Next Article in Journal
Adoptable Interventions, Human Health, and Food Safety Considerations for Reducing Sodium Content of Processed Food Products
Previous Article in Journal
Extraction and Optimization of Potato Starch and Its Application as a Stabilizer in Yogurt Manufacturing
Previous Article in Special Issue
Detection of Lard in Cocoa Butter—Its Fatty Acid Composition, Triacylglycerol Profiles, and Thermal Characteristics
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
Foods 2018, 7(2), 15; https://doi.org/10.3390/foods7020015

Polyphenolic Characterization and Antioxidant Activity of Malus domestica and Prunus domestica Cultivars from Costa Rica

1
Department of Chemistry, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica
2
Department of Biology, Technological University of Costa Rica (TEC), Cartago 7050, Costa Rica
3
Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica
4
Department of Biology, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica
5
Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, MD 20705, USA
*
Author to whom correspondence should be addressed.
Received: 5 December 2017 / Revised: 21 January 2018 / Accepted: 22 January 2018 / Published: 30 January 2018
(This article belongs to the Special Issue Qualitative Analysis of Food Products)
Full-Text   |   PDF [5303 KB, uploaded 30 January 2018]   |  

Abstract

The phenolic composition of skin and flesh from Malus domestica apples (Anna cultivar) and Prunus domestica plums (satsuma cultivar) commercial cultivars in Costa Rica, was studied using Ultra Performance Liquid Chromatography coupled with High Resolution Mass Spectrometry (UPLC-DAD-ESI-MS) on enriched-phenolic extracts, with particular emphasis in proanthocyanidin and flavonoids characterization. A total of 52 compounds were identified, including 21 proanthocyanidins ([(+)-catechin and (−)-epicatechin]) flavan-3-ols monomers, five procyanidin B-type dimers and two procyanidin A-type dimers, five procyanidin B-type trimers and two procyanidin A-type trimers, as well as one procyanidin B-type tetramer, two procyanidin B-type pentamers, and two flavan-3-ol gallates); 15 flavonoids (kaempferol, quercetin and naringenin derivatives); nine phenolic acids (protochatechuic, caffeoylquinic, and hydroxycinnamic acid derivatives); five hydroxychalcones (phloretin and 3-hydroxyphloretin derivatives); and two isoprenoid glycosides (vomifoliol derivatives). These findings constitute the first report of such a high number and diversity of compounds in skins of one single plum cultivar and of the presence of proanthocyanidin pentamers in apple skins. Also, it is the first time that such a large number of glycosylated flavonoids and proanthocyanidins are reported in skins and flesh of a single plum cultivar. In addition, total phenolic content (TPC) was measured with high values observed for all samples, especially for fruits skins with a TPC of 619.6 and 640.3 mg gallic acid equivalents/g extract respectively for apple and plum. Antioxidant potential using 2,2-diphenyl-1-picrylhidrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) methods were evaluated, with results showing also high values for all samples, especially again for fruit skins with IC50 of 4.54 and 5.19 µg/mL (DPPH) and 16.8 and 14.6 mmol TE/g (ORAC) respectively for apple and plum, indicating the potential value of these extracts. Significant negative correlation was found for both apple and plum samples between TPC and DPPH antioxidant values, especially for plum fruits (R = −0.981, p < 0.05) as well as significant positive correlation between TPC and ORAC, also especially for plum fruits (R = 0.993, p < 0.05) and between both, DPPH and ORAC antioxidant methods (R = 0.994, p < 0.05). View Full-Text
Keywords: Malus domestica; Prunus domestica; apple; plum; UPLC; ESI-MS; proanthocyanidins; flavonoids; mass spectrometry; antioxidant Malus domestica; Prunus domestica; apple; plum; UPLC; ESI-MS; proanthocyanidins; flavonoids; mass spectrometry; antioxidant
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Navarro, M.; Moreira, I.; Arnaez, E.; Quesada, S.; Azofeifa, G.; Vargas, F.; Alvarado, D.; Chen, P. Polyphenolic Characterization and Antioxidant Activity of Malus domestica and Prunus domestica Cultivars from Costa Rica. Foods 2018, 7, 15.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Foods EISSN 2304-8158 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top