Insects for Food and Feed-Safety Aspects Related to Mycotoxins and Metals
Abstract
:1. Introduction
2. Mycotoxins
2.1. Effects of Mycotoxins on Insects
2.2. Studies with Controlled Mycotoxin Spiked Substrates
2.3. Metabolism of Mycotoxins
2.4. Conclusion on Accumulation Potential of Mycotoxins
3. Heavy Metals and Arsenic
3.1. Accumulation of Heavy Metals and Arsenic in Insects
3.2. Studies with Controlled Metal Spiked Substrates
3.3. Rearing on Side Stream Substrates
3.4. Conclusion on Accumulation Potential of Metal Contamination
4. Contaminants Identified in Commercially Available Insects and Insect-Based Products Used as Animal Feed or for Human Consumption
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture—Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Cassi, X.; Supeanu, A.; Jansson, A.; Boqvist, S.; Vagsholm, I. Novel foods: A risk profile for the house cricket (Acheta domesticus). EFSA J. 2018, 16, 235. [Google Scholar] [CrossRef]
- van Huis, A.; van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects—Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Volume 171, p. 201. [Google Scholar]
- Gao, Y.; Wang, D.; Xu, M.L.; Shi, S.S.; Xiong, J.F. Toxicological characteristics of edible insects in China: A historical review. Food Chem. Toxicol. 2018, 119, 237–251. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef]
- Meleney, H.E.; Harwood, P.D. Human Intestinal Myiasis Due to the Larvae of the Soldier Fly, Hermetia Illucens Linné (Diptera, Stratiomyidae). Am. J. Trop. Med. Hyg. 1935, 1, 45–49. [Google Scholar] [CrossRef]
- Lee, H.L.; Chandrawathani, P.; Wong, W.Y.; Tharam, S.; Lim, W.Y. A case of human enteric myiasis due to larvae of Hermetia illucens (Family: Stratiomyiadae): First report in Malaysia. Malays. J. Pathol. 1995, 17, 109–111. [Google Scholar] [PubMed]
- Yang, P. Two Records of Intestinal Myiasis Caused by Ornidia obesa and Hermetia illucens in Hawaii. Proc. Hawaii. Entomol. Soc. 2014, 49, 29. [Google Scholar]
- Adler, A.I.; Brancato, F.P. Human furuncular myiasis caused by Hermetia illucens (Diptera: Stratiomyidae). J. Med. Entomol. 1995, 32, 745–746. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Sheppard, D.C.; Joyce, J.A. Selected Life-History Traits of Black Soldier Flies (Diptera: Stratiomyidae) Reared on Three Artificial Diets. Ann. Entomol. Soc. Am. 2002, 95, 379–386. [Google Scholar] [CrossRef]
- Wang, Y.S.; Shelomi, M. Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food. Foods 2017, 6, 91. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schluter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Kouřimská, L.; Adámková, A. Nutritional and sensory quality of edible insects. NFS J. 2016, 4, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Nowak, V.; Persijn, D.; Rittenschober, D.; Charrondiere, U.R. Review of food composition data for edible insects. Food Chem. 2016, 193, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Roos, N.; van Huis, A. Consuming insects: Are there health benefits? J. Insects Food Feed 2017, 3, 225–229. [Google Scholar] [CrossRef]
- EU. Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 Laying down Health Rules as Regards Animal by-Products and Derived Products not Intended for Human Consumption and Repealing Regulation (EC) No 1774/2002 (Animal by-Products Regulation); EU: Brussels, Belgium, 2009. [Google Scholar]
- EU. Regulation (EC) No 767/2009 of the European Parliament and of the Council of 13 July 2009 on the Placing on the Market and Use of Feed, Amending European Parliament and Council Regulation (EC) No 1831/2003 and Repealing Council Directive 79/373/EEC, Commission Directive 80/511/EEC, Council Directives 82/471/EEC, 83/228/EEC, 3/74/EEC, 93/113/EC and 96/25/EC and Commission Decision 2004/217/EC; EU: Brussels, Belgium, 2009. [Google Scholar]
- EU. Regulation (EC) No 999/2001 of the European Parliament And of the Council of 22 May 2001 Laying down Rules for the Prevention, Control and Eradication of Certain Transmissible Spongiform Encephalopathies; EU: Brussels, Belgium, 2001. [Google Scholar]
- EU. Commission Regulation (EU) 2017/893 of 24 May 2017 Amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as Regards the Provisions on Processed Animal Protein; EU: Brussels, Belgium, 2017. [Google Scholar]
- EU. Directive 2002/32/EC of The European Parliament and of the Council of 7 May 2002 on Undesirable Substances in Animal Feed; EU: Brussels, Belgium, 2002. [Google Scholar]
- EU. Commission Recommendation of 17 August 2006 on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins Inproducts Intended for Animal Feeding; EU: Brussels, Belgium, 2006. [Google Scholar]
- Veldkamp, T.; van Duinkerken, G.; van Huis, A.; Lakemond, C.M.M.; Ottevanger, E.; Bosch, G.; van Boekel, M.A.J.S. Insects as a Sustainable Feed Ingredient in Pig and Poultry Diets—A Feasibility Study; Wageningen UR Livestock Research: Lelystad, The Netherlands, 2012; p. 62. [Google Scholar]
- Khan, S.H. Recent advances in role of insects as alternative protein source in poultry nutrition. J. Appl. Anim. Res. 2018, 46, 1144–1157. [Google Scholar] [CrossRef] [Green Version]
- van Raamsdonk, L.W.D.; van der Fels-Klerx, H.J.; de Jong, J. New feed ingredients: The insect opportunity. Food Addit. Contam. Part A Chem. Anal. Control. Expos. Risk Assess. 2017, 34, 1384–1397. [Google Scholar] [CrossRef] [PubMed]
- van der Fels-Klerx, H.J.; Camenzuli, L.; Belluco, S.; Meijer, N.; Ricci, A. Food Safety Issues Related to Uses of Insects for Feeds and Foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1172–1183. [Google Scholar] [CrossRef] [Green Version]
- EU. Council Regulation (EEC) No 315/93 of 8 February 1993 Laying down Community Procedures for Contaminants in Food; EU: Brussels, Belgium, 1993. [Google Scholar]
- The European Commission. Commission Regulation (EU) No 165/2010 of 26 February 2010 Amending Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs as Regards Aflatoxins. Off. J. Eur. Union 2010, L50/8–L50/12; European Commission: Brussels, Belgium, 2006. [Google Scholar]
- EU. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on Novel Foods, Amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001; EU: Brussels, Belgium, 2015. [Google Scholar]
- EFSA. Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA J. 2016, 14, e04425. [Google Scholar]
- Schollenberger, M.; Muller, H.M.; Rufle, M.; Suchy, S.; Plank, S.; Drochner, W. Natural occurrence of 16 fusarium toxins in grains and feedstuffs of plant origin from Germany. Mycopathologia 2006, 161, 43–52. [Google Scholar] [CrossRef]
- Scudamore, K.A.; Patel, S. Survey for aflatoxins, ochratoxin A, zearalenone and fumonisins in maize imported into the United Kingdom. Food Addit. Contam. 2000, 17, 407–416. [Google Scholar] [CrossRef]
- Hoogenboom, L.A.; Bokhorst, J.G.; Northolt, M.D.; van de Vijver, L.P.; Broex, N.J.; Mevius, D.J.; Meijs, J.A.; Van der Roest, J. Contaminants and microorganisms in Dutch organic food products: A comparison with conventional products. Food Addit. Contam. Part A Chem. Anal. Control. Expos. Risk Assess. 2008, 25, 1195–1207. [Google Scholar] [CrossRef] [PubMed]
- De Boevre, M.; Di Mavungu, J.D.; Landschoot, S.; Audenaert, K.; Eeckhout, M.; Maene, P.; Haesaert, G.; De Saeger, S. Natural occurrence of mycotoxins and their masked forms in food and feed products. World Mycotoxin J. 2012, 5, 207–219. [Google Scholar] [CrossRef]
- Knutsen, H.K.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Appropriateness to set a group health-based guidance value for fumonisins and their modified forms. EFSA J. 2018, 16, 1. [Google Scholar]
- EFSA. Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to ochratoxin A in food. EFSA J. 2006, 365, 1–56. [Google Scholar]
- Knutsen, H.K.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Appropriateness to set a group health based guidance value for T2 and HT2 toxin and its modified forms. EFSA J. 2017, 15, 255. [Google Scholar]
- Biselli, S.; Hummert, C. Development of a multicomponent method for Fusarium toxins using LC-MS/MS and its application during a survey for the content of T-2 toxin and deoxynivalenol in various feed and food samples. Food Addit. Contam. 2005, 22, 752–760. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Deoxynivalenol in food and feed: Occurrence and exposure. EFSA J. 2013, 11, 209. [Google Scholar]
- EFSA. Opinion of the scientific panel on contaminants in the food chain [CONTAM] related to the potential increase of consumer health risk by a possible increase of the existing maximum levels for aflatoxins in almonds, hazelnuts and pistachios and derived products. EFSA J. 2007, 446, 1–127. [Google Scholar]
- Amonkar, S.V.; Nair, K.K. Pathogenicity of Aspergillus flavus Link to Musca domestica nebulo Fabricius. J. Invertebr. Pathol. 1965, 7, 513–514. [Google Scholar] [CrossRef]
- Hedge, U.C.; Chandra, T.; Shonmugasundaram, E.R.B. Toxicity of Different Diets Contaminated with Various Fungi to Rice Moth Larvae (Corcyra Cephalonica St). Can. J. Comp. Med. Vet. Sci. 1967, 31, 160–163. [Google Scholar]
- Matsumura, F.; Knight, S.G. Toxicity and Chemosterilizing Activity of Aflatoxin Against Insects1. J. Econ. Entomol. 1967, 60, 871–872. [Google Scholar] [CrossRef] [PubMed]
- Gudauskas, R.T.; Davis, N.D.; Diener, U.L. Sensitivity of Heliothis virescens larvae to aflatoxin in ad libitum feeding. J. Invertebr. Patol. 1967, 9, 132–133. [Google Scholar] [CrossRef]
- Reiss, J. Toxicity of molds to the larvae of Tenebrio molitor. J. Invertebr. Patol. 1973, 21, 112–113. [Google Scholar] [CrossRef]
- Davis, G.R.; Smith, J.D.; Schiefer, B.; Loew, F.M. Screening for mycotoxins with larvae of Tenebrio molitor. J. Invertebr. Pathol. 1975, 26, 299–303. [Google Scholar] [CrossRef]
- Davis, G.R.F.; Smith, J.D. Effect of light and incubation temperature on production by species of Fusarium of metabolites toxic to larvae of Tenebrio molitor L. (1). Arch. Int. Physiol. Biochim. 1981, 89, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.R.F.; Schiefer, H.B. Effects of dietary T-2 toxin concentrations fed to larvae of the yellow mealworm at three dietary protein levels. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1982, 73, 13–16. [Google Scholar] [CrossRef]
- Davis, G.R.F. Growth of larvae of Tenebrio molitor L. fed diets containing penicillic acid, aflatoxin B, ochratoxin A, or rubratoxin B at three dietary protein levels. Arch. Int. Physiol. Biochim. 1982, 90, 297–300. [Google Scholar]
- Wright, V.F.; Casas, E.D.L.; Harein, P.K. The Response of Tribolium confusum to the Mycotoxins Zearalenone (F-2) and T-2 Toxin. Environ. Entomol. 1976, 5, 371–374. [Google Scholar] [CrossRef]
- Dowd, P.F. Responses of representative midgut detoxifying enzymes from Heliothis zea and Spodoptera frugiperda to trichothecenes. Insect Biochem. 1990, 20, 349–356. [Google Scholar] [CrossRef]
- Abado-Becognee, K.; Fleurat-Lessard, F.; Creppy, E.E.; Melcion, D. Effects of fumonisin B1 on growth and metabolism of larvae of the yellow mealworm, Tenebrio molitor. Entomol. Exp. Appl. 1998, 86, 135–143. [Google Scholar] [CrossRef]
- Guo, Z.; Doll, K.; Dastjerdi, R.; Karlovsky, P.; Dehne, H.W.; Altincicek, B. Effect of fungal colonization of wheat grains with Fusarium spp. on food choice, weight gain and mortality of meal beetle larvae (Tenebrio molitor). PLoS ONE 2014, 9, e100112. [Google Scholar] [CrossRef] [PubMed]
- van Broekhoven, S.; Doan, Q.H.T.; van Huis, A.; van Loon, J.J.A. Exposure of tenebrionid beetle larvae to mycotoxin-contaminated diets and methods to reduce toxin levels. Proc. Neth. Entomol. Soc. Meet. 2014, 25, 47–58. [Google Scholar]
- Van Broekhoven, S.; Gutierrez, J.M.; De Rijk, T.C.; De Nijs, W.C.M.; Van Loon, J.J.A. Degradation and excretion of the Fusarium toxin deoxynivalenol by an edible insect, the Yellow mealworm (Tenebrio molitor L.). World Mycotoxin J. 2017, 10, 163–169. [Google Scholar] [CrossRef]
- Sanabria, C.O.; Hogan, N.S.; Madder, K.M.; Buchanan, F.C. 072 Insect larvae fed mycotoxin-contaminated wheat—A possible safe, sustainable protein source for animal feed? J. Anim. Sci. 2017, 95, 36. [Google Scholar] [CrossRef]
- Sanabria, C.; Hogan, N.; Madder, K.; Gillott, C.; Blakley, B.; Reaney, M.; Beattie, A.; Buchanan, F. Yellow Mealworm Larvae (Tenebrio molitor) Fed Mycotoxin-Contaminated Wheat-A Possible Safe, Sustainable Protein Source for Animal Feed? Toxins 2019, 11, 282. [Google Scholar] [CrossRef] [PubMed]
- Purschke, B.; Scheibelberger, R.; Axmann, S.; Adler, A.; Jager, H. Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain. Food Addit. Contam. Part A Chem. Anal. Control. Expos. Risk Assess. 2017, 34, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Bosch, G.; Fels-Klerx, H.J.V.; Rijk, T.C.; Oonincx, D. Aflatoxin B1 Tolerance and Accumulation in Black Soldier Fly Larvae (Hermetia illucens) and Yellow Mealworms (Tenebrio molitor). Toxins 2017, 9, 185. [Google Scholar] [CrossRef] [PubMed]
- Camenzuli, L.; Van Dam, R.; de Rijk, T.; Andriessen, R.; Van Schelt, J.; Van der Fels-Klerx, H.J.I. Tolerance and Excretion of the Mycotoxins Aflatoxin B(1), Zearalenone, Deoxynivalenol, and Ochratoxin A by Alphitobius diaperinus and Hermetia illucens from Contaminated Substrates. Toxins 2018, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Niermans, K.; Woyzichovski, J.; Kroncke, N.; Benning, R.; Maul, R. Feeding study for the mycotoxin zearalenone in yellow mealworm (Tenebrio molitor) larvae-investigation of biological impact and metabolic conversion. Mycotoxin Res. 2019, 35, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Bily, A.C.; Reid, L.M.; Savard, M.E.; Reddy, R.; Blackwell, B.A.; Campbell, C.M.; Krantis, A.; Durst, T.; Philogene, B.J.; Arnason, J.T.; et al. Analysis of Fusarium graminearum mycotoxins in different biological matrices by LC/MS. Mycopathologia 2004, 157, 117–126. [Google Scholar] [CrossRef]
- Berthiller, F.; Crews, C.; Dall’Asta, C.; Saeger, S.D.; Haesaert, G.; Karlovsky, P.; Oswald, I.P.; Seefelder, W.; Speijers, G.; Stroka, J. Masked mycotoxins: A review. Mol. Nutr. Food Res. 2013, 57, 165–186. [Google Scholar] [CrossRef] [PubMed]
- Berthiller, F.; Krska, R.; Domig, K.J.; Kneifel, W.; Juge, N.; Schuhmacher, R.; Adam, G. Hydrolytic fate of deoxynivalenol-3-glucoside during digestion. Toxicol Lett. 2011, 206, 264–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzler, M.P.E.; Hildebrand, A.A. Zearalenone and its metabolites as endocrine disrupting chemicals. World Mycotoxin J. 2010, 3, 385–401. [Google Scholar] [CrossRef]
- Niu, G.; Wen, Z.; Rupasinghe, S.G.; Zeng, R.S.; Berenbaum, M.R.; Schuler, M.A. Aflatoxin B1 detoxification by CYP321A1 in Helicoverpa zea. Arch. Insect. Biochem. Physiol. 2008, 69, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Zeng, R.S.; Niu, G.; Berenbaum, M.R.; Schuler, M.A. Ecological significance of induction of broad-substrate cytochrome P450s by natural and synthetic inducers in Helicoverpa zea. J. Chem. Ecol. 2009, 35, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Campbell, B.C. In vitro metabolism of aflatoxin B1 by larvae of navel orangeworm, Amyelois transitella (Walker) (Insecta, Lepidoptera, Pyralidae) and codling moth, Cydia pomonella (L.) (Insecta, Lepidoptera, Tortricidae). Arch. Insect. Biochem. Physiol. 2000, 45, 166–174. [Google Scholar] [CrossRef]
- Zeng, R.S.; Wen, Z.; Niu, G.; Berenbaum, M.R. Aflatoxin B1: Toxicity, bioactivation and detoxification in the polyphagous caterpillar Trichoplusia ni. Insect. Sci. 2013, 20, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; Johnson, R.M.; Berenbaum, M.R. Toxicity of mycotoxins to honeybees and its amelioration by propolis. Apidologie 2011, 42, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.; Siegel, J.; Schuler, M.A.; Berenbaum, M.R. Comparative toxicity of mycotoxins to navel orangeworm (Amyelois transitella) and corn earworm (Helicoverpa zea). J. Chem. Ecol. 2009, 35, 951–957. [Google Scholar] [CrossRef]
- De Zutter, N.; Audenaert, K.; Arroyo-Manzanares, N.; De Boevre, M.; Van Poucke, C.; De Saeger, S.; Haesaert, G.; Smagghe, G. Aphids transform and detoxify the mycotoxin deoxynivalenol via a type II biotransformation mechanism yet unknown in animals. Sci. Rep. 2016, 6, 38640. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food: EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J. 2012, 10, 2985. [Google Scholar]
- EFSA. Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J. 2015, 13, 3982. [Google Scholar] [CrossRef]
- EFSA. Statement on tolerable weekly intake for cadmium: EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J. 2011, 9, 1975. [Google Scholar]
- EFSA. Scientific Opinion on Lead in Food: EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- EFSA. Dietary exposure to inorganic arsenic in the European population: European Food Safety Authority. EFSA J. 2014, 12, 3597. [Google Scholar]
- EFSA. Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water: EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J. 2014, 12, 3595. [Google Scholar]
- EFSA. Scientific Opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA J. 2015, 13, 4002. [Google Scholar]
- Jamil, K.; Hussain, S. Biotransfer of metals to the insect Neochetina eichhornae via aquatic plants. Arch. Environ. Contam. Toxicol. 1992, 22, 459–463. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Lu, X.G.; Wang, Q.C.; Zheng, D.M. Mercury, cadmium and lead biogeochemistry in the soil-plant-insect system in Huludao City. Bull. Environ. Contam. Toxicol. 2009, 83, 255–259. [Google Scholar] [CrossRef]
- Dar, M.I.; Khan, F.A.; Green, I.D.; Naikoo, M.I. The transfer and fate of Pb from sewage sludge amended soil in a multi-trophic food chain: A comparison with the labile elements Cd and Zn. Environ. Sci. Pollut. Res. Int. 2015, 22, 16133–16142. [Google Scholar] [CrossRef]
- Adeniyi, A.A.; Idowa, A.B.; Okedeyi, O.O. Adeniyi_2003: Levels of cadmium, chromium and lead in dumpsites soil, earthworm (Lybrodrilus violaceous), housefly (Musca domestica) and dragon fly (Libellula luctosa). Pak. J. Sci. Ind. Res. 2003, 46, 452–456. [Google Scholar]
- Borowska, J.; Sulima, B.; Niklinska, M.; Pyza, E. Heavy metal accumulation and its effects on development, survival and immuno-competent cells of the housefly Musca domestica from closed laboratory populations as model organism. Fresenius Environ. Bull. 2004, 13, 1402–1409. [Google Scholar]
- Rosabal, M.; Ponton, D.E.; Campbell, P.G.; Hare, L. Uptake and subcellular distributions of cadmium and selenium in transplanted aquatic insect larvae. Environ. Sci. Technol. 2014, 48, 12654–12661. [Google Scholar] [CrossRef] [PubMed]
- Crawford, L.A.; Lepp, N.W.; Hodkinson, I.D. Accumulation and egestion of dietary copper and cadmium by the grasshopper Locusta migratoria R & F (Orthoptera: Acrididae). Environ. Pollut. 1996, 92, 241–246. [Google Scholar] [PubMed]
- Vijver, M.; Jager, T.; Posthuma, L.; Peijnenburg, W. Metal uptake from soils and soil–sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera). Ecotoxicol. Environ. Saf. 2003, 54, 277–289. [Google Scholar] [CrossRef]
- Maryanski, M.; Kramarz, P.; Laskowski, R.; Niklinska, M. Decreased Energetic Reserves, Morphological Changes and Accumulation of Metals in Carabid Beetles (Poecilus cupreus L.) Exposed to Zinc- or Cadmium-contaminated Food. Comp. Ecotoxicol. 2001, 11, 127–139. [Google Scholar] [CrossRef]
- Bednarska, A.J.; Opyd, M.; Zurawicz, E.; Laskowski, R. Regulation of body metal concentrations: Toxicokinetics of cadmium and zinc in crickets. Ecotoxicol. Environ. Saf. 2015, 119, 9–14. [Google Scholar] [CrossRef]
- Kafel, A.; Rozpędek, K.; Szulińska, E.; Zawisza-Raszka, A.; Migula, P. The effects of cadmium or zinc multigenerational exposure on metal tolerance of Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. 2014, 21, 4705–4715. [Google Scholar] [CrossRef]
- Lindqvist, L.; Block, M. Excretion of cadmium during moulting and metamorphosis in Tenebrio molitor (Coleoptera; Tenebrionidae). Comp. Biochem. Physiol. Part C 1995, 111, 325–328. [Google Scholar] [CrossRef]
- Diener, S.; Zurbrügg, C.; Tockner, K. Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects on its life cycle. J. Insects Food Feed 2015, 1, 261–270. [Google Scholar] [CrossRef]
- van der Fels-Klerx, H.J.; Camenzuli, L.; van der Lee, M.K.; Oonincx, D.G. Uptake of Cadmium, Lead and Arsenic by Tenebrio molitor and Hermetia illucens from Contaminated Substrates. PLoS ONE 2016, 11, e0166186. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Wang, X.; Wang, W.; Lei, C.; Zhu, F. Influences of chromium and cadmium on the development of black soldier fly larvae. Environ. Sci. Pollut. Res. Int. 2017, 24, 8637–8644. [Google Scholar] [CrossRef] [PubMed]
- Biancarosa, I.; Liland, N.S.; Biemans, D.; Araujo, P.; Bruckner, C.G.; Waagbo, R.; Torstensen, B.E.; Lock, E.J.; Amlund, H. Uptake of heavy metals and arsenic in black soldier fly (Hermetia illucens) larvae grown on seaweed-enriched media. J. Sci. Food Agric. 2018, 98, 2176–2183. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, L.; Block, M. Losses of cd, hg, and Zn during metamorphosis in the beetle Tenebrio molitor (Coleoptera: Tenebrionidae). Bull. Environ. Contam. Toxicol. 1997, 58, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Suzuki, K.T.; Kubota, K. Accumulation of cadmium and induction of its binding protein in the digestive tract of fleshfly (Sarcophaga peregrina) larvae. Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 1984, 77, 279–282. [Google Scholar] [CrossRef]
- Aoki, Y.; Suzuki, K.T. Excretion of cadmium and change in the relative ratio of iso-cadmium-binding proteins during metamorphosis of fleshfly (Sarcophaga peregrina). Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 1984, 78, 315–317. [Google Scholar]
- Suzuki, K.T.; Aoki, M.; Nishikawa, M.; Masui, H.; Matsubara, F. Effect of Cd- feeding on tissue of elements in germ-free (Bornhy.u mori) larvae and distribution of Cd in the alimentary canal. Comp. Biochem. Physiol. 1984, 79, 249–253. [Google Scholar]
- Pedersen, S.A.; Kristiansen, E.; Andersen, R.A.; Zachariassen, K.E. Cadmium is deposited in the gut content of larvae of the beetle Tenebrio molitor and involves a Cd-binding protein of the low cysteine type. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2008, 148, 217–222. [Google Scholar] [CrossRef]
- Mason, W.H.; Wit, L.C.; Blackmore, M.S. Bioelimination of 65Zn in Popilius disjunctus after a dietary zinc supplement. J. Ga. Entomol. Soc. 1983, 18, 246–251. [Google Scholar]
- Hare, L. Aquatic insects and trace metals: Bioavailability, bioaccumulation, and toxicity. Crit. Rev. Toxicol. 1992, 22, 327–369. [Google Scholar] [CrossRef]
- Gintenreiter, S.; Ortel, J.; Nopp, H.J. Bioaccumulation of cadmium, lead, copper, and zinc in successive developmental stages of Lymantria dispar L. (Lymantriidae, Lepid)—A life cycle study. Arch. Environ. Contam. Toxicol. 1993, 25, 55–61. [Google Scholar] [CrossRef]
- Braeckman, B.; Smagghe, G.; Brutsaert, N.; Cornelis, R.; Raes, H. Cadmium uptake and defense mechanism in insect cells. Environ. Res. 1999, 80, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.D.; Oonincx, D.G.A.B. Insects as food for insectivores. In Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens; Morales-Ramos, J.A.R., Rojas, M.G., Shapirollan, D.I., Eds.; Academic Press: London, UK, 2013. [Google Scholar]
- Tschirner, M.; Simon, A. Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insects Food Feed 2015, 1, 249–259. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on Arsenic in Food: EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J. 2009, 7, 1351. [Google Scholar] [CrossRef]
- Biancarosa, I.; Sele, V.; Belghit, I.; Ørnsrud, R.; Lock, E.J.; Amlund, H. Replacing fish meal with insect meal in the diet of Atlantic salmon (Salmo salar) does not impact the amount of contaminants in the feed and it lowers accumulation of arsenic in the fillet. Food Addit. Contam. Part A Chem. Anal. Control. Expos. Risk Assess. 2019, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zurbrügg, C.D.; Dortmans, B.; Fadhila, A.; Verstappen, B.; Diener, S. From pilot to full scale operation of a waste-to-protein treatment facility. Detrius 2018, 1, 18–22. [Google Scholar]
- Xiao, X.; Mazza, L.; Yu, Y.; Cai, M.; Zheng, L.; Tomberlin, J.K.; Yu, J.; van Huis, A.; Yu, Z.; Fasulo, S.; et al. Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L. (Diptera: Stratiomyidae) larvae and functional bacteria. J. Environ. Manag. 2018, 217, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Rozkosny, R. A Biosystematic Study of the European Stratiomyidae (Diptera): Volume 2—Clitellariinae, Hermediinae, Pachygasterinae and Bibliography (Series Entomologica); Springer: Dordrecht, The Netherlands, 1983. [Google Scholar]
- Schremmer, F. Die polymetabole Larval-Entwicklung der Waffenfliegenart Hermetia illucens. Ein Beitrag zur Metamorphose der Stratiomyidae. Ann. Naturhist. Mus. Wien 1986, 88, 405–429. [Google Scholar]
- Ramos-Elorduy, J.; González, E.A.; Hernández, A.R.; Pino, J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to Recycle Organic Wastes and as Feed for Broiler Chickens. J. Econ. Entomol. 2002, 95, 214–220. [Google Scholar] [CrossRef] [PubMed]
- van Broekhoven, S.; Oonincx, D.G.; van Huis, A.; van Loon, J.J. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef]
- Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 2018, 98, 5776–5784. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Hu, R.; Zhang, K.; Ma, S.; Zheng, L.; Yu, Z.; Zhang, J. Resistance of black soldier fly (Diptera: Stratiomyidae) larvae to combined heavy metals and potential application in municipal sewage sludge treatment. Environ. Sci. Pollut. Res. Int. 2018, 25, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Nyakeri, E.M.O.; Ogola, H.J.O.; Ayieko, M.A.; Amimo, F.A. Valorisation of organic waste material: Growth performance of wild black soldier fly larvae (Hermetia illucens) reared on different organic wastes. J. Insects Food Feed 2017, 3, 193–202. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Tomberlin, J.K.; Vanlaerhoven, S. Influence of resources on Hermetia illucens (Diptera: Stratiomyidae) larval development. J. Med. Entomol. 2013, 50, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Oonincx, D.G.; van Huis, A.; van Loon, J.J.A. Nutrient utilisation by black soldier flies fed with chicken, pig, or cow manure. J. Insects Food Feed 2015, 1, 131–139. [Google Scholar] [CrossRef]
- Gold, M.; Tomberlin, J.K.; Diener, S.; Zurbrugg, C.; Mathys, A. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. Waste Manag. 2018, 82, 302–318. [Google Scholar] [CrossRef] [PubMed]
- Charlton, A.J.; Dickinson, M.; Wakefield, M.E.; Fitches, E.; Kenis, M.; Han, R.; Zhu, F.; Kone, N.; Grant, M.; Devic, E.; et al. Exploring the chemical safety of fly larvae as a source of protein for animal feed. J. Insects Food Feed 2015, 1, 7–16. [Google Scholar] [CrossRef]
- Moniello, G.; Ariano, A.; Panettieri, V.; Tulli, F.; Olivotto, I.; Messina, M.; Randazzo, B.; Severino, L.; Piccolo, G.; Musco, N.; et al. Intestinal Morphometry, Enzymatic and Microbial Activity in Laying Hens Fed Different Levels of a Hermetia illucens Larvae Meal and Toxic Elements Content of the Insect Meal and Diets. Animals 2019, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Vandeweyer, D.; Wynants, E.; Crauwels, S.; Verreth, C.; Viaene, N.; Claes, J.; Lievens, B.; van Campenhout, L. Microbial Dynamics during Industrial Rearing, Processing, and Storage of Tropical House Crickets (Gryllodes sigillatus) for Human Consumption. Appl. Environ. Microbiol. 2018, 84, e00255-18. [Google Scholar] [CrossRef] [Green Version]
- Kachapulula, P.W.; Akello, J.; Bandyopadhyay, R.; Cotty, P.J. Aflatoxin Contamination of Dried Insects and Fish in Zambia. J. Food Prot. 2018, 81, 1508–1518. [Google Scholar] [CrossRef]
- Banjo, A.D.; Lawal, O.A.; Fasunwon, B.T.; Alimi, G.O. Alkali and Heavy Metal Contaminants of Some Selected Edible Arthropods in South Western Nigeria. Am.-Eurasian J. Toxicol. Sci. 2010, 2, 25–29. [Google Scholar]
- Poma, G.; Cuykx, M.; Amato, E.; Calaprice, C.; Focant, J.F.; Covaci, A. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food Chem. Toxicol. 2017, 100, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.-H.; Kwon, K.H.; Park, K.-H.; Jeong, H.C.; Kwon, O.; Tindwa, H.; Han, Y.S. Evaluation of nutritional status of an edible grasshopper, Oxya Chinensis Formosana. Entomol. Res. 2012, 42, 284–290. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the development of a risk ranking framework on biological hazards. EFSA J. 2012, 10, 2724. [Google Scholar]
Insect Order | Insect Species | Life-Stage at Harvest | Farmed for |
---|---|---|---|
Diptera | black soldier fly (Hermetia illucens) | larvae, prepupae, pupae | feed |
Diptera | common housefly (Musca domestica) | larvae | feed |
Diptera | yellow mealworm (Tenebrio molitor) | larvae | feed, food |
Coleoptera | superworm (Zophobas atratus) | larvae | feed, food |
Coleoptera | giant mealworm (Zophobas morio) | larvae | feed |
Coleoptera | lesser mealworm (Alphitobius diaperinus) | larvae | feed, food |
Lepidoptera | silkworm (Bombyx mori) | prepupae, pupae | feed, food |
Orthotpera | house cricket (Acheta domesticus) | adult | feed, food |
Orthoptera | banded cricket (Gryllodus sigillatus) | adult | feed |
Orthoptera | African migratory locust (Locusta migratoria migratorioides) | adult | feed, food |
Orthoptera | American grasshopper (Schistocerca Americana) | adult | feed, food |
Regulation | Key Aspect of European Regulation/Directive |
---|---|
315/93/EEC | Food containing a contaminant in an amount which is unacceptable from the public health viewpoint and in particular at a toxicological level shall not be placed on the market, contaminant levels shall be kept as low as can reasonably be achieved (ALARA principle) by following good practice. |
EC 178/2002 | Food shall not be placed on the market if it is unsafe, i.e., injurious to health, unfit for human consumption. |
EC 1881/2006 | Maximum levels for certain contaminants (nitrate, mycotoxins, citrinin, ergot sclerotia and ergot alkaloids, metals, 3-monochloropropanediol (3-MCPD) and glycidyl fatty acid esters, dioxins and PCBs, Polycyclic aromatic hydrocarbons, melamine, and its structural analogs and inherent plant toxins) in foodstuffs. |
EU 2015/2283 | Novel foods regulation, among others whole insects and their parts constitute novel foods. |
EC 999/2001 | Rules for the prevention, control, and eradication of certain transmissible spongiform encephalopathies, prohibits processed animal protein as feed for farmed animals. |
EU 2017/893 | Amendment of Annexes I and IV to EC 999/2001 permits processed animal protein derived from farmed insects as feed material for aquaculture animals. |
2002/32/EC | Maximum limits of undesirable substances (e.g., metals, mycotoxins, dioxins) in animal feed. |
2006/576/EC | Guidance values for deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. |
EC 1069/2009 | Health rules as regards animal by-products and derived products not intended for human consumption, defines farmed animal as any animal that is kept, fattened or bred by humans and used for the production of food, wool, fur, feathers, hides, and skins or any other product obtained from animals or for other farming purposes. |
EC 767/2009 | Conditions for the placing on the market and the use of feed, in order to ensure a high level of feed safety and thus a high level of protection of public health, prohibits the use of various waste materials as animal feed. |
Contaminant | Products Intended for Animal Feed | Maximum Content [mg/kg] [21] | Guidance Value [mg/kg] [22] |
---|---|---|---|
Cd | A B | 2 0.5 | |
Pb | A B | 10 5 | |
As | A of animal origin B | 2 2 | |
Hg | A B | 0.1 0.1 | |
Aflatoxin B1 | A B C for dairy animals and young animals | 0.02 0.01 0.005 | |
Deoxynivalenol | D E F for pigs | 8 12 0.9 | |
Zearalenone | D E F for piglets and gilts | 2 3 0.1 | |
Fumonisin B1 + B2 | E F for pigs | 60 5 | |
Ochratoxin A | D F for pigs | 0.25 0.05 |
Larvae Species | Rearing Substrates | Duration of Feeding Period | Analytes | Treatment Prior to Analysis | Reference |
---|---|---|---|---|---|
Alphitobius diaperinus, Tenebrio molitor, Zophobas atratus | Tenebrio molitor and Zophobas atratus: Wheat bran spiked with Zearalenone, Ochratoxin A, T-2 toxin at 500 µg/kg Alphitobius diaperinus: Diet containing maize, wheat, soy, limestone, palm-, sunflower- and soybean oil, spiked with Zearalenone, Ochratoxin A, T-2 toxin at 500 µg/kg | Alphitobius diaperinus: 15 days Tenebrio molitor: 28 days Zophobas atratus: 40 days (depending on species-specific developmental time) | zearalenone (ZEN) ochratoxin A (OTA) T-2 toxin | analyzed directly vs. 24 h/48 h/72 h fasting | [54] |
Tenebrio molitor | wheat flour Naturally contaminated with mycotoxins at levels of 4.9 mg/kg deoxynivalenol (DON), 86 µg/kg 15-ADON, 300 µg/kg DON-3-glucoside) spiked with 8 mg/kg DON | 14 days | deoxynivalenol (DON) DON-3-glycoside (DON-3G) 15-acetyl-DON (15-ADON) | analyzed directly vs. 24 h fasting | [55] |
Tenebrio molitor | Naturally contaminated grain at levels of 0.2 ppm, 2 ppm, 10 ppm, and 12 ppm DON | 32.8 ± 3.2 days (until 2 pupae were observed) | deoxynivalenol (DON) 3-acetyl-DON (3-ADON) Nivalenol (NIV) | 24 h fasting | [56,57] |
Hermetia illucens | Corn semolina-based substrate spiked with 4.6 mg/kg DON, 88 µg/kg AfB1, 17 µg/kg AfB2, 46 µg/kg AfG2, 260 µg/kg OTA, 860 µg/kg ZEN | 10 days | aflatoxin B1 (AfB1) aflatoxin B2 (AfB2) aflatoxin G2 (AfG2) DON OTA ZEN | analyzed directly without fasting | [58] |
Hermetia illucens, Tenebrio molitor | Poultry feed spiked with AfB1 at levels of 0.01, 0.025, 0.05, 0.10, 0.25, and 0.5 mg/kg dry feed | Hermetia illucens: 10 days Tenebrio molitor: Until first pupa was observed | AfB1 aflatoxin M1 (AfM1) | analyzed directly (T. molitor) vs. 2 days on non-contaminated feed | [59] |
Alphitobius diaperinus, Hermetia illucens | Commercial wheat-based rearing substrate spiked with AfB1, DON, OTA and ZEN in concentrations of 1, 10, and 25 times the maximum EC limits or guidance values for specific complete feed spiked with mixtures of mycotoxins (with an average of 8- to 20-fold increase of the EU limits) | Alphitobius diaperinus: 14 days Hermetia illucens: 10 days (depending on species-specific developmental time) | AfB1 aflatoxicol aflatoxin P1 (AfP1) aflatoxin Q1 (AfQ1) AfM1 DON 3-acetyl-DON (3-ADON) 15-ADON DON-3G ZEN α-zearalenol (α-ZEL) β-zearalenol (β-ZEL) | 2 days on non-contaminated feed | [60] |
Tenebrio molitor | Wheat flour spiked with toxins at levels of approx. 500 µg/kg ZEN and approx. 2000 µg/kg ZEN blended with artificially contaminated wheat flour at levels of approx. 500 µg/kg ZEN and approx. 2000 µg/kg ZEN blended with naturally contaminated wheat flour at levels of approx. 600 µg/kg ZEN and approx. 900 µg/kg ZEN | 4 weeks (short-term trial) and 8 weeks (long-term trial) | ZEN ZEN-14-O-glucuronide ZEN-14-sulfate (ZEN14Sulf) ZEN-14-O-glucoside ZEN-16-O-glucoside hydrolyzed ZEN decarboxylated hydrolyzed ZEN α-ZELα-ZEL-14-O-glucuronide α-ZEL-sulfate (ZELSulf) β-ZEL β-ZEL-14-O-glucuronide α-/β-zearalanol (ZAL) Zearalanone (ZAN) DON | 24 h fasting | [61] |
Larvae Species | Rearing Substrate | Duration of Feeding Period | Analytes | Treatment Prior Analysis | Reference |
---|---|---|---|---|---|
Tenebrio molitor | Experiment 1: Single dose of 109Cd on potato Experiment 2: Bread baked with Cd at 0.1, 5, 15, 30 mg/kg | Experiment 1: 1 day Experiment 2: Until 2nd or 3rd instar larvae reached final larval stage | Cd | experiment 2: 24 h fasting | [91] |
Hermetia illucens | Chicken feed spiked with Cd at 2 mg/kg, 10 mg/kg, 50 mg/kg Pb at 5 mg/kg, 25 mg/kg, 125 mg/kg Zn at 100 mg/kg, 500 mg/kg, 2000 mg/kg | Entire lifetime from larvae to adult stage | Cd Pb Zn | analyzed directly after harvest | [92] |
Tenebrio molitor, Hermetia illucens | Feed spiked with Cd at 0.25 mg/kg, 0.5 mg/kg, 1 mg/kg Pb at 2.5 mg/kg, 5 mg/kg, 10 mg/kg As at 1 mg/kg, 2 mg/kg, 4 mg/kg(concentrations 0.5, 1, 2 times the maximum EC limit in complete feed) | Until first pupa was observed | Cd Pb As | analyzed directly after harvest vs. 2 days on uncontaminated feed for highest dose groups | [93] |
Hermetia illucens | Wheat bran spiked with 4.5 mg/kg Cd 300 mg/kg Cr | As soon as >40% reached prepupal stage (indicated by darkening of the integument) | Cd Cr | 12 h fasting | [94] |
Hermetia illucens | Corn semolina-based substrate spiked with 1 mg/kg Cd, 10 mg/kg Pb, 0.1 mg/kg Hg, 10 mg/kg Cr, 10 mg/kg Ni, 2 mg/kg As | 10 days | Cd Pb Hg Cr Ni As | analyzed directly after harvest | [59] |
Hermetia illucens | Plant-based growth medium replaced gradually in 10% steps by seaweed containing 0.34 mg/kg Cd, 0.25 mg/kg Pb, 0.021 mg/kg Hg, 36 mg/kg total As (0.09 mg/kg inorganic As) | 8 days (until control group reached harvest size) | Cd Pb Hg As | analyzed directly after harvest | [95] |
Species | Mean Bioaccumulation Factors | Gut Clean Prior Analysis | Reference |
---|---|---|---|
Tenebrio molitor | 0.8–1.05 (larvae, Cd) 1 0.3–0.38 (adult, Cd) 1 | yes | [91] |
Hermetia illucens | 2.46–2.79 (larvae, Cd) 0.86–1.41 (larval exuviae, Cd) 2.32–2.94 (prepupae, Cd) 0.13–0.21 (adults, Cd) | no | [92] |
Tenebrio molitor | 0.65 ± 0.037–0.71 ± 0.039 (larvae, Cd) 1.4 ± 0.045–2.6 ± 0.23 (larvae, As) | no | [93] |
Hermetia illucens | 9.5 ± 3.6–6.1 ± 1.9 (larvae, Cd) 0.49 ± 0.10–0.58 ± 0.12 (larvae, As) | no | [93] |
Hermetia illucens | 4.635 (larvae, Cd) 4.198 (prepupae, Cd) 0.507 (pupae, Cd) | no | [94] |
Hermetia illucens | 9.1 ± 1.4 (larvae, Cd) | no | [58] |
Hermetia illucens | 4.5–8.33 (larvae, Cd) 1 | no | [95] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schrögel, P.; Wätjen, W. Insects for Food and Feed-Safety Aspects Related to Mycotoxins and Metals. Foods 2019, 8, 288. https://doi.org/10.3390/foods8080288
Schrögel P, Wätjen W. Insects for Food and Feed-Safety Aspects Related to Mycotoxins and Metals. Foods. 2019; 8(8):288. https://doi.org/10.3390/foods8080288
Chicago/Turabian StyleSchrögel, Pamela, and Wim Wätjen. 2019. "Insects for Food and Feed-Safety Aspects Related to Mycotoxins and Metals" Foods 8, no. 8: 288. https://doi.org/10.3390/foods8080288