Drumstick (Moringa oleifera) Flower as an Antioxidant Dietary Fibre in Chicken Meat Nuggets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Plant Materials
2.2. Preparation of Moringa Flower Extract
2.3. Analysis of Polyphenols and Antioxidant Capacity
2.4. Determination of Dietary Fibre Content
2.5. Preparation of Chicken Nuggets
2.6. Microbial Analysis
2.7. Physicochemical Analysis
2.8. Thiobarbituric Acid Reacting Substances (TBARS) Values
2.9. Sensory Evaluation of Chicken Nuggets
2.10. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition, Phenolic Content and Antioxidant Activity of MF Extract
3.2. Effect of MF Extract on Physico-Chemical Properties of Meat Nuggets
3.3. Effect of MF on pH, TBARS Values and Total Plate Count of Chicken Nuggets during the Storage Time
3.4. Effect of MF on Instrumental Colour Stability during the Storage Time
3.5. Effect of MF on Sensory Attributes of Chicken Nuggets during the Storage Time
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lorenzo, J.M.; Pateiro, M. Influence of type of muscles on nutritional value of foal meat. Meat Sci. 2013, 93, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Wolk, A. Meat consumption and risk of colorectal cancer: A meta-analysis of prospective studies. Int. J. Cancer 2006, 119, 2657–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: a review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Banerjee, R. Dietary fibre as functional ingredient in meat products: a novel approach for healthy living—A review. J. Food Sci. Technol. 2010, 47, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Bis-Souza, C.V.; Barba, F.J.; Lorenzo, J.M.; Penna, A.L.B.; Barretto, A.C.S. New strategies for the development of innovative fermented meat products: a review regarding the incorporation of probiotics and dietary fibers. Food Rev. Int. 2019, 35, 467–484. [Google Scholar] [CrossRef]
- Verma, A.K.; Rajkumar, V.; Banerjee, R.; Biswas, S.; Das, A.K. Guava (Psidium guajava L.) powder as an antioxidant dietary fibre in sheep meat nuggets. Asian-Australas. J. Anim. Sci. 2013, 26, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Gómez, M.; Fonseca, S.; Lorenzo, J.M. Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat. Meat Sci. 2014, 97, 223–230. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Domínguez, R. Cooking losses, lipid oxidation and formation of volatile compounds in foal meat as affected by cooking procedure. Flavour Fragr. J. 2014, 29, 240–248. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Agregán, R.; Lorenzo, J.M. Effect of the partial replacement of pork backfat by microencapsulated fish oil or mixed fish and olive oil on the quality of frankfurter type sausage. J. Food Sci. Technol. 2017, 54, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Agregán, R.; Gonçalves, A.; Lorenzo, J.M. Effect of fat replacement by olive oil on the physico-chemical properties, fatty acids, cholesterol and tocopherol content of pâté. Grasas y Aceites 2016, 67, 1–9. [Google Scholar]
- Lorenzo, J.M.; Gómez, M. Shelf life of fresh foal meat under MAP, overwrap and vacuum packaging conditions. Meat Sci. 2012, 92, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.; Lorenzo, J.M. Effect of packaging conditions on shelf-life of fresh foal meat. Meat Sci. 2012, 91, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Munekata, P.E.S.; Gómez, B.; Barba, F.J.; Mora, L.; Pérez-Santaescolástica, C.; Toldrá, F. Bioactive peptides as natural antioxidants in food products—A review. Trends Food Sci. Technol. 2018, 79, 136–147. [Google Scholar] [CrossRef]
- Pateiro, M.; Bermúdez, R.; Lorenzo, J.; Franco, D. Effect of Addition of Natural Antioxidants on the Shelf-Life of “Chorizo”, a Spanish Dry-Cured Sausage. Antioxidants 2015, 4, 42–67. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Lorenzo, J.; Vázquez, J.; Franco, D. Oxidation Stability of Pig Liver Pâté with Increasing Levels of Natural Antioxidants (Grape and Tea). Antioxidants 2015, 4, 102–123. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Barba, F.J.; Domínguez, R.; Sant’Ana, A.S.; Mousavi Khaneghah, A.; Gavahian, M.; Gómez, B.; Lorenzo, J.M. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Res. Int. 2018, 113, 156–166. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Serrano, J.; Tabernero, M.; Arranz, S.; Díaz-Rubio, M.E.; García-Diz, L.; Goñi, I.; Saura-Calixto, F. Bioavailability of phenolic antioxidants associated with dietary fiber: Plasma antioxidant capacity after acute and long-term intake in humans. Plant Foods Hum. Nutr. 2009, 64, 102–107. [Google Scholar] [CrossRef]
- Das, A.K.; Rajkumar, V.; Verma, A.K. Bael Pulp Residue as a New Source of Antioxidant Dietary Fiber in Goat Meat Nuggets. J. Food Process. Preserv. 2015, 39, 1626–1635. [Google Scholar] [CrossRef]
- Nardoia, M.; Ruiz-Capillas, C.; Herrero, A.M.; Jiménez-Colmenero, F.; Chamorro, S.; Brenes, A. Effect of added grape seed and skin on chicken thigh patties during chilled storage. Int. J. Food Nutr. Sci. 2017, 4, 67–73. [Google Scholar]
- Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Lorenzo, J.M.; Afolayan, A.J.; Muchenje, V. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Res. Int. 2018, 106, 317–334. [Google Scholar] [CrossRef]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef]
- Rocchetti, G.; Blasi, F.; Montesano, D.; Ghisoni, S.; Marcotullio, M.C.; Sabatini, S.; Cossignani, L.; Lucini, L. Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves. Food Res. Int. 2019, 115, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Sankhalkar, S.; Vernekar, V. Quantitative and Qualitative analysis of Phenolic and Flavonoid content in Moringa oleifera Lam and Ocimum tenuiflorum L. Pharmacogn. Res. 2016, 8, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analisys of total phenols and other oxidation sobstrates and antioxidants by means of Folin Ciocalteau reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Escarpa, A.; González, M. Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Anal. Chim. Acta 2001, 427, 119–127. [Google Scholar] [CrossRef]
- Zeb, A. A reversed phase HPLC-DAD method for the determination of phenolic compounds in plant leaves. Anal. Methods 2015, 7, 7753–7757. [Google Scholar] [CrossRef]
- Fargere, T.; Abdennadher, M.; Delmas, M.; Boutevin, B. Determination of peroxides and hydroperoxides with 2,2-diphenyl-1-picrylhydrazyl (DPPH). Application to ozonized ethylene vinyl acetate copolymers (EVA). Eur. Polym. J. 1995, 31, 489–497. [Google Scholar] [CrossRef]
- Oyaizu, M. Antioxidative activities of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- McCleary, B.V.; DeVries, J.W.; Rader, J.I.; Cohen, G.; Prosky, L.; Mugford, D.C.; Champ, M.; Okuma, K. Determination of Insoluble, Soluble, and Total Dietary Fiber (CODEX Definition) by Enzymatic-Gravimetric Method and Liquid Chromatography: Collaborative Study. J. AOAC Int. 2012, 95, 824–844. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Bermúdez, R.; Domínguez, R.; Guiotto, A.; Franco, D.; Purriños, L. Physicochemical and microbial changes during the manufacturing process of dry-cured lacón salted with potassium, calcium and magnesium chloride as a partial replacement for sodium chloride. Food Control 2015, 50, 763–769. [Google Scholar] [CrossRef]
- The Association of Official Analytical Chemists; Cunniff, P. Official Methods of Analysis of AOAC International, 16th ed.; The Association: Washington, DC, USA, 1995; ISBN 9780935584547. [Google Scholar]
- Das, A.K.; Anjaneyulu, A.S.R.; Verma, A.K.; Kondaiah, N. Physicochemical, textural, sensory characteristics and storage stability of goat meat patties extended with full-fat soy paste and soy granules. Int. J. Food Sci. Technol. 2008, 43, 383–392. [Google Scholar] [CrossRef]
- Witte, V.C.; Krause, G.F.; Bailey, M.F. A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 1970, 35, 582–585. [Google Scholar] [CrossRef]
- Das, A.; Rajkumar, V.; Nanda, P.; Chauhan, P.; Pradhan, S.; Biswas, S.; Das, A.K.; Rajkumar, V.; Nanda, P.K.; Chauhan, P.; et al. Antioxidant Efficacy of Litchi (Litchi chinensis Sonn.) Pericarp Extract in Sheep Meat Nuggets. Antioxidants 2016, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Arise, A.K.; Arise, R.O.; Sanusi, M.O.; Esan, O.T.; Oyeyinka, S.A. Effect of Moringa oleifera flower fortification on the nutritional quality and sensory properties of weaning food. Croat. J. Food Sci. Technol. 2014, 6, 65–74. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; Núñez-Gastélum, J.A.; Reyes-Moreno, C.; Ramírez-Wong, B.; López-Cervantes, J. Nutritional Quality of Edible Parts of Moringa oleifera. Food Anal. Methods 2010, 3, 175–180. [Google Scholar] [CrossRef]
- Blasi, F.; Urbani, E.; Cossignani, L.; Simonetti, M.S.; Chiesi, C. Seasonal variations in antioxidant compounds of Olea europaea leaves collected from different Italian cultivars Food Safety and Food Quality View project Structured lipid View project Seasonal variations in antioxidant compounds of Olea europaea leaves collected from different Italian cultivars. Artic. J. Appl. Bot. Food Qual. 2016, 89, 202–207. [Google Scholar]
- Grigelmo-Miguel, N.; Gorinstein, S.; Martı́n-Belloso, O. Characterisation of peach dietary fibre concentrate as a food ingredient. Food Chem. 1999, 65, 175–181. [Google Scholar] [CrossRef]
- Tekle, E.W.; Sahu, N.; Makesh, M. Antioxidant activitiesof moringa concanensis flowers (fresh and dried) grown in west bengal. Int. J. Res. Chem. Environ. 2014, 3, 64–70. [Google Scholar]
- Chun, O.K.; Chung, S.J.; Song, W.O. Estimated dietary flavonoid intake and major food sources of U.S. adults. J. Nutr. 2007, 137, 1244–1252. [Google Scholar] [CrossRef]
- Merken, H.M.; Beecher, G.R. Measurement of food flavonoids by high-performance liquid chromatography: A review. J. Agric. Food Chem. 2000, 48, 577–599. [Google Scholar] [CrossRef]
- Chen, X.N.; Fan, J.F.; Yue, X.; Wu, X.R.; Li, L.T. Radical scavenging activity and phenolic compounds in persimmon (Diospyros kaki L. cv. Mopan). J. Food Sci. 2007, 73, C24–C28. [Google Scholar] [CrossRef] [PubMed]
- Siddhuraju, P.; Abirami, A.; Nagarani, G.; Sangeethapriya, M. Antioxidant capacity and total phenolic content of aqueous acetone and ethanol extract of edible parts of Moringa oleifera and Sesbania grandiflora. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2014, 8, 1090–1098. [Google Scholar]
- Sreelatha, S.; Padma, P.R. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum. Nutr. 2009, 64, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Alhakmani, F.; Kumar, S.; Khan, S.A. Estimation of total phenolic content, in-vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera. Asian Pac. J. Trop. Biomed. 2013, 3, 623–627. [Google Scholar] [CrossRef]
- Tekle, E.W.; Sahu, N.; Makesh, M. Antioxidative and antimicrobial activities of different solvent extracts of Moringa oleifera: an in vitro evaluation. Int. J. Sci. Res. Publ. 2015, 5, 255–266. [Google Scholar]
- Devatkal, S.K.; Narsaiah, K.; Borah, A. Anti-oxidant effect of extracts of kinnow rind, pomegranate rind and seed powders in cooked goat meat patties. Meat Sci. 2010, 85, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Habib, H.; Siddiqi, R.A.; Dar, A.H.; Dar, M.A.; Gul, K.; Rashid, N.; Siddiqi, U.S. Quality characteristics of carabeef nuggets as affected by pomegranate rind powder. J. Food Meas. Charact. 2018, 12, 2164–2173. [Google Scholar] [CrossRef]
- Das, A.K.; Rajkumar, V.; Verma, A.K.; Swarup, D. Moringa oleiferia leaves extract: a natural antioxidant for retarding lipid peroxidation in cooked goat meat patties. Int. J. Food Sci. Technol. 2012, 47, 585–591. [Google Scholar] [CrossRef]
- Hazra, S.; Biswas, S.; Bhattacharyya, D.; Das, S.K.; Khan, A. Quality of cooked ground buffalo meat treated with the crude extracts of Moringa oleifera (Lam.) leaves. J. Food Sci. Technol. 2012, 49, 240–245. [Google Scholar] [CrossRef]
- Al-Juhaimi, F.; Ghafoor, K.; Hawashin, M.D.; Alsawmahi, O.N.; Babiker, E.E. Effects of different levels of Moringa (Moringa oleifera) seed flour on quality attributes of beef burgers. CYTA—J. Food 2016, 14, 1–9. [Google Scholar] [CrossRef]
- Sariçoban, C.; Özalp, B.; Yilmaz, M.T.; Özen, G.; Karakaya, M.; Akbulut, M. Characteristics of meat emulsion systems as influenced by different levels of lemon albedo. Meat Sci. 2008, 80, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Malav, O.P.; Sharma, B.D.; Kumar, R.R.; Talukder, S.; Ahmed, S.R.; Irshad, A. Quality characteristics and storage stability of functional mutton patties incorporated with red kidney bean powder. Indian J. Small Rumin. 2016, 22, 83–91. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Jeong, J.-Y.; Choi, J.-H.; Han, D.-J.; Kim, H.-Y.; Lee, M.-A.; Shim, S.-Y.; Paik, H.-D.; Kim, C.-J. Quality Characteristics of Meat Batters Containing Dietary Fiber Extracted from Rice Bran. Korean J. Food Sci. Anim. Resour. 2007, 27, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Ham, Y.-K.; Hwang, K.-E.; Song, D.-H.; Kim, Y.-J.; Shin, D.-J.; Kim, K.-I.; Lee, H.-J.; Kim, N.-R.; Kim, C.-J. Lotus (Nelumbo nucifera) rhizome as an antioxidant dietary fiber in cooked sausage: Effects on physicochemical and sensory characteristics. Korean J. Food Sci. Anim. Resour. 2017, 37, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.T.; Berry, B.W. Effects of inner pea fiber on fat retention and cooking yield in high fat ground beef. Food Res. Int. 2001, 34, 689–694. [Google Scholar] [CrossRef]
- Vural, H.; Javidipour, I.; Ozbas, O.O. Effects of interesterified vegetable oils and Sugarbeet fiber on the quality of frankfurters. Meat Sci. 2004, 67, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-C.; Carpenter, J.A. Optimizing quality of Frankfurters containing oat bran and added water. J. Food Sci. 2006, 62, 194–197. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Batlle, R.; Gómez, M. Extension of the shelf-life of foal meat with two antioxidant active packaging systems. LWT—Food Sci. Technol. 2014, 59, 181–188. [Google Scholar] [CrossRef]
- Das, A.K.; Rajkumar, V.; Dwivedi, D.K. Antioxidant effect of curry leaf (Murraya koenigii) powder on quality of ground and cooked goat meat. Int. Food Res. J. 2011, 18, 563–569. [Google Scholar]
- Dodiya, B.; Amin, B.; Kamlaben, S.; Patel, P. Antibacterial activity and phytochemical screening of different parts of Moringa oleifera against selected gram positive and gram negative bacteria. J. Pharm. Chem. Biol. Sci. 2015, 3, 421–425. [Google Scholar]
- Sallam, K.I.; Ishioroshi, M.; Samejima, K. Antioxidant and antimicrobial effects of garlic in chicken sausage. LWT—Food Sci. Technol. 2004, 37, 849–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Lima, C.G.; Pugine, S.M.P.; Munekata, P.E.S.; Lorenzo, J.M.; de Melo, M.P. Evaluation of antioxidant capacity of 13 plant extracts by three different methods: Cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. J. Food Sci. Technol. 2016, 53, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Bursać Kovačević, D.; Pateiro, M.; Santos, E.M.; Lorenzo, J.M. Active packaging films with natural antioxidants to be used in meat industry: A review. Food Res. Int. 2018, 113, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Sineiro, J.; Amado, I.R.; Franco, D. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Sci. 2014, 96, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, M.; Kim, S.-H.; Sasireka, A.; Chandrasekaran, M.; Chung, I.-M. Polyphenol composition and antimicrobial activity of various solvent extracts from different plant parts of Moringa oleifera. Food Biosci. 2018, 26, 23–29. [Google Scholar] [CrossRef]
- Sáyago-Ayerdi, S.G.; Brenes, A.; Goñi, I. Effect of grape antioxidant dietary fiber on the lipid oxidation of raw and cooked chicken hamburgers. LWT—Food Sci. Technol. 2009, 42, 971–976. [Google Scholar] [CrossRef] [Green Version]
- Heck, R.T.; Fagundes, M.B.; Cichoski, A.J.; de Menezes, C.R.; Barin, J.S.; Lorenzo, J.M.; Wagner, R.; Campagnol, P.C.B. Volatile compounds and sensory profile of burgers with 50% fat replacement by microparticles of chia oil enriched with rosemary. Meat Sci. 2019, 148, 164–170. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Paseto Fernandes, R.D.P.; de Melo, M.P.; Trindade, M.A.; Lorenzo, J.M. Influence of peanut skin extract on shelf-life of sheep patties. Asian Pac. J. Trop. Biomed. 2016, 6, 586–596. [Google Scholar] [CrossRef] [Green Version]
- Agregán, R.; Franco, D.; Carballo, J.; Tomasevic, I.; Barba, F.J.; Gómez, B.; Muchenje, V.; Lorenzo, J.M. Shelf life study of healthy pork liver pâté with added seaweed extracts from Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Food Res. Int. 2018, 112, 400–411. [Google Scholar] [CrossRef]
- Echegaray, N.; Gómez, B.; Barba, F.J.; Franco, D.; Estévez, M.; Carballo, J.; Marszałek, K.; Lorenzo, J.M. Chestnuts and by-products as source of natural antioxidants in meat and meat products: A review. Trends Food Sci. Technol. 2018, 82, 110–121. [Google Scholar] [CrossRef]
- Muthukumar, M.; Naveena, B.M.; Vaithiyanathan, S.; Sen, A.R.; Sureshkumar, K. Effect of incorporation of Moringa oleifera leaves extract on quality of ground pork patties. J. Food Sci. Technol. 2014, 5, 3172–3180. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Vargas, F.C.; Strozzi, I.; Pateiro, M.; Furtado, M.M.; Sant’Ana, A.S.; Rocchetti, G.; Barba, F.J.; Dominguez, R.; Lucini, L.; et al. Influence of pitanga leaf extracts on lipid and protein oxidation of pork burger during shelf-life. Food Res. Int. 2018, 114, 47–54. [Google Scholar] [CrossRef]
- Pateiro, M.; Vargas, F.C.; Chincha, A.A.I.A.; Sant’Ana, A.S.; Strozzi, I.; Rocchetti, G.; Barba, F.J.; Domínguez, R.; Lucini, L.; do Amaral Sobral, P.J.; et al. Guarana seed extracts as a useful strategy to extend the shelf life of pork patties: UHPLC-ESI/QTOF phenolic profile and impact on microbial inactivation, lipid and protein oxidation and antioxidant capacity. Food Res. Int. 2018, 114, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.P.P.; Trindade, M.A.; Lorenzo, J.M.; de Melo, M.P. Assessment of the stability of sheep sausages with the addition of different concentrations of Origanum vulgare extract during storage. Meat Sci. 2018, 137, 244–257. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Pugine, S.M.P.; Lima, C.G.; Lorenzo, J.M.; de Melo, M.P. Evaluation of oxidative stability of lamb burger with Origanum vulgare extract. Food Chem. 2017, 233, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Lorenzo, J.M.; Amado, I.R.; Franco, D. Effect of addition of green tea, chestnut and grape extract on the shelf-life of pig liver pâté. Food Chem. 2014, 147, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Munekata, P.E.S.; Sant’Ana, A.S.; Carvalho, R.B.; Barba, F.J.; Toldrá, F.; Mora, L.; Trindade, M.A. Main characteristics of peanut skin and its role for the preservation of meat products. Trends Food Sci. Technol. 2018, 77, 1–10. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; González-Rodríguez, R.M.; Sánchez, M.; Amado, I.R.; Franco, D. Effects of natural (grape seed and chestnut extract) and synthetic antioxidants (buthylatedhydroxytoluene, BHT) on the physical, chemical, microbiological and sensory characteristics of dry cured sausage “chorizo”. Food Res. Int. 2013, 54, 611–620. [Google Scholar] [CrossRef]
Ingredients (%) | Treatment | ||
---|---|---|---|
Control | T1 | T2 | |
Chicken meat | 32.0 | 32.0 | 32.0 |
Breast trimming | 20.0 | 19.0 | 18.0 |
Chicken skin | 10.0 | 10.0 | 10.0 |
Ice flakes | 20.0 | 20.0 | 20.0 |
Refined vegetable oil | 8.00 | 8.00 | 8.00 |
Salt | 1.50 | 1.50 | 1.50 |
Condiments * | 4.00 | 4.00 | 4.00 |
Refined wheat flour | 2.40 | 2.40 | 2.40 |
Dry spice mix ** | 1.80 | 1.80 | 1.80 |
Sodium nitrite (ppm) | 150 | 150 | 150 |
Poly-phosphate | 0.30 | 0.30 | 0.30 |
ADF powder % | 0.0 | 1.0 | 2.0 |
Proximate composition (g/100 g dry matter) | |
Protein | 17.87 ± 0.28 |
Lipid | 2.95 ± 0.07 |
Ash | 7.87 ± 0.45 |
Total dietary fibre (TDF) | 36.14 ± 0.77 |
Soluble dietary fibre (SDF) | 3.90 ± 0.14 |
Insoluble dietary fibre (IDF) | 32.24 ± 0.82 |
Nonstructural carbohydrates (NSC) | 35.17 ± 1.25 |
Antioxidant capacity | |
TPC (mg GAE/g dry matter) from AE | 18.34 ± 1.16 |
TPC (mg GAE/g dry matter) from AEH | 19.49 ± 1.35 |
IC50 µg/mL from aqueous extract | 126.20 ± 1.45 |
IC50 µg/mL from aqueous ethanol extract | 121.42 ± 1.28 |
Phenolic compounds (mg/kg dry matter) | |
Caffeic acid | ND |
Ferulic acid | 270.08 ± 3.78 |
Quercertin | 15.14 ± 0.40 |
Gallic acid | ND |
Parameters | Treatments | Sig. | ||
---|---|---|---|---|
Control | T1 | T2 | ||
Emulsion pH | 6.33 ± 0.02 a | 6.25 ± 0.02 b | 6.22 ± 0.02 b | ** |
Emulsion Stability (%) | 94.45 ± 0.10 c | 95.56 ± 0.09 b | 96.47 ± 0.29 a | ** |
Cooking yield (%) | 96.79 ± 0.07 b | 97.26 ± 0.09 a | 97.83 ± 0.22 a | * |
Total phenolic content (mg GAE/g) | 0.059 ± 0.02 c | 0.789 ± 0.09 b | 1.121 ± 0.15 a | *** |
Expressible water (%) | 27.14 ± 1.17 | 24.42 ± 3.00 | 21.71 ± 2.05 | ns |
Chemical composition (g/100 g) | ||||
Moisture | 67.29 ± 0.54 | 66.36 ± 0.82 | 65.74 ± 0.56 | ns |
Protein | 14.38 ± 0.34 a | 15.27 ± 0.29 ab | 16.32 ± 0.66 b | ** |
Fat | 13.76 ± 0.49 | 14.06 ± 0.35 | 14.69 ± 0.62 | ns |
Ash | 2.37 ± 0.49 a | 2.64 ± 0.13 ab | 2.91 ± 0.89 b | * |
Total dietary fibre | 0.76 ± 0.03 a | 1.39 ± 0.04 b | 2.03 ± 0.06 c | *** |
Textural parameters | ||||
Hardness (N/cm2) | 69.71 ± 2.43 | 65.52 ± 3.89 | 64.33 ± 6.49 | ns |
Springiness (cm) | 0.67 ± 0.05 | 0.65 ± 0.02 | 0.63 ± 0.02 | ns |
Cohesiveness | 0.30 ± 0.02 | 0.33 ± 0.01 | 0.34 ± 0.01 | ns |
Gumminess (N/cm2) | 20.79 ± 0.02 | 20.01 ± 1.44 | 18.13 ± 3.04 | ns |
Chewiness (N/cm) | 14.25 ± 2.25 | 13.79 ± 1.63 | 11.95 ± 2.54 | ns |
Treatment | Storage Time (Days) | Sig. | ||||
---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | ||
pH | ||||||
Control | 6.30 ± 0.02 d | 6.34 ± 0.03 cd | 6.39 ± 0.03 bcx | 6.45 ± 0.04 abx | 6.50 ± 0.01 ax | *** |
T1 | 6.27 ± 0.01 c | 6.29 ± 0.01 bc | 6.32 ± 0.01 aby | 6.33 ± 0.01 aby | 6.36 ± 0.01 ay | *** |
T2 | 6.26 ± 0.01 d | 6.30 ± 0.02 cd | 6.32 ± 0.01 bcy | 6.36 ± 0.01 aby | 6.37 ± 0.01 ay | *** |
Sig. | ns | ns | *** | *** | *** | |
TBARS (mg malonaldehyde/kg of sample) | ||||||
Control | 0.37 ± 0.01 e | 0.53 ± 0.01 dx | 0.89 ± 0.01 cx | 1.38 ± 0.02 bx | 1.94 ± 0.05 ax | *** |
T1 | 0.36 ± 0.01 d | 0.38 ± 0.01 dy | 0.45 ± 0.01 cy | 0.58 ± 0.01 by | 0.84 ± 0.02 ay | *** |
T2 | 0.36 ± 0.01 d | 0.37 ± 0.02 dy | 0.42 ± 0.01 cy | 0.52 ± 0.01 bz | 0.81 ± 0.01 ay | *** |
Sig. | ns | *** | *** | *** | *** | |
Total Plate Count (log cfu/g) | ||||||
Control | 2.74 ± 0.06 e | 4.10 ± 0.07 dx | 5.13 ± 0.06 cx | 6.12 ± 0.08 bx | 6.46 ± 0.04 ax | *** |
T1 | 2.64 ± 0.09 d | 3.37 ± 0.06 cy | 3.84 ± 0.07 by | 4.10 ± 0.05 by | 4.66 ± 0.10 ay | *** |
T2 | 2.71 ± 0.04 d | 3.52 ± 0.12 cy | 3.83 ± 0.10 by | 4.02 ± 0.06 by | 4.51 ± 0.05 ay | *** |
Sig. | ns | *** | *** | *** | *** |
Treatment | Storage Time (Days) | Sig. | ||||
---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | ||
L * (Lightness) | ||||||
Control | 29.95 ± 1.20 ay | 26.21 ± 0.28 b | 25.49 ± 0.23 bcx | 23.89 ± 0.37 cdx | 22.52 ± 0.43 dx | *** |
T1 | 33.80 ± 0.32 ax | 26.21 ± 0.28 b | 20.64 ± 0.44 cy | 19.22 ± 0.32 dy | 18.01 ± 0.26 ey | *** |
T2 | 34.78 ± 0.44 ax | 26.21 ± 0.28 b | 19.97 ± 0.64 cy | 19.53 ± 0.59 cdy | 18.51 ± 0.26 dy | *** |
Sig. | *** | *** | *** | *** | *** | |
a * (Redness) | ||||||
Control | 13.77 ± 0.26 ax | 12.25 ± 0.20 bx | 6.73 ± 0.17 cy | 5.62 ± 0.15 cz | 5.11 ± 0.07 dy | *** |
T1 | 12.78 ± 0.23 ax | 11.35 ± 0.15 az | 7.54 ± 0.12 bx | 6.58 ± 0.08 by | 5.44 ± 0.16 cy | *** |
T2 | 11.01 ± 0.41 ay | 10.72 ± 0.13 by | 8.39 ± 0.08 cx | 7.85 ± 0.10 dx | 7.26 ± 0.16 dx | *** |
Sig. | *** | *** | *** | *** | *** | |
b * (Yellowness) | ||||||
Control | 13.11 ± 0.26 a | 11.81 ± 0.25 bxy | 7.98 ± 0.07 cx | 7.33 ± 0.13 dx | 6.92 ± 0.17 dx | *** |
T1 | 13.70 ± 0.21 a | 11.41 ± 0.13 by | 6.30 ± 0.13 cy | 6.44 ± 0.16 cy | 5.68 ± 0.25 dy | *** |
T2 | 13.99 ± 0.52 a | 12.30 ± 0.10 bx | 6.45 ± 0.29 by | 6.07 ± 0.20 by | 6.18 ± 0.09 by | *** |
Sig. | *** | *** | *** | *** | *** |
Treatment | Storage Time (Days) | Sig. | ||||
---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | ||
Appearance | ||||||
Control | 6.77 ± 0.15 | 6.75 ± 0.10 xy | 6.27 ± 0.27 aby | 6.19 ± 0.18 b | 5.62 ± 0.19 c | ** |
T1 | 7.02 ± 0.10 a | 6.97 ± 0.01 ax | 6.94 ± 0.19 ax | 6.69 ± 0.08 ab | 6.44 ± 0.10 b | ** |
T2 | 6.72 ± 0.15 | 6.61 ± 0.13 y | 6.66 ± 0.18 y | 6.58 ± 0.12 | 6.38 ± 0.10 | ** |
Sig. | ns | * | ** | ** | ns | |
Flavour | ||||||
Control | 6.84 ± 0.18 a | 6.82 ± 0.09 a | 6.36 ± 0.47 b | ND | ND | *** |
T1 | 6.97 ± 0.06 a | 6.93 ± 0.06 a | 6.72 ± 0.08 ab | 6.47 ± 0.17 bc | 6.33 ± 0.10 c | *** |
T2 | 6.81 ± 0.09 a | 6.76 ± 0.09 a | 6.70 ± 0.16 a | 6.52 ± 0.11 ab | 6.27 ± 0.13 b | *** |
Sig. | ns | ns | ** | ns | ns | |
Texture | ||||||
Control | 6.72 ± 0.14 | 6.65 ± 0.09 | 6.52 ± 0.20 | ND | ND | ns |
T1 | 6.96 ± 0.10 a | 6.79 ± 0.12 ab | 6.50 ± 0.20 b | 6.42 ± 0.17 b | 6.38 ± 0.09 b | *** |
T2 | 6.73 ± 0.11 | 6.78 ± 0.13 | 6.82 ± 0.11 | 6.66 ± 0.18 | 6.50 ± 0.13 | ns |
Sig. | ns | ns | ns | ns | ns | |
Juiciness | ||||||
Control | 6.72 ± 0.20 ab | 6.98 ± 0.12 a | 6.50 ± 0.15 b | ND | ND | *** |
T1 | 6.80 ± 0.19 | 6.74 ± 0.22 | 6.47 ± 0.20 | 6.40 ± 0.12 | 6.30 ± 0.10 | ns |
T2 | 6.75 ± 0.10 | 6.75 ± 0.13 | 6.70 ± 0.19 | 6.52 ± 0.11 | 6.38 ± 0.10 | ns |
Sig. | ns | ns | ns | ns | ns | |
Overall acceptability | ||||||
Control | 6.80 ± 0.16 a | 6.76 ± 0.008 ay | 6.33 ± 0.27 by | ND | ND | *** |
T1 | 7.02 ± 0.07 a | 6.91 ± 0.16 ax | 6.73 ± 0.17 ax | 6.66 ± 0.12 a | 5.38 ± 0.42 b | *** |
T2 | 6.77 ± 0.10 a | 6.72 ± 0.10 ay | 6.64 ± 0.14 abx | 6.55 ± 0.10 ab | 6.30 ± 0.12 b | *** |
Sig. | ns | ** | ** | ns | ns |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madane, P.; Das, A.K.; Pateiro, M.; Nanda, P.K.; Bandyopadhyay, S.; Jagtap, P.; Barba, F.J.; Shewalkar, A.; Maity, B.; Lorenzo, J.M. Drumstick (Moringa oleifera) Flower as an Antioxidant Dietary Fibre in Chicken Meat Nuggets. Foods 2019, 8, 307. https://doi.org/10.3390/foods8080307
Madane P, Das AK, Pateiro M, Nanda PK, Bandyopadhyay S, Jagtap P, Barba FJ, Shewalkar A, Maity B, Lorenzo JM. Drumstick (Moringa oleifera) Flower as an Antioxidant Dietary Fibre in Chicken Meat Nuggets. Foods. 2019; 8(8):307. https://doi.org/10.3390/foods8080307
Chicago/Turabian StyleMadane, Pratap, Arun K. Das, Mirian Pateiro, Pramod K. Nanda, Samiran Bandyopadhyay, Prasant Jagtap, Francisco J. Barba, Akshay Shewalkar, Banibrata Maity, and Jose M. Lorenzo. 2019. "Drumstick (Moringa oleifera) Flower as an Antioxidant Dietary Fibre in Chicken Meat Nuggets" Foods 8, no. 8: 307. https://doi.org/10.3390/foods8080307
APA StyleMadane, P., Das, A. K., Pateiro, M., Nanda, P. K., Bandyopadhyay, S., Jagtap, P., Barba, F. J., Shewalkar, A., Maity, B., & Lorenzo, J. M. (2019). Drumstick (Moringa oleifera) Flower as an Antioxidant Dietary Fibre in Chicken Meat Nuggets. Foods, 8(8), 307. https://doi.org/10.3390/foods8080307