Potential Use of Bacillus coagulans in the Food Industry
Abstract
1. Introduction
2. Probiotic Activity of B. coagulans
3. Products of B. coagulans
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kesenkaş, H.; Kınık, Ö.; Seçkin, K.; Günç Ergönül, P.; Akan, E. Keçi sütünden üretilen sinbiyotik beyaz peynirde Enterococcus faecium, Bifidobacterium longum ve Lactobacillus paracasei ssp. paracasei sayılarının değişimi. Ege Üniv. Ziraat Fak. Derg. 2018, 53, 75–81. [Google Scholar]
- Lebeer, S.; Bron, P.A.; Marco, M.L.; Pijkeren, J.P.V.; Motherway, M.O.; Hill, C.; Pot, B.; Roos, S.; Klaenhammer, T. Identification of probiotic effector molecules: Present state and future perspectives. Curr. Opin. Biotechnol. 2018, 49, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Küçükçetin, A.; Göçer, E.M.Ç.; Ergin, F.; Arslan, A.A. Farklı inkübasyon sıcaklığı ile inkübasyon sonlandırma pH’sının probiyotik yoğurdun fizikokimyasal ve mikrobiyolojik özellikleri üzerine etkisi. Akademik Gıda 2016, 14, 341–350. [Google Scholar]
- Aşan Özüsağlam, M. Importance of Bacillus coagulans Bacterium as Probiotic in Animal Nutrition. Süleyman Demirel Üniv. Ziraat Fak. Derg. 2010, 5, 50–57. [Google Scholar]
- Kalkan, S. Probiyotik laktik asit bakterilerinin Staphylococcus aureus’a karşı antimikrobiyel etkilerinin farklı matematiksel modeller ile analizi. Sinop Univ. J. Nat. Sci. 2016, 1, 150–159. [Google Scholar]
- Kristjansson, J.K. Thermophilic Bacteria; CRC Press: Boca Raton, FL, USA, 1991; pp. 26–29. [Google Scholar]
- Ünal Turhan, E.; Erginkaya, Z.; Polat, S.; Özer, E.A. Design of probiotic dry fermented sausage (sucuk) production with microencapsulated and free cells of Lactobacillus rhamnosus. Turk. J. Vet. Anim. Sci. 2017, 41, 598–603. [Google Scholar] [CrossRef]
- Ruiz, L.; Ruas-Madiedo, P.; Gueimonde, M.; De Los Reyes-Gavilán, C.G.; Margolles, A.; Sánchez, B. How do Bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes Nutr. 2011, 6, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Budak Bağdatlı, A.; Kundakçı, A. Fermente et ürünlerinde probiyotik mikroorganizmaların kullanımı. Celal Bayar Üniv. J. Sci. 2013, 9, 31–37. [Google Scholar]
- Baka, M.; Noriega, E.; Tsakali, E.; Van, I.; Van Impe, J.F.M. Influence of composition and processing of Frankfurter sausages on the growth dynamics of Listeria monocytogenes under vacuum. Food Res. Int. 2015, 70, 94–100. [Google Scholar] [CrossRef]
- Garriga, M.; Aymerich, T.; Jofré, A. Probiotic fermented sausages: Myth or reality? Procedia Food Sci. 2015, 5, 133–136. [Google Scholar]
- Hyronimus, B.; Le Marrec, C.; Sassi, A.H.; Deschamps, A. Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 2000, 61, 193–197. [Google Scholar] [CrossRef]
- Fares, C.; Menga, V.; Martina, A.; Pellegrini, N. Nutritional profile and cooking quality of a new functional pasta naturally enriched in phenolic acids, added with β-glucan and Bacillus coagulans GBI-30, 6086. J. Cereal Sci. 2015, 65, 260–266. [Google Scholar] [CrossRef]
- Hosseini, H.; Pilevar, Z. Effects of starter cultures on the properties of meat products: A review. Ann. Res. Rev. Biol. 2017, 17, 1–17. [Google Scholar]
- Karri, S.K.; Majeed, M.; Natarajan, S.; Sivakumar, A.; Ali, F.; Pande, A.; Majeed, S. Evaluation of anti-diarrhoeal activity of Bacillus coagulans MTCC 5856 and its effect on gastrointestinal motilıty in wistar rats. Int. J. Pharm. Biol. Sci. 2016, 7, 311–316. [Google Scholar]
- Benson, K.F.; Redman, K.A.; Carter, S.G.; Keller, D.; Farmer, S.; Endres, J.R.; Jensen, S.J. Probiotic metabolites from Bacillus coagulans GanedenBC30TM support maturation of antigen-presenting cells in vitro. World J. Gastroenterol. 2012, 18, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
- De Clerk, E.; Rodriguez-Diaz, M.; Forsyth, G.; Lebbe, L.; Logan, N.A.; DeVos, P. Polyphasic characterization of Bacillus coagulans strains, illustrating heterogeneity within this species, and emended description of the species. Syst. Appl. Microbiol. 2004, 27, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Ercan Akkaya, S.; Kıvanç, M. Termofil bakteriler; sıcak su kaynaklarında yaşayan Gr (+) basillerin izolasyon ve identifikasyon yöntemleri. AKÜ Fen Bilim. Derg. 2008, 2, 61–70. [Google Scholar]
- EFSA. Scientific Opinion on The Maintenance of the List of QPS Biological Agents Intentionally Added to Food and Feed (2013 update). EFSA J. 2013, 11, 3449. [Google Scholar] [CrossRef]
- Orrù, L.; Salvetti, E.; Cattivelli, L.; Lamontanara, A.; Michelotti, V.; Capozzi, V.; Spano, G.; Keller, D.; Cash, H.; Martina, A.; et al. Draft genome sequence of Bacillus coagulans GBI-30, 6086, a widely used spore-forming probiotic strain. Genome Announc. 2014, 2. [Google Scholar] [CrossRef] [PubMed]
- Salvetti, E.; Orrù, L.; Capozzi, V.; Martina, A.; Lamontanara, A.; Keller, D.; Cash, H.; Felis, G.E.; Cattivelli, L.; Torriani, S.; et al. Integrate genome-based assessment of safety for probiotic strains: Bacillus coagulans GBI-30, 6086 as a case study. Appl. Microbiol. Biotechnol. 2016, 100, 4595–4605. [Google Scholar] [CrossRef] [PubMed]
- Urdaci, M.C.; Bressollier, P.; Pinchuk, I. Bacillus clausii probiotic strains: Antimicrobial and immunomodulatory activities. J. Clin. Gastroenterol. 2004, 38, 86–90. [Google Scholar] [CrossRef]
- Nithya, V.; Halami, P. Evaluation of the probiotic characteristics of Bacillus species isolated from different food sources. Ann. Microbiol. 2013, 63, 129–137. [Google Scholar] [CrossRef]
- Gülmez, M.; Güven, A. Probiyotik, prebiyotik ve sinbiyotikler. Kafkas Üniv. Vet. Fak. Derg. 2002, 8, 83–89. [Google Scholar]
- Uymaz, B. Probiyotikler ve kullanım alanları. Pamukkale Üniv. Müh. Bilim. Derg. 2010, 16, 95–104. [Google Scholar]
- Cutting, S.M. Bacillus probiotics. Food Microbiol. 2011, 28, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Elshaghabee, F.M.F.; Rokana, N.; Gulhane, R.D.; Sharma, C.; Panwar, H. Bacillus as Potential Probiotics: Status, Concerns, and Future Perspectives. Frontiers Microbiol. 2017, 8, 1490. [Google Scholar] [CrossRef] [PubMed]
- Kalman, D.S.; Schwartz, H.I.; Alvarez, P.; Feldman, S.; Pezzullo, J.C.; Krieger, D.R. A prospective, randomized, double-blind, placebo-controlled parallel-group dual site trial to evaluate the effects of a Bacillus coagulans-based product on functional intestinal gas symptoms. BMC Gastroenterol. 2009, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- Endres, J.R.; Clewell, A.; Jade, K.A.; Farber, T.; Hauswirth, J.; Schauss, A.G. Safety assessment of a proprietary preparation of a novel probiotic, Bacillus coagulans, as a food ingredient. Food Chem. Toxicol. 2009, 47, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Siezen, R.J.; Wilson, G. Probiotics genomics. Microb. Biotechnol. 2010, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Honda, H.; Hoyles, L.; Gibson, G.; Farmer, S.; Keller, D.; McCartney, A.L. Impact of GanedenBC30 (Bacillus coagulans GBI-30, 6086) on population dynamics of the human gut microbiota in a continuous culture fermentation system. Int. J. Probiot. Prebiot. 2011, 6, 65–72. [Google Scholar]
- Jäger, R.; Shields, K.A.; Lowery, R.P.; De Souza, E.O.; Partl, J.M.; Hollmer, C.; Purpura, M.; Wilson, J.M. Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery. PeerJ 2016, 4, e2276. [Google Scholar] [CrossRef] [PubMed]
- Bora, P.S.; Puri, V.; Bansal, A.K. Physicochemical Properties and Excipient Compatibility studies of Probiotic Bacillus coagulans Spores. Sci. Pharm. 2009, 77, 625–637. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.; Jin, Y.I.; Jeong, J.C.; Chang, Y.K.; Lee, Y.; Jeong, Y.; Kim, M. Probiotic characteristics of Bacillus strains isolated from Korean traditional soy sauce. LWT—Food Sci. Technol. 2017, 79, 518–524. [Google Scholar] [CrossRef]
- Abada, E.A.E. Isolation and characterization of an antimicrobial compound from Bacillus coagulans. Anima. Cells Syst. 2008, 12, 41–46. [Google Scholar] [CrossRef]
- Natarajaseenivasan, K.; Abdhul, K.; Ganesh, M.; Shanmughapriya, S.; Vanithamani, S.; Kanagavel, M.; Anbarasu, K. Bacteriocinogenic potential of a probiotic strain Bacillus coagulans [BDU3] from Ngari. Int. J. Biol. Macromol. 2015, 79, 800–806. [Google Scholar]
- Senna, A.; Lathrop, A. Antifungal Screening of Bioprotective Isolates against Botrytis cinerea, Fusarium pallidoroseum and Fusarium moniliforme. Fermentation 2017, 3, 53. [Google Scholar] [CrossRef]
- Donskey, C.J.; Hoyen, C.K.; Das, S.M.; Farmer, S.; Dery, M.; Bonomo, R.A. Effect of Oral Bacillus coagulans Administration on the Density of Vancomycin-Resistant Enterococci in the Stool of Colonized Mice. Lett. Appl. Microbiol. 2001, 33, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.; Mortazavian, A.M.; Alebouyeh, M.; Hosseini, H.; Ghanati, K.; Zali, M.R. Recovery of Bacillus coagulans as a probiotic spore former in the raw batter of cocktail sausage as influenced by chopping, formulation and surfactant. Int. J. Life Sci. Pharm. Res. 2016, 2, 39–48. [Google Scholar]
- Jafari, M.; Mortazavian, A.M.; Hosseini, H.; Safaei, F.; Khaneghah, A.M.; Sant’Ana, A.S. Probiotic Bacillus: Fate during sausage processing and storage andinfluence of different culturing conditions on recovery of their spores. Food Res. Int. 2017, 95, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, G. Introduction to quality engineering: Designing quality into products and processes. Tokyo Asian Prod. Org. 1986, 191. [Google Scholar]
- Hong, H.A.; Duc, L.H.; Cutting, S.M. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 2005, 29, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Jurenka, J.S. Bacillus coagulans. Altern. Med. Rev. 2012, 17, 76–81. [Google Scholar] [PubMed]
- Fijan, S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int. J. Environ. Res. Public Health 2014, 11, 4745–4767. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, G.L.; Tosca, M.; Cirillo, I.; Licari, A.; Leone, M.; Marseglia, A.; Castellazzi, A.M.; Ciprandi, G. Efficacy of Bacillus clausii spores in the prevention of recurrent respiratory infections in children: A pilot study. Ther. Clin. Risk Manag. 2007, 3, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Tompkins, T.A.; Xu, X.; Ahmarani, J. A comprehensive review of post-market clinical studies performed in adults with an Asian probiotic formulation. Benef. Microbes 2010, 1, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ouyang, J.; Xu, Q.; Zheng, Z. Cost-effective simultaneous saccharification and fermentation of L-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17. Bioresour. Technol. 2016, 222, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Maas, R.H.W.; Bakker, R.R.; Jansen, M.L.A.; Visser, D.; de Jong, E.; Eggink, G.; Weusthuis, R.A. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: Neutralization of acid by fed-batch addition of alkaline substrate. Appl. Microbiol. Biotechnol. 2008, 78, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Van der Pol, E.C.; Eggink, G.; Weusthuis, R.A. Production of l-(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy. Biotechnol. Biofuels 2016, 9, 248. [Google Scholar] [CrossRef] [PubMed]
- Ou, M.S.; Awasthi, D.; Nieves, I.; Wang, L.; Erickson, J.; Vermerris, W.; Ingram, L.O.; Shanmugam, K.T. Sweet sorghum juice and bagasse as feedstocks for the production of optically pure lactic acid by native and engineered bacillus coagulans strains. Bioenergy. Res. 2016, 9, 123–131. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Cai, D.; Wang, Z.; Qin, P.; Tan, T. The optimization of L-lactic acid production from sweet sorghum juice by mixed fermentation of Bacillus coagulans and Lactobacillus rhamnosus under unsterile conditions. Bioresour. Technol. 2016, 218, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Neu, A.K.; Pleissner, D.; Mehlmann, K.; Schneider, R.; Puerta-Quintero, G.I.; Venus, J. Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l-(+)-lactic acid production. Bioresour. Technol. 2016, 211, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, X.; Luo, J.; Qi, B.; Wan, Y. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22. Bioresour. Technol. 2014, 158, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, Z.; Lin, Y.; Zhao, S.; Mei, Y.; Liang, Y.; Peng, N. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition. Bioresour. Technol. 2015, 182, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Hu, G.; Pan, L.; Wang, Z.; Zhou, Y.; Wang, Y.; Ruan, Z.; He, M. Highly efficient production of optically pure L-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans. Bioresour. Technol. 2016, 219, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Yu, B.; Tian, X.; Chen, Y.; Wang, Z.; Zhuang, Y.; Wang, Y. Effect of pH, glucoamylase, pullulanase and invertase addition on the degradation of residual sugar in l-lactic acid fermentation by Bacillus coagulans HL-5 with corn flour hydrolysate. J. Taiwan Inst. Chem. Eng. 2016, 61, 124–131. [Google Scholar] [CrossRef]
- Payot, T.; Chemaly, Z.; Fick, M. Lactic acid production by Bacillus coagulans—Kinetic studies and optimization of culture medium for batch and continuous fermentations. Enzyme Microbial Technol. 1999, 24, 191–199. [Google Scholar] [CrossRef]
- Fan, R.; Ebrahimi, M.; Quitmann, H.; Aden, M.; Czermak, P. An Innovative Optical Sensor for the Online Monitoring and Control of Biomass Concentration in a Membrane Bioreactor System for Lactic Acid Production. Sensors 2016, 16, 411. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.F.; Beitel, S.M.; Sass, D.C.; Neto, P.M.A.; Contiero, J. High-titer and productivity of l-(+)-lactic acid using exponential fed-batch fermentation with Bacillus coagulans arr4, a new thermotolerant bacterial strain. 3 Biotech 2018, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- Juturu, V.; Wu, J.C. Production of high concentration of l-lactic acid from oil palm empty fruit bunch by thermophilic Bacillus coagulans JI12. Biotechn. App. Biochem. 2018, 65, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Batra, N.; Singh, J.; Banerjee, U.C.; Patnaik, P.R.; Sobti, R.C. Production and characterization of a thermostable β-galactosidase from Bacillus coagulans RCS3. Biotechnol. Appl. Biochem. 2002, 36, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.H.; Jang, M.S.; Park, H.Y.; Koneva, E. Biochemical characterization of α-galactosidase-producing thermophilic Bacillus coagulans KM-1. Korean J. Fish. Aquat. Sci. 2014, 47, 516–521. [Google Scholar] [CrossRef]
- Parkouda, C.; Diawara, B.; Debrah, K. Enzyme profiles of potential starter cultures for the fermentation of baobab seeds. Afr. J. Food Sci. 2014, 8, 249–252. [Google Scholar]
- Babu, K.R.; Satyanarayana, T. α-amylase production by thermophilic Bacillus coagulans in solid state fermentation. Process Biochem. 1995, 30, 305–309. [Google Scholar] [CrossRef]
- Lianghua, T.; Liming, X. Purification and partial characterization of a lipase from Bacillus coagulans ZJU318. Appl. Biochem. Biotechnol. 2005, 125, 139–146. [Google Scholar] [CrossRef]
- Alkan, H.; Baysal, Z.; Uyar, F.; Doğru, M. Production of lipase by a newly isolated Bacillus coagulans under solid-state fermentation using melon wastes. Appl. Biochem. Biotechnol. 2007, 136, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Gowthami, P.; Muthukumar, K.; Velan, M. Utilization of coconut oil cake for the production of lipase using Bacillus coagulans VKl1. Biocontrol Sci. 2015, 20, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Qiao, H.; Zheng, Z.; Chu, Q.; Li, X.; Yong, Q.; Ouyang, J. Lactic acid production from pretreated hydrolysates of corn stover by a newly developed Bacillus coagulans strain. PLoS ONE 2016, 11, e0149101. [Google Scholar] [CrossRef] [PubMed]
- Juturu, V.; Wu, J.C. Microbial production of lactic acid: The latest development. Crit. Rev. Biotechol. 2016, 36, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Glaser, R.; Venus, J. Co-fermentation of the main sugar types from a beechwood organosolv hydrolysate by several strains of Bacillus coagulans results in effective lactic acid production. Biotechnol. Rep. 2018, 18, e00245. [Google Scholar] [CrossRef] [PubMed]
- Aulitto, M.; Fusco, S.; Bartolucci, S.; Franzen, C.J.; Contursi, P. Bacillus coagulans MA-13: A promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate. Biotechnol. Biofuels 2017, 10, 210. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Devl, K. Isolation and characterization of Escherichia coli producing β galactosidase from raw milk of dairy industry. Int. J. Adv. Sci. Technol. Res. 2016, 6, 163–179. [Google Scholar]
- Jensen, T.Ø.; Pogrebnyakov, I.; Falkenberg, K.B.; Redl, S.; Nielsen, A.T. Application of the thermostable β-galactosidase, BgaB, from Geobacillus stearothermophilus as a versatile reporter under anaerobic and aerobic conditions. AMB Express 2017, 7, 169. [Google Scholar] [CrossRef] [PubMed]
- Gürkök, S.; Söyler, B.; Ögel, Z.B. Aspergillus fumigatus alfa-galaktosidaz enziminin Aspergillus sojae’de heterolog ifadesi ve osmotik stresin etkisi. In Proceedings of the Türkiye 10. Gıda Kongresi, Erzurum, Turkey, 21–23 May 2008. [Google Scholar]
- Prihanto, A.A.; Darius; Firdaus, M. Proteolytic and fibrinolytic activities of halophilic lactic acid bacteria from two Indonesian fermented foods. J. Microbiol. Biotechnol. Food Sci. 2013, 2, 2291–2293. [Google Scholar]
- Reyes-Mendez, A.I.; Figueroa-Hernandez, C.; Melgar-Lalanne, G.; Hernandez-Sanchez, H.; Davila-Ortiz, G.; Jimenez-Martinez, C. Production of calcium- and iron-binding peptides by probiotic strains of Bacillus subtilis, B. clausii and B. coagulans GBI-30. Rev. Mex. Ing. Quimica 2015, 14, 1–9. [Google Scholar]
- Sundarram, A.; Murthy, T.P.K. α-amylase production and applications: A review. J. Appl. Env. Microbiol. 2014, 2, 166–175. [Google Scholar]
- Keating, L.; Kelly, C.; Fogarty, W. Mechanism of action and the substrate dependent pH maximum shift of the α-amylase of Bacillus coagulans. Carbohydr. Res. 1998, 309, 311–318. [Google Scholar] [CrossRef]
- Kumar, S.; Kikon, K.; Upadhyay, A.; Kanwar, S.S.; Gupta, R. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expr. Purif. 2005, 41, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Kanwar, S.S.; Ghazi, I.A.; Chimni, S.S.; Joshi, G.K.; Rao, G.V.; Kaushal, R.K.; Gupta, R.; Punj, V. Purification and properties of a novel extra-cellular thermotolerant metallolipase of Bacillus coagulans MTCC-6375 isolate. Protein Expr. Purif. 2006, 46, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Verma, G.; Gupta, P. Growth performance, feed utilization, digestive enzyme activity, innate immunity and protection against Vibrio harveyi of freshwater prawn, Macrobrachium rosenbergii fed diets supplemented with Bacillus coagulans. Aquac. Int. 2016, 24, 1379–1392. [Google Scholar] [CrossRef]
- Heck, J.X.; FLores, S.H.; Hertz, P.F.; Ayub, M.A.Z. Optimization of cellulase-free xylanase activity produced by Bacillus coagulans BL69 in solid-state cultivation. Process Biochem. 2005, 40, 107–112. [Google Scholar] [CrossRef]
- Chauhan, S.; Choudhury, B.; Singh, S.N.; Ghosh, P. Application of xylanase enzyme of Bacillus coagulans as a prebleaching agent on non-woody pulps. Process Biochem. 2006, 41, 226–231. [Google Scholar] [CrossRef]
Strain | Supplement | Reference |
---|---|---|
Bacillus coagulans 15B | Nutrition essentials Probiotic | [27] |
B. coagulans and Bacillus subtilis (B. subtilis) | NutriCommit | [27] |
B. coagulans and Saccharomyces boulardii | Flora3 | [27] |
B. coagulans | THORNE | [27] |
B. coagulans | Sunny Green Cleansing Green | [27] |
Bacillus indicus HU36, B. coagulans, Bacillus clausii (B. clausii), Bacillus subtilis HU58 | Just Thrive | [27] |
Bacillus indicus, B. subtilis, B. coagulans, Bacillus licheniformis, B. clausii | MegaSporeBiotic | [27] |
B. coagulans | Sustenex | [26] |
B. coagulans | Neolactoflorene | [26] |
B. coagulans | GanedenBC30 | [28] |
Strain | Substrate | Product | Reference |
---|---|---|---|
Bacillus coagulans DSM 2314 | Wheat straw | Lactic acid | [48] |
Bacillus coagulans DSM2314 | Sugarcane bagasse | Lactic acid | [49] |
B. coagulans | Sorghum water | Lactic acid | [50,51] |
B. coagulans | Coffee extract | Lactic acid | [52] |
Bacillus coagulans IPE 22 | Wheat straw | Lactic acid | [53] |
Bacillus coagulans LA 204 | Corn stover | Lactic acid | [54] |
B. coagulans | Corn stover | Lactic acid | [55] |
Bacillus coagulans HL-5 | Corn flour | Lactic acid | [56] |
Bacillus coagulans TB/04 | Medium | Lactic acid | [57] |
Bacillus coagulans PS5 | Medium | Lactic acid | [58] |
Bacillus coagulans arr4 | Granulated sugar and yeast extract | Lactic acid | [59] |
Bacillus coagulans JI12 | Oil palm empty fruit bunch | Lactic acid | [60] |
Bacillus coagulans RCS3 | Medium | β-galactosidase | [61] |
Bacillus coagulans KM-1 | Fermented soybean | α-galactosidase | [62] |
Bacillus coagulans BL174 | Medium | α-galactosidase | [63] |
Bacillus coagulans B49 | Wheat bran | α-amylase | [64] |
Bacillus coagulans BL174 | Medium | Lipase | [63] |
Bacillus coagulans ZJU318 | Medium | Lipase | [65] |
B. coagulans | Melon wastes | Lipase | [66] |
Bacillus coagulans VKl1 | Coconut oil cake | Lipase | [67] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konuray, G.; Erginkaya, Z. Potential Use of Bacillus coagulans in the Food Industry. Foods 2018, 7, 92. https://doi.org/10.3390/foods7060092
Konuray G, Erginkaya Z. Potential Use of Bacillus coagulans in the Food Industry. Foods. 2018; 7(6):92. https://doi.org/10.3390/foods7060092
Chicago/Turabian StyleKonuray, Gözde, and Zerrin Erginkaya. 2018. "Potential Use of Bacillus coagulans in the Food Industry" Foods 7, no. 6: 92. https://doi.org/10.3390/foods7060092
APA StyleKonuray, G., & Erginkaya, Z. (2018). Potential Use of Bacillus coagulans in the Food Industry. Foods, 7(6), 92. https://doi.org/10.3390/foods7060092