Health-Promoting Compounds in Pigmented Thai and Wild Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Preparation of Raw and Cooked Samples for Analysis
2.3. Chemicals
2.4. Instrumentation
2.5. Proximate Analysis
2.6. Extraction and Determination of Carotenoids
2.7. Extraction of Free Phenolic Compounds
2.8. Extraction of Insoluble-Bound Phenolic Compounds
2.9. Determination of Total Free and Insoluble-Bound Phenolic Compound Content
2.10. Extraction and Determination of Anthocyanins
2.11. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition of Raw Samples
3.2. Determination of Carotenoids on Raw and Cooked Samples
3.3. Determination of FPCs and BPCs on Raw and Cooked Samples
3.4. Determination of Anthocyanins on Raw and Cooked Samples
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAOSTAT). Available online: http://faostat.fao.org/ (accessed on 27 October 2016).
- European Commission, Agriculture and Rural Development—Door. Available online: http://ec.europa.eu/agriculture/quality/door/list.html?locale=it (accessed on 27 October 2016).
- Ahuja, U.; Ahuja, S.C.; Chaudhary, N.; Thakrar, R. Red Rices—Past, present, and future. Asian Agri-Hist. 2007, 11, 291–304. [Google Scholar]
- Oelke, E.; Boedicker, J. Wild rice: Processing and utilization. In Handbook of Cereal Science and Technology, 2nd ed.; Kulp, K., Ponte, J.G., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2000; pp. 275–296. [Google Scholar]
- Santos-Buelga, C.; Mateus, N.; de Freitas, V. Anthocyanins. Plant pigments and beyond. J. Agric. Food Chem. 2014, 62, 6879–6884. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Amaya, D.B. Food Carotenoids: Chemistry, Biology and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Van der Kamp, J.W.; Poutanen, K.; Seal, C.J.; Richardson, D.P. The HEALTHGRAIN definition of “whole grain”. Food Nutr. Res. 2014, 58, 22100. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Q.; Nagao, N.; Itani, T.; Irifune, K. Anti-oxidative analysis, and identification and quantification of anthocyanin pigments in different coloured rice. Food Chem. 2012, 135, 2783–2788. [Google Scholar] [CrossRef] [PubMed]
- Sompong, R.; Siebenhandl-Ehn, S.; Linsberger-Martin, G.; Berghofer, E. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chem. 2011, 124, 132–140. [Google Scholar] [CrossRef]
- Gunaratne, A.; Wu, K.; Li, D.; Bentota, A.; Corke, H.; Cai, Y.-Z. Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food Chem. 2013, 138, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; Gu, L.; McClung, A.M.; Bergman, C.J.; Chen, M.-H. Free and bound total phenolic concentrations, antioxidant capacities, and profiles of proanthocyanidins and anthocyanins in whole grain rice (Oryza sativa L.) of different bran colours. Food Chem. 2012, 133, 715–722. [Google Scholar] [CrossRef]
- Zhang, M.W.; Zhang, R.F.; Zhang, F.X.; Liu, R.H. Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. J. Agric. Food Chem. 2010, 58, 7580–7587. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Lee, S.Y.; Chu, S.M.; Lim, S.H.; Suh, S.-C.; Lee, Y.-T.; Cho, H.S.; Ha, S.-H. Variation and correlation analysis of flavonoids and carotenoids in Korean pigmented rice (Oryza sativa L.) cultivars. J. Agric. Food Chem. 2010, 58, 12804–12809. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Caro, G.; Cros, G.; Yokota, T.; Crozier, A. Phytochemical profiles of black, red, brown, and white rice from the Camargue region of France. J. Agric. Food Chem. 2013, 61, 7976–7986. [Google Scholar] [CrossRef] [PubMed]
- ICC—International Association for Cereal Science and Technology. ICC Standard Methods; ICC—International Association for Cereal Science and Technology: Vienna, Austria, 2003. [Google Scholar]
- Association of Official Analytical Chemists (AOAC) International. Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Rockville, MD, USA, 2012. [Google Scholar]
- Acquistucci, R.; Melini, V.; Carbonaro, M.; Finotti, E. Bioactive molecules and antioxidant activity in durum wheat grains and related millstream fractions. Int. J. Food Sci. Nutr. 2013, 64, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Arranz, S.; Saura Calixto, F. Analysis of polyphenols in cereals may be improved performing acidic hydrolysis: A study in wheat flour and wheat bran and cereals of the diet. J. Cereal Sci. 2010, 51, 313–318. [Google Scholar] [CrossRef]
- Paiva, F.F.; Vanier, N.L.; Berrios, J.D.J.; Pan, J.; Villanova, F.D.A.; Takeoka, G.; Elias, M.C. Physicochemical and nutritional properties of pigmented rice subjected to different degrees of milling. J. Food Compos. Anal. 2014, 35, 10–17. [Google Scholar] [CrossRef]
- Adom, K.K.; Liu, R.H. Antioxidant Activity of Grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef] [PubMed]
- Irakli, M.N.; Samanidou, V.F.; Biliaderis, C.G.; Papadoyannis, I.N. Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction. Food Chem. 2012, 134, 1624–1632. [Google Scholar] [CrossRef] [PubMed]
- Surendiran, G.; Alsaif, M.; Kapourchali, F.R.; Moghadasian, M.H. Nutritional constituents and health benefits of wild rice (Zizania spp.). Nutr. Rev. 2014, 72, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Fabian, C.; Ju, Y.-H. A review on rice bran protein: Its properties and extraction methods. Crit. Rev. Food Sci. Nutr. 2011, 51, 816–827. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R. Improving the protein content and composition of cereal grain. J. Cereal Sci. 2007, 46, 239–250. [Google Scholar] [CrossRef]
- Lamberts, L.; de Bie, E.; Vandeputte, G.E.; Veraverbeke, W.S.; Derycke, V.; de Man, W.; Delcour, J.A. Effect of milling on colour and nutritional properties of rice. Food Chem. 2007, 100, 1496–1503. [Google Scholar] [CrossRef]
- Bernstein, P.S. The role of lutein and zeaxanthin in protection against age-related macular degeneration. Acta Hortic. 2015, 1106, 153–159. [Google Scholar] [CrossRef]
- Pechinskii, S.V.; Kuregyan, A.G. The impact of carotenoids on immunity (Review). Pharm. Chem. J. 2014, 47, 509–513. [Google Scholar] [CrossRef]
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [PubMed]
- Hammond, B.R.; Renzi, L.M. Carotenoids. Adv. Nutr. Int. Rev. J. 2013, 4, 474–476. [Google Scholar] [CrossRef] [PubMed]
- Graham, R.D.; Rosser, J.M. Carotenoids in staple foods: Their potential to improve human nutrition. Food Nutr. Bull. 2000, 21, 404–409. [Google Scholar] [CrossRef]
- Mellado-Ortega, E.; Hornero-Méndez, D. Carotenoids in cereals: An ancient resource with present and future applications. Phytochem. Rev. 2015, 14, 873–890. [Google Scholar] [CrossRef]
- Pereira-Caro, G.; Watanabe, S.; Crozier, A.; Fujimura, T.; Yokota, T.; Ashihara, H. Phytochemical profile of a Japanese black-purple rice. Food Chem. 2013, 141, 2821–2827. [Google Scholar] [CrossRef] [PubMed]
- Maiani, G.; Castón, M.J.P.; Catasta, G.; Toti, E.; Cambrodón, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; et al. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2009, 53, S194–S218. [Google Scholar] [CrossRef] [PubMed]
- Panfili, G.; Fratianni, A.; Irano, M. Improved normal-phase high-performance liquid chromatography procedure for the determination of carotenoids in cereals. J. Agric. Food Chem. 2004, 52, 6373–6377. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, A.; Irano, M.; Panfili, G.; Acquistucci, R. Estimation of color of durum wheat. Comparison of WSB, HPLC, and reflectance colorimeter measurements. J. Agric. Food Chem. 2005, 53, 2373–2378. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, A.; Mignogna, R.; Niro, S.; Panfili, G. Determination of lutein from fruit and vegetables through an alkaline hydrolysis extraction method and HPLC analysis. J. Food Sci. 2015, 80, C2686–C2691. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, O.F.; Ryan, L.; O’Brien, N.M. Xanthophyll carotenoids are more bioaccessible from fruits than dark green vegetables. Nutr. Res. 2007, 27, 258–264. [Google Scholar] [CrossRef]
- Bordiga, M.; Gomez-Alonso, S.; Locatelli, M.; Travaglia, F.; Coïsson, J.D.; Hermosin-Gutierrez, I.; Arlorio, M. Phenolics characterization and antioxidant activity of six different pigmented Oryza sativa L. cultivars grown in Piedmont (Italy). Food Res. Int. 2014, 65, 282–290. [Google Scholar] [CrossRef]
- Massaretto, I.L.; Madureira Alves, M.F.; Mussi de Mira, N.V.; Carmona, A.K.; Lanfer Marquez, U.M. Phenolic compounds in raw and cooked rice (Oryza sativa L.) and their inhibitory effect on the activity of angiotensin I-converting enzyme. J. Cereal Sci. 2011, 54, 236–240. [Google Scholar] [CrossRef]
- Hirawan, R.; Ser, W.Y.; Arntfield, S.D.; Beta, T. Antioxidant properties of commercial, regular- and whole-wheat spaghetti. Food Chem. 2010, 119, 258–264. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Liu, R.H. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 2002, 50, 4959–4964. [Google Scholar] [CrossRef] [PubMed]
- Bryngelsson, S.; Dimberg, L.H.; Kamal-Eldin, A. Effects of commercial processing on levels of antioxidants in oats (Avena sativa L.). J. Agric. Food Chem. 2002, 50, 1890–1896. [Google Scholar] [CrossRef] [PubMed]
- Duodu, K.G. Effects of Processing on Antioxidant Phenolics of Cereal and Legume Grains. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; American Chemical Society (ACS) Symposium Series; American Chemical Society: Washington, DC, USA, 2011; Volume 1089, pp. 31–54. [Google Scholar]
- Pérez-Jiménez, J.; Díaz-Rubio, M.E.; Saura-Calixto, F. Non-extractable polyphenols, a major dietary antioxidant: Occurrence, metabolic fate and health effects. Nutr. Res. Rev. 2013, 26, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr. 2015, 54, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Mateus, N.; de Freitas, V. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching. J. Agric. Food Chem. 2007, 55, 6726–6735. [Google Scholar] [CrossRef] [PubMed]
- Fares, C.; Platani, C.; Baiano, A.; Menga, V. Effect of processing and cooking on phenolic acid profile and antioxidant capacity of durum wheat pasta enriched with debranning fractions of wheat. Food Chem. 2010, 119, 1023–1029. [Google Scholar] [CrossRef]
- Kong, S.; Lee, J. Antioxidants in milling fractions of black rice cultivars. Food Chem. 2010, 120, 278–281. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.M.; Shahidi, F. The antioxidant potential of milling fractions from breadwheat and durum. J. Cereal Sci. 2007, 45, 238–247. [Google Scholar] [CrossRef]
- Goufo, P.; Trindade, H. Factors Influencing Antioxidant Compounds in Rice. Crit. Rev. Food Sci. Nutr. 2015, 57, 893–922. [Google Scholar] [CrossRef] [PubMed]
- Escribano-Bailón, M.T.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Anthocyanins in cereals. J. Chromatogr. A 2004, 1054, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, E.-S.M.; Young, J.C.; Rabalski, I. Anthocyanin Composition in Black, Blue, Pink, Purple, and Red Cereal Grains. J. Agric. Food Chem. 2006, 54, 4696–4704. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-K.; Kim, H.; Koh, K.; Kim, H.-S.; Lee, Y.S.; Kim, Y.H. Identification and quantification of anthocyanin pigments in colored rice. Nutr. Res. Pract. 2008, 2, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Zaupa, M.; Calani, L.; del Rio, D.; Brighenti, F.; Pellegrini, N. Characterization of total antioxidant capacity and (poly)phenolic compounds of differently pigmented rice varieties and their changes during domestic cooking. Food Chem. 2015, 187, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Finocchiaro, F.; Ferrari, B.; Gianinetti, A. A study of biodiversity of flavonoid content in the rice caryopsis evidencing simultaneous accumulation of anthocyanins and proanthocyanidins in a black-grained genotype. J. Cereal Sci. 2010, 51, 28–34. [Google Scholar] [CrossRef]
- Gutek, L.H.; Woods, D.L.; Clark, K.W. Identification and Inheritance of Pigments in Wild Rice. Crop Sci. 1981, 21, 79. [Google Scholar] [CrossRef]
- Brat, P.; Tourniaire, F.; Amiot-Carlin, M.J. Stability and analysis of phenolic pigments. In Food Colorants: Chemical and Functional Propertiesi; Socaciu, C., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 71–86. [Google Scholar]
- Murador, D.C.; da Cunha, D.T.; de Rosso, V.V. Effects of cooking techniques on vegetable pigments: A meta-analytic approach to carotenoid and anthocyanin levels. Food Res. Int. 2014, 65, 177–183. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of Anthocyanins in Common Foods in the United States and Estimation of Normal Consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef] [PubMed]
Sample | Moisture g/100 g (%) f.w. | Protein Content g/100 g d.m. | Ash Content g/100 g d.m. |
---|---|---|---|
BTH | 12.3 ± 0.1 a | 9.6 ± 0.2 a | 1.58 ± 0.03 a |
RTH | 13.3 ± 0.0 b | 9.8 ± 0.0 a | 1.40 ± 0.04 b |
CWR | 10.3 ± 0.0 c | 14.0 ± 0.0 b | 1.61 ± 0.01 a |
Lutein | Zeaxantin | |||||
---|---|---|---|---|---|---|
Raw | Cooked | Loss | Raw | Cooked | Loss | |
BTH | 0.64 ± 0.06 a,A | 0.36 ± 0.04 a,B | 44 | 0.02 ± 0.00 a,A | 0.01 ± 0.00 a,B | 35 |
RTH | 0.19 ± 0.00 b,A | 0.08 ± 0.01 b,B | 57 | 0.01 ± 0.00 a,A | 0.01 ± 0.00 b,B | 47 |
CWR | 1.88 ± 0.14 c,A | 0.61 ± 0.09 c,B | 67 | 0.06 ± 0.01 b,A | 0.02 ± 0.00 c,B | 67 |
FPCs | BPCs | TPCs | ||||
---|---|---|---|---|---|---|
Raw | Cooked | Raw | Cooked | Raw | Cooked | |
BTH | 422.3 ± 3.4 a,A (85%) | 474.0 ± 23.7 a,A (87%) | 76.8 ± 5.1 a,C (15%) | 68.2 ± 2.2 a,C (13%) | 499.1 ± 8.5 F | 542.3 ± 25.9 F |
RTH | 547.3 ± 14.3 b,A (89%) | 413.5 ± 5.1 b,B (79%) | 69.5 ± 8.7 a,D (11%) | 109.7 ± 6.9 b,E (21%) | 616.8 ± 23.0 G | 523.2 ± 14.7 H |
CWR | 286.6 ± 5.0 c,A (85%) | 268.1 ± 10.9 c,A (74%) | 52.0 ± 2.9 b,D (15%) | 93.8 ± 8.1 b,E (26%) | 338.6 ± 20.1 I | 361.9 ± 0.6 I |
C3G | P3G | |||
---|---|---|---|---|
Raw | Cooked | Raw | Cooked | |
BTH | 14.2 ± 1.5 a,A (59%) | 24.7 ± 1.4 a,B | 9.8 ± 0.5 C (41%) | 5.3 ± 0.3 D |
RTH | n.d. | n.d. | n.d. | n.d. |
CWR | 0.3 ± 0.0 b,A | 0.3 ± 0.0 b,A | n.d. | n.d. |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melini, V.; Acquistucci, R. Health-Promoting Compounds in Pigmented Thai and Wild Rice. Foods 2017, 6, 9. https://doi.org/10.3390/foods6010009
Melini V, Acquistucci R. Health-Promoting Compounds in Pigmented Thai and Wild Rice. Foods. 2017; 6(1):9. https://doi.org/10.3390/foods6010009
Chicago/Turabian StyleMelini, Valentina, and Rita Acquistucci. 2017. "Health-Promoting Compounds in Pigmented Thai and Wild Rice" Foods 6, no. 1: 9. https://doi.org/10.3390/foods6010009
APA StyleMelini, V., & Acquistucci, R. (2017). Health-Promoting Compounds in Pigmented Thai and Wild Rice. Foods, 6(1), 9. https://doi.org/10.3390/foods6010009