Vaysse-Boue, C.; Dabadie, H.; Peuchant, E.; Le Ruvet, P. Moderate dietry intake of myristic and alpha-linolenic acids increases lecithin-cholesterol acyltransferase activity in humans. Lipids 2007, 42, 717–722. [Google Scholar] [CrossRef]
- Ferchaud-Roucher, V.; Croyal, M.; Krempf, M.; Ouguerram, K. Les acides gras polyinsaturés oméga 3 augmentent l’activité de la lécithine cholestérol acyltransférase. Nutr. Clin. Métabolisme 2014, 28, S133. [Google Scholar] [CrossRef]
- Rajaram, O.V.; Barter, P.J. Increase in the particle size of high- density lipoproteins induced by purified lecithin: Cholesterol acyltransferase: Effect of low density 46 lipoproteins. Biochim. Biophys. Acta 1986, 877, 406–414. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Y.; Ma, K.Y.; Chen, F.; Chen, Z.Y. Microalga decreases plasma cholesterol by down-regulation of intestinal NPC1L1, hepatic LDL receptor, and 42 HMG-CoA reductase. J. Agric. Food Chem. 2011, 59, 6790–6797. [Google Scholar] [CrossRef]
Treatment | |||
---|---|---|---|
Ingredients, % | C | D1 (1.5% spirulina) | D2 (2.5% spirulina) |
Yellow corn | 66.5 | 65.5 | 65.5 |
Soybean meal | 25.5 | 25 | 24 |
Calcium carbonate, Mineral and Vitamin mixtureα | 8 | 8 | 8 |
spirulina | 0 | 1.5 | 2.5 |
Chemical Composition | |||
Dry Matter (%) | 90.63 | 89.73 | 90.73 |
Organic Matter (% DM) | 80.54 | 79.49 | 80.73 |
Crude Protein (% DM) | 16.0 | 16.19 | 17.3 |
Ether Extract (% DM) | 3.2 | 3.4 | 3.2 |
NDF (% DM) | 10.15 | 10.5 | 11 |
¥ Metabolizable Energy, kcal/kg DM | 2732.32 | 2738.42 | 2718.67 |
Treatment | SEM & | p-value | |||||
---|---|---|---|---|---|---|---|
C α | D1 α | D2 α | Trt β | W β | Trt * W β | ||
LW change, (g/42 days) | −56.00 ± 101.05 | −19.33 ± 120.9 | −30.00 ± 139.01 | 31.30 | NS | − | − |
Feed intake, g DM/hen/day | 105.11 ± 3.89 | 106.79 ± 0.71 | 105.43 ± 4.09 | 0.66 | NS | NS | NS |
Feed Refusal, g DM/hen/day | 3.65 ± 3.89 | 2.88 ± 0.71 | 3.44 ± 4.09 | 0.66 | NS | NS | NS |
Laying rate, % | 96.38 ± 4.18 | 94.67 ± 4.19 | 92.19 ± 9.41 | 1.28 | NS | NS | NS |
Egg weight, g | 62.76 b ± 1.53 | 63.18b ± 1.47 | 64.33a ± 1.83 | 0.32 | * | NS | NS |
Egg mass, g/hen/day | 60.47 ± 2.57 | 59.80 ± 2.83 | 59.34 ± 6.58 | 0.88 | NS | NS | NS |
Feed conversion ratio | 1.74 ± 0.089 | 1.78 ± 0.082 | 1.79 ± 0.23 | 0.03 | NS | NS | NS |
Treatment | SEM & | p-value | |||||
---|---|---|---|---|---|---|---|
C α | D1 α | D2 α | Trt β | W β | Trt * W β | ||
Egg weight, g | 62.22 b ± 2.98 | 62.98ab ± 3.54 | 64.43 a ± 3.04 | 0.54 | * | NS | NS |
Yolk weight, g | 17.92 a ± 1.41 | 18.1 a ± 1.17 | 18.22 a ± 1.23 | 0.22 | NS | * | NS |
Albumen weight, g | 34.41 b ± 1.81 | 35.08 ab ± 2.5 | 36.20 a ± 2.71 | 0.4 | * | NS | NS |
Shell weight, g | 6.63 a ± 0.41 | 6.55 a ± 0.41 | 6.75 a ± 0.46 | 0.07 | NS | * | * |
Shell thickness, mm | 0.39 ab ± 0.05 | 0.41 a ± 0.06 | 0.38 b ± 0.04 | 0.008 | * | *** | *** |
Yolk height, mm | 18.10 a ± 0.97 | 18.59 a ± 1.14 | 18.50 a ± 1.08 | 0.18 | NS | *** | NS |
Albumen height, mm | 8.64 b ± 0.79 | 9.51a ± 0.94 | 9.24 a ± 0.93 | 0.15 | * | *** | NS |
Yolk diameter, mm | 42.15 a ± 1.55 | 42.55 a ± 1.52 | 42.39 a ± 1.68 | 0.27 | NS | *** | *** |
UH | 93.22 b ± 3.92 | 97.28 a ± 4.39 | 95.99 a ± 4.32 | 0.71 | ** | * | NS |
Yolk index | 0.43 a ± 0.025 | 0.43 a ± 0.027 | 0.44 a ± 0.031 | 0.005 | NS | *** | * |
Diets | Mean of Difference | ||||
---|---|---|---|---|---|
Actual Mean at Week 1 | Week 1 and Subsequent Weeks | Week 3 and Subsequent Weeks | Week 3 and Week 6 | ||
Albumen height, mm | α C | 8.02 | 1.49 * | 0.56 NS | −0.09 NS |
α D1 | 8.67 | 0.66 NS | −0.25 NS | 0.44 ** | |
α D2 | 8.83 | 0.45 NS | 0.5 NS | 0.73 *** | |
UH | α C | 90.90 | −2.1 NS | 1.6 NS | 6.7NS |
α D1 | 93.19 | −3.76 NS | −1.65 * | 5.17 * | |
α D2 | 93.91 | −1.03 NS | 0.7 * | 6.1 *** | |
Shell thickness, mm | α C | 0.46 | 0.03 NS | −0.016 NS | −0.006 NS |
α D1 | 0.42 | 0.008 NS | 0.016 NS | 0.11 * | |
α D2 | 0.42 | 0.01 * | 0.1 ** | 0.3 *** |
Treatment | SEM & | p-value | |||||
---|---|---|---|---|---|---|---|
C α | D1 α | D2 α | Trt β | W β | Trt *W β | ||
L * | 70.55a ± 1.17 | 65.98b ± 4.42 | 63.74c ± 5.07 | 0.67 | *** | *** | *** |
a * | 1.33b ± 2.34 | 12.76a ± 8.94 | 16.19a ± 9.85 | 1.32 | *** | *** | *** |
b * | 62.10a ± 2.66 | 58.17b ± 3.41 | 55.87c ± 3.93 | 0.57 | *** | *** | *** |
Treatment | SEM & | p-Value | ||||
---|---|---|---|---|---|---|
Cα and D1 α | C α and D2 α | Trt β | W β | Trt *W β | ||
ΔL* | −4.57 a ± 4.25 | −6.81 b ± 5.07 | 0.65 | *** | *** | *** |
Δa* | 11.43 b ± 8.22 | 14.86 a ± 9.85 | 1.37 | *** | *** | *** |
Δb* | −3.93 a ± 3.41 | −6.23 b ± 3.94 | 0.57 | *** | *** | * |
Diets | Mean of Difference | ||||
---|---|---|---|---|---|
Actual Mean at Week 1 | Week 1 and Subsequent Weeks | Week 3 and Subsequent Weeks | Week 3 and Week 6 | ||
L* | α C | 72.31 | −2.1 *** | 0.4 *** | −0.1*** |
α D1 | 73.80 | −6.3 *** | 2.41 *** | 3.95 *** | |
α D2 | 72.55 | −9.25 *** | 2.79 *** | 3.30 *** | |
a * | α C | −2.79 | 4.5 *** | −0.4 *** | 0.5 *** |
α D1 | −2.75 | 8.57 *** | 7.64 *** | 7.65 *** | |
α D2 | −1.68 | 10.19 *** | 7.08 *** | 6.42 *** | |
b * | α C | 61.99 | 0.4 *** | 0.4 *** | −1.0 *** |
α D1 | 58.48 | 3.8 *** | −0.02 *** | 4.97 *** | |
α D2 | 59.81 | 6.1 *** | 4.98 *** | 5.18 *** |
Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|
C | D1 | D2 | Trt | W | Trt * W | ||
Egg yolk total cholesterol, mg/g of yolk | 14.35 ± 0.88 | 13.89 ± 1.21 | 14.39 ± 1.23 | 0.35 | NS | * | NS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omri, B.; Amraoui, M.; Tarek, A.; Lucarini, M.; Durazzo, A.; Cicero, N.; Santini, A.; Kamoun, M. Arthrospira Platensis (Spirulina) Supplementation on Laying Hens’ Performance: Eggs Physical, Chemical, and Sensorial Qualities. Foods 2019, 8, 386. https://doi.org/10.3390/foods8090386
Omri B, Amraoui M, Tarek A, Lucarini M, Durazzo A, Cicero N, Santini A, Kamoun M. Arthrospira Platensis (Spirulina) Supplementation on Laying Hens’ Performance: Eggs Physical, Chemical, and Sensorial Qualities. Foods. 2019; 8(9):386. https://doi.org/10.3390/foods8090386
Chicago/Turabian StyleOmri, Besma, Marwen Amraoui, Arbi Tarek, Massimo Lucarini, Alessandra Durazzo, Nicola Cicero, Antonello Santini, and Mounir Kamoun. 2019. "Arthrospira Platensis (Spirulina) Supplementation on Laying Hens’ Performance: Eggs Physical, Chemical, and Sensorial Qualities" Foods 8, no. 9: 386. https://doi.org/10.3390/foods8090386