From Byproduct to Resource: Fermented Apple Pomace as Beer Flavoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apple Pomace and Bacterial Strain Culture Preparation
2.2. Apple Pomace Fermentation
2.3. Thermal Treatment on Apple Pomace Volatile Profile
2.4. Beer Flavouring
2.5. Characterization of Volatile Profile of Apple Pomace and Flavored Beer
2.6. Statistical Analysis
3. Results and Discussion
3.1. Apple Pomace Fermentation
3.2. Effect of Different LAB Strains on Volatile Profile of Fermented Apple Pomace
3.3. Effect of Heating Treatment on Apple Pomace Volatiles
3.4. Effect of Apple Pomace Addition on Volatile Profile of Beer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. 2018. Available online: http://www.fao.org/faoatat (accessed on 15 May 2019).
- Shalini, R.; Gupta, D.K. Utilization of pomace from apple processing industries: A review. J. Food Sci. Technol. 2010, 47, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Kammerer, D.R.; Kammerer, J.; Valet, R.; Carle, R. Recovery of polyphenols from the by-products of plant food processing and application as valuable food ingredients. Food Res. Int. 2014, 65, 2–12. [Google Scholar] [CrossRef]
- Sun, J.; Hu, X.; Zhao, G.; Wu, J.; Wang, Z.; Chen, F.; Liao, X. Characteristics of thin-layer infrared drying of apple pomace with and without hot air pre-drying. Food Sci. Tech. Int. 2007, 13, 91–97. [Google Scholar] [CrossRef]
- Kruczek, M.; Drygaś, B.; Habryka, C. Pomace in fruit industry and their contemporary potential application. World Sci. News 2016, 48, 259–263. [Google Scholar]
- Dhillon, G.S.; Kaur, S.; Brar, S.K.; Verma, M. Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation. Ind. Crops Prod. 2012, 38, 6–13. [Google Scholar] [CrossRef]
- Rivas-Cantu, R.C.; Jones, K.D.; Mills, P.L. A citrus waste-based biorefinery as a source of renewable energy: Technical advances and analysis of engineering challenges. Waste Manag. Res. 2013, 31, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Cirlini, M.; Levante, A.; Dall’Asta, C.; Galaverna, G.; Lazzi, C. Volatile profile of elderberry juice: Effect of lactic acid fermentation using L. plantarum, L. rhamnosus and L. casei strains. Food Res. Int. 2018, 105, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Hang, Y.D.; Woodams, E.E. Solid state fermentation of apple pomace for citric acid production. Appl. Microbiol. Biotechnol. 1986, 2, 283–287. [Google Scholar] [CrossRef]
- Joshi, V.K.; Sandhu, D.K. Preratation and evaluation of an animanl feed byproduct produces by solid-state fermentation of apple pomace. Bioresour. Technol. 1996, 56, 251–255. [Google Scholar] [CrossRef]
- Gullon, B.; Yánez, R.; Alonso, J.L.; Parajó, J.C.L. L-Lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresour. Technol. 2008, 99, 308–319. [Google Scholar] [CrossRef]
- Sabatini, N.; Mucciarella, R.M.; Marsilio, V. Volatile compounds in uninoculated and inoculated table olives with Lactobacillus plantarum (Olea europaea L., cv. Moresca and Kalamata). LWT Food Sci. Technol. 2008, 41, 2017–2022. [Google Scholar] [CrossRef]
- Mehinagic, E.; Royer, G.; Symoneaux, R.; Jourjon, F.; Prost, C. Characterization of Odor-Active Volatiles in Apples: Influence of Cultivars and Maturity Stage. J. Agric. Food Chem. 2006, 54, 2678–2687. [Google Scholar] [CrossRef] [PubMed]
- Dall’Asta, C.; Cirlini, M.; Morini, E.; Galaverna, G. Brand-dependent volatile fingerprinting of Italian wines from Valpolicella. J. Chromatogr. A 2011, 1218, 7557–7565. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Petersen, M.A.; Bredie, W.L.P. Flavor profiling of apple ciders from the UK and Scandinavian region. Food Res. Int. 2018, 105, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Riu-Aumatell, M.; Miro, P.; Serra-Cayuela, A.; Buxaderas, S.; Lopez-Tamames, E. Assessment of the aroma profiles of low-alcohol beers using HS-SPME–GC-MS. Food Res. Int. 2014, 57, 196–202. [Google Scholar] [CrossRef]
- Cirlini, M.; Dall’Asta, C.; Silvanini, A.; Beghè, D.; Fabbri, A.; Galaverna, G.; Ganino, T. Volatile fingerprinting of chestnut flours from traditional Emilia Romagna (Italy) cultivars. Food Chem. 2012, 134, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Giannetti, V.; Boccacci Mariani, M.; Mannino, P.; Marini, F. Volatile fraction analysis by HS-SPME/GC-MS and chemometric modeling for traceability of apples cultivated in the Northeast Italy. Food Control 2017, 78, 215–221. [Google Scholar] [CrossRef]
- Tatsuka, K.; Suekane, S.; Sakai, Y.; Sumitani, H. Volatile constituents of kiwi fruit flowers: Simultaneous distillation and extraction versus headspace sampling. J. Agric. Food Chem. 1990, 38, 2176–2180. [Google Scholar] [CrossRef]
- Fan, W.; Qian, M.C. Headspace Solid Phase Microextraction and Gas Chromatography−Olfactometry Dilution Analysis of Young and Aged Chinese “Yanghe Daqu” Liquors. J. Agric. Food Chem. 2005, 53, 7931–7938. [Google Scholar] [CrossRef]
- Standard Reference Data NIST. 2019. Available online: http://www.nist.gov/srd/nist1a.cfm/ (accessed on 1 February 2019).
- Valim, M.F.; Rouseff, R.L.; Lin, J. Gas chromatographic-olfactometric aharacterization of aroma compounds in two types of cashew apple nectar. J. Agric. Food Chem. 2003, 51, 1010–1015. [Google Scholar] [CrossRef]
- Rychlik, M.; Schieberle, P.; Grosch, W. Compilation of Odour Thresholds, Odour Qualities and Retention Indices of Key Food Odorants; Deutsche Forschungsanstat für Lebensmittelchemie and Instit für Lebensmittelchemie der Technischen Universität München: Freising, Germany, 1998; pp. 1–63. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Fuhrmann, E.; Grosch, W. Character impact odorants of the apple cultivars Elstar and Cox orange. Mol. Nutr. Food Res. 2002, 46, 187–193. [Google Scholar] [CrossRef]
- Dixon, J.; Hewett, E.W. Factors affecting apple aroma/flavour volatile concentration: A review. New Zeal. J. Crop Hortic. 2000, 28, 155–173. [Google Scholar] [CrossRef]
- Smit, G.; Smit, B.A.; Engels, W.J.M. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev. 2005, 29, 591–610. [Google Scholar] [CrossRef] [PubMed]
- Huelin, F.E.; Murray, K.E. α-farnesene in the natural coating of apples. Nature 1996, 210, 1260–1261. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.S.; Kuo, Y.T.; Chen, S.M.; Li, Y.; Lou, B.S. Gas Chromatography-Mass Spectrometry Analysis of Photosensitive Characteristics in Citrus and Herb Essential Oils. J. Chromatogr. Sep. Tech. 2014, 6, 261. [Google Scholar]
- Wang, Y.; Zhang, C.; Li, J.; Xu, Y. Different influences of b-glucosidases on volatile compounds and anthocyanins of Cabernet Gernischt and possible reason. Food Chem. 2013, 140, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Back, W. Technical and technological prerequisites for ‘cold sterile’ bottling. BRAUWELT Int. 1997, 15, 192–201. [Google Scholar]
- Kato, T.; Shimoda, M.; Suzuki, J.; Kawaraya, A.; Igura, N.; Hayakawa, I. Changes in the odors of squeezed apple juice during thermal processing. Food Res. Int. 2003, 36, 777–785. [Google Scholar] [CrossRef]
- Varming, C.; Andersen, M.L.; Poll, L. Influence of Thermal Treatment on Black Currant (Ribes nigrum L.) Juice Aroma. J. Agric. Food Chem. 2004, 52, 7628–7636. [Google Scholar] [CrossRef]
- Su, S.K.; Wiley, R.C. Changes in apple juice flavor compounds during processing. J. Food Sci. 1998, 63, 688–691. [Google Scholar] [CrossRef]
- Sádecká, J.; Polovka, M.; Kolek, E.; Belajová, E.; Tobolkova, B.; Dasko, L.; Durec, J. Orange juice with pulp: Impact of pasteurization and storage on flavour, polyphenols, ascorbic acid and antioxidant activity. J. Food Nutr. Res. 2014, 53, 371–388. [Google Scholar]
- Aguilar-Rosas, S.F.; Ballinas-Casarrubias, M.L.; Nevarez-Moorillon, G.V.; Martin-Belloso, O.; Ortega-Rivas, E. Thermal and pulsed electric fields pasteurization of apple juice: Effects on physicochemical properties and flavour compounds. J. Food Eng. 2007, 83, 41–46. [Google Scholar] [CrossRef]
- Rossi, S.; Sileoni, V.; Perretti, G.; Marconi, O. Characterization of the volatile profiles of beer using headspace solid-phase microextraction and gas chromatography–mass spectrometry. J. Sci. Food Agric. 2014, 94, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Umano, K.; Hagi, Y.; Nakahara, K.; Shoji, A.; Shibamoto, T. Volatile chemicals identified in extracts from leaves of Japanese mugwort (Artemisia princeps Pamp.). J. Agric. Food Chem. 2000, 48, 3463–3469. [Google Scholar] [CrossRef]
- Bianchi, F.; Careri, M.; Mangia, A.; Musci, M. Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness. J. Sep. Sci. 2007, 30, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Asta, C.; Del Rio, D. Phenolic and Volatile Composition of a Dry Spearmint (Mentha spicata L.) Extract. Molecules 2016, 21, 1007. [Google Scholar] [CrossRef]
- Cullere, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas chromatography-olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef]
- Choi, H.S. Character impact odorants of citrus hallabong [(C. unshiu Marcov x C. sinensis Osbeck) x C. reticulata Blanco] cold-pressed peel oil. J. Agric. Food Chem. 2003, 51, 2687–2692. [Google Scholar] [CrossRef]
Peak Number | Identification | Aromatic Note | LRI Calc. | LRI Litt. | Reference |
---|---|---|---|---|---|
1 | Hexanal | Herbal | 1078 | 1085 | [13] |
2 | n.i. | 1079 | |||
3 | Isoamyl acetate | Fruity, banana | 1113 | 1121 | [14] |
4 | Butanol | Fruity, wine | 1141 | 1166 | [15] |
5 | 2-Heptanone | Cheesy | 1184 | 1188 | [15] |
6 | Heptanal | Herbal | 1186 | 1191 | [16] |
7 | d-Limonene | Citrus | 1196 | 1194 | [15] |
8 | n.i. | 1214 | |||
9 | 2-Hexenal | Apple, green | 1220 | 1208 | [13] |
10 | Isoamyl alcohol | Alcoholic, whiskey | 1221 | 1217 | [15] |
11 | Butyl 2-methylbutanoate | Fruity, green | 1225 | ||
12 | Pentanol | Fermented | 1247 | 1251 | [8] |
13 | Ethyl isoamyl ketone | 1253 | |||
14 | Hexyl acetate | Fruit, herb | 1270 | 1290 | [15] |
15 | Octanal | Aldehydic | 1287 | 1297 | [16] |
16 | 2-Heptenal | Green | 1322 | 1333 | [17] |
17 | Sulcatone | Citrus | 1335 | 1338 | [13] |
18 | Hexanol | Herbal | 1349 | 1344 | [18] |
19 | Nonanal | Aldehydic | 1390 | 1396 | [14] |
20 | 2-Hexenol | Leaf, green | 1402 | 1410 | [19] |
21 | Butyl caproate | Fruity, pineapple, apple | 1407 | 1407 | [13] |
22 | Hexyl butyrate | Green | 1411 | 1406 | [18] |
23 | Hexyl n-valerate | Fruity | 1422 | 1487 | [20] |
24 | 1-Octen-3-ol | Earthy | 1445 | 1455 | [17] |
25 | Isoamyl caproate | Fruity | 1454 | 1464 | [21] |
26 | Furfural | Bready, caramel | 1467 | 1475 | [16] |
27 | 2-Ethyl-1-hexanol | Citrus | 1483 | 1500 | [15] |
28 | Benzaldehyde | Fruity, almond | 1524 | 1526 | [15] |
29 | Linalool | Floral | 1543 | 1547 | [8] |
30 | Octanol | Waxy | 1553 | 1567 | [15] |
31 | Hexyl caproate | Green | 1606 | 1606 | [18] |
32 | Capric acid, ethyl ester | Waxy | 1633 | 1654 | [16] |
33 | 2-Decenal | Waxy | 1641 | 1627 | [22] |
34 | Estragole | Licorice, anise | 1668 | 1655 | [23] |
35 | Ethyl 9-decenoate | Fruity | 1685 | 1697 | [24] |
36 | α-Farnesene (Z, E) | Sweet, wood | 1717 | 1727 | [24] |
37 | α-Farnesene (E, E) | Sweet, wood | 1744 | 1740 | [25] |
38 | Hexyl caprylate | Green | 1803 | 1804 | [21] |
39 | 2,4-Decadienal/2-phenylethyl acetate | Seaweed/floral | 1807 | ||
40 | β-Damascenone | Woody, sweet, fruity | 1817 | 1820 | [8] |
41 | Trans-Geraniol | Sweet, floral, fruity | 1840 | 1845 | [8] |
42 | Geranyl acetone | Magnolia, green | 1849 | 1867 | [21] |
43 | Benzyl alcohol | Sweet, floral | 1875 | 1876 | [15] |
44 | Phenylethyl alcohol | Floral | 1909 | 1931 | [14] |
45 | Eugenol | Spicy | 2151 | 2157 | [8] |
Peak Number | Identification | Aromatic Note | LRI Calc. | LRI Litt. | Reference |
---|---|---|---|---|---|
1 | Ethyl acetate | Ethereal, fruity | 850 | 855 | [8] |
2 | Ethyl butyrate | Apple | 1032 | 1037 | [16] |
3 | Butyl acetate | Pear | 1068 | 1075 | [13] |
4 | Hexanal | Herbal | 1078 | 1085 | [13] |
5 | Isobutyl isobutyrate | Fruity | 1082 | 1092 | [38] |
6 | Isobutyl alcohol | Ethereal | 1100 | 1108 | [14] |
7 | Isoamyl acetate | Fruity, banana | 1115 | 1121 | [14] |
8 | Myrcene | Peppery, terpenic | 1149 | 1164 | [16] |
9 | Isoamyl propionate | Fruity | 1183 | 1192 | [39] |
10 | 2-Methylbutyl isobutyrate | Fruity | 1190 | 1199 | [21] |
11 | Isoamyl alcohol | Alcoholic, whiskey | 1210 | 1217 | [15] |
12 | Ethyl caproate | Fruity | 1231 | 1240 | [15] |
13 | Hexyl acetate | Fruit, herb | 1270 | 1281 | [15] |
14 | 2-Heptenal | Green | 1322 | 1333 | [17] |
15 | Ethyl heptanoate | Fruity, pineapple | 1328 | 1327 | [21] |
16 | Non-identified compound deriving from hop used as bittering agent | Herbal | 1330 | ||
17 | Sulcatone | Citrus | 1335 | 1338 | [13] |
18 | Hexanol | Herbal | 1349 | 1344 | [18] |
19 | 3-Hexenol | Green, grassy, melon | 1381 | 1387 | [40] |
20 | 2-Nonanone | Fruity | 1387 | 1395 | [17] |
21 | Nonanal | Aldehydic | 1390 | 1396 | [14] |
22 | 2-Hexenol | Leaf, green | 1402 | 1410 | [19] |
23 | Butyl caproate | Fruity, pineapple, apple | 1407 | 1407 | [13] |
24 | Hexyl butyrate | Green | 1411 | 1406 | [18] |
25 | Hexyl n-valerate | Fruity | 1422 | 1498 | [21] |
26 | Ethyl octanoate | Waxy | 1433 | 1443 | [16] |
27 | 1-Octen-3-ol | Earthy | 1445 | 1455 | [17] |
28 | Heptanol | Mushroom | 1451 | 1460 | [14] |
29 | Isoamyl caprote | Fruity | 1454 | 1464 | [21] |
30 | Sulcatol | Green | 1459 | 1461 | [21] |
31 | Furfural | Bready, caramel | 1467 | 1475 | [16] |
32 | 2-Ethyl-1-hexanol | Citrus | 1483 | 1475 | [16] |
33 | Decanal | Orange peel | 1492 | 1507 | [16] |
34 | 2-Nonanol | Fresh, cucumber | 1514 | 1528 | [21] |
35 | Benzaldehyde | Fruity, almond | 1524 | 1526 | [15] |
36 | Ethyl nonanoate | Waxy | 1531 | 1528 | [39] |
37 | Linalool | Floral | 1543 | 1547 | [8] |
38 | Octanol | Waxy | 1553 | 1567 | [15] |
39 | Hexyl caproate | Green | 1606 | 1606 | [18] |
40 | 2-Decanol | 1613 | 1621 | [21] | |
41 | Capric acid, ethyl ester | Waxy | 1633 | 1654 | [16] |
42 | Phenyl acetaldehyde | Green, honey | 1642 | 1671 | [41] |
43 | α-Caryophyllene | Spicy | 1660 | 1680 | [42] |
44 | Ethyl-9-decenoate | Fruity | 1685 | 1697 | [24] |
45 | Methyl geranate | Floral, green, fruity | 1690 | 1686 | [21] |
46 | Dihydroterpineol | Pine | 1692 | ||
47 | 2-Undecanol | Waxy | 1712 | 1706 | [21] |
48 | α-Farnesene (E, E) | Sweet, wood | 1744 | 1740 | [25] |
49 | Decanol | Fatty | 1755 | 1774 | [16] |
50 | Citronellol | Floral, rose | 1760 | 1779 | [16] |
51 | Cis-geraniol | Sweet, floral, fruity, rose | 1794 | 1788 | [8] |
52 | 2,4-Decadienal/2-phenylethyl acetate | Seaweed/floral | 1807 | ||
53 | Ethyl laurate | Waxy | 1835 | 1867 | [16] |
54 | trans-Geraniol | Sweet, floral, fruity | 1840 | 1845 | [8] |
55 | Geranyl acetone | Magnolia, green | 1849 | 1867 | [21] |
56 | Benzyl alcohol | Sweet, floral | 1875 | 1876 | [15] |
57 | Phenylethyl alcohol | Floral | 1909 | 1931 | [14] |
58 | Caprylic acid | Fatty | 2074 | 2098 | [41] |
59 | Eugenol | Spicy | 2151 | 2157 | [8] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, A.; Cirlini, M.; Guido, A.; Liberatore, C.M.; Ganino, T.; Lazzi, C.; Chiancone, B. From Byproduct to Resource: Fermented Apple Pomace as Beer Flavoring. Foods 2019, 8, 309. https://doi.org/10.3390/foods8080309
Ricci A, Cirlini M, Guido A, Liberatore CM, Ganino T, Lazzi C, Chiancone B. From Byproduct to Resource: Fermented Apple Pomace as Beer Flavoring. Foods. 2019; 8(8):309. https://doi.org/10.3390/foods8080309
Chicago/Turabian StyleRicci, Annalisa, Martina Cirlini, Angela Guido, Claudia Maria Liberatore, Tommaso Ganino, Camilla Lazzi, and Benedetta Chiancone. 2019. "From Byproduct to Resource: Fermented Apple Pomace as Beer Flavoring" Foods 8, no. 8: 309. https://doi.org/10.3390/foods8080309
APA StyleRicci, A., Cirlini, M., Guido, A., Liberatore, C. M., Ganino, T., Lazzi, C., & Chiancone, B. (2019). From Byproduct to Resource: Fermented Apple Pomace as Beer Flavoring. Foods, 8(8), 309. https://doi.org/10.3390/foods8080309